

Special Issue:

Recent Progress on High Energy <u>Astrophysics</u> (Eds. Bing Zhang & Peter Mészáros)

Front. Phys., Vol. 8, No. 6 (2013) **Special Issue:**

> The Physics and Astrophysics of Type la Supernova Explosions (Eds. Mike Guidry & Bronson Messer)

> *Front. Phys.*, Vol. 8, No. 2 (2013)

Available online: journal.hep.com.cn/fop;

www.springer.com/11467

Frontiers of Physics

高等教育出版社

journal.hep.com.cn

IF=2.086

Springer

GRBs & multi-messenger (neutrino and gravitational wave) connection

Bing Zhang (张冰) University of Nevada Las Vegas / Peking University

July 10, 2015, JUNO neutrino astronomy/astrophysics workshop

Future: Multi-messenger Era

Gamma-Ray Bursts on one slide

GRBs & Astrophysics

GRBs & Physics

GR near the central enigne

GRBs & Physics

GR near the central enigne

Physical Sketch of GRBs

Uncertainties in GRB Prompt Emission:

What is the jet composition (baryonic vs. Poynting flux)? Where is (are) the dissipation radius (radii)? – three possible locations How is the radiation generated (synchrotron, Compton scattering, thermal)?

Multi-Messenger Observations can address: Open Questions in GRB Physics

- Progenitors & classification (massive stars vs. compact stars; others? how many physically distinct types?)
- Central engine (black hole, magnetar?)
- Ejecta composition (baryonic, leptonic, magnetic?)
- Energy dissipation mechanism (shock vs. magnetic reconnection)
- Particle acceleration & radiation mechanisms (synchrotron, inverse Compton, quasi-thermal)
- Afterglow physics (medium interaction vs. long-term engine activity)

Topic 1:

Neutrinos from GRBs:

"Thermal" neutrinos

- Core collapse (talks by Qian & Li)
- Neutrino dominated accretion flow (NDAF)
 - Electron capture & neutronization

p+e⁻→n+ve

 $-\beta$ -decay:

 $n \rightarrow e^+ p + \overline{v}_e$

– Photon pair annihilation:

 $\gamma \gamma \rightarrow e^-e^+ \rightarrow \nu e \ \overline{\nu} e$

– Photo neutrino:

 $\gamma e \rightarrow e \nu_e \overline{\nu}_e$

"Non-thermal" neutrinos

 Protons are accelerated in astrophysical environment, which would interact with photons or other baryons to produce neutrinos:

 $-p\gamma$ process:

– *pp/pn* process:

• Interaction at Δ -resonance:

$$p\gamma \to (\Delta^+ \to) \begin{cases} n\pi^+ \to n\mu^+\nu_\mu \to ne^+\nu_e\bar{\nu}_\mu\nu_\mu, & \text{fraction } 1/3\\ p\pi^0 \to p\gamma\gamma, & \text{fraction } 2/3. \end{cases}$$

• "Matching" condition:

$$E_p E_{\gamma} \gtrsim \frac{m_{\Delta}^2 - m_p^2}{4} \left(\frac{\Gamma}{1+z}\right)^2 = 0.16 \text{ GeV}^2 \left(\frac{\Gamma}{1+z}\right)^2$$

 $m_{\Delta} = 1.23 \text{ GeV}$ $m_p = 0.938 \text{ GeV}$ Γ : Lorentz factor z: redshift

• Cross section:

 $\sigma_{p\gamma} \simeq 5 \times 10^{-28} \text{ cm}^2 \simeq 500 \mu \text{b}.$

• Important in intense photon field

pp/pn

• Interaction (no resonance):

$$pp(pn) \to \pi^{\pm}/K^{\pm} \dots \to \begin{cases} \mu^{+}\nu_{\mu} \dots \to e^{+}\nu_{e}\bar{\nu}_{\mu}\nu_{\mu} \dots \\ \mu^{-}\bar{\nu}_{\mu} \dots \to e^{-}\bar{\nu}_{e}\nu_{\mu}\bar{\nu}_{\mu} \dots \end{cases}$$

• Cross section:

$$<\sigma_{pp}>\simeq 6\times 10^{-26} \ \mathrm{cm}^2,$$

• Important in dense environments

Neutrinos from GRBs

- MeV: core collapse, central engine
- GeV: fireball acceleration phase, pn collision (Bahcall & Meszaros 2000)
- TeV: Jet in star for both successful and choked GRBs; or in dissipative photosphere (Meszaros & Waxman 2001; Razzaque et al. 2003; Ando & Beacom 2005; Wang & Dai 2009; Murase & Ioka 2013)
- PeV: Internal shocks or magnetic dissipation (Waxman & Bahcall 1997; Li 2012; He et al. 2012; Zhang & Kumar 2013)
- EeV: External shock (Waxman & Bahcall 2000; Dai & Lu 2001); Low luminosity GRBs (Murase et al. 2006; Gupta & Zhang 2007)

MeV Neutrinos from GRBs

- From central engine (proto neutron star, accretion disk)
- Thermal, temperature ~ MeV, produce MeV neutrinos
- Very low flux, detectable only when a GRB is very close (in nearby galaxies)

GeV Neutrinos from GRBs

- During the fireball acceleration phase
- Relative motion between protons and neutrons
- Inelastic collisions among protons and neutrons to produce GeV neutrinos

TeV Neutrinos from GRBs

- Jet propagating inside the progenitor star
- X-rays in the cocoon
- Protons interacting with X-rays to produce TeV neutrinos
- Photosphere

PeV Neutrinos from GRBs

- Gamma-rays from the GRB emission site (internal shocks)
- Protons are also accelerated in the internal shocks
- Protons interact with gamma-ray photons to produce PeV neutrinos
- For soft, low-luminosity GRBs, peak shifts to sub EeV

EeV Neutrinos from GRBs

- X-rays emitted in the external reverse/forward shock region
- Protons are also accelerated in these shocks
- Protons interact with X-rays photons to produce sub EeV neutrinos
- EeV neutrinos can be also generated in X-ray flares following GRBs

Neutrinos from GRBs

- MeV: core collapse, central engine
- GeV: fireball acceleration phase, pn collision (Bahcall & Meszaros 2000)
- TeV: Jet in star for both successful and choked GRBs; or in dissipative photosphere (Meszaros & Waxman 2001; Razzaque et al. 2003; Ando & Beacom 2005; Wang & Dai 2009; Murase & Ioka 2013)
- PeV: Internal shocks or magnetic dissipation (Waxman & Bahcall 1997; Li 2012; He et al. 2012; Zhang & Kumar 2013)
- EeV: External shock (Waxman & Bahcall 2000; Dai & Lu 2001); Low luminosity GRBs (Murase et al. 2006; Gupta & Zhang 2007)

PeV neutrinos from GRBs

- Guaranteed neutrino component: photon component: ~MeV photons observed from GRBs
- If cosmic rays are accelerated in GRB sources, neutrinos must be there!
- Most favorable target
 for IceCube

$$-a_{\gamma} \gamma \operatorname{spectrum}$$

$$-\beta_{\gamma}$$

$$v \operatorname{spectrum}$$

$$p \operatorname{spectrum}$$

$$\alpha_{\nu} = p + 1 - \beta_{\gamma}, \quad \beta_{\nu} = p + 1 - \alpha_{\gamma}, \quad \gamma_{\nu} = \beta_{\nu} + 2,$$

Non-detection of neutrinos by Icecube

IceCube did not detect neutrinos from GRBs yet, upper limit 3 times lower than the most optimistic predictions (Waxman & Bahcall)

LETTER

doi:10.1038/nature11068

An absence of neutrinos associated with cosmic-ray acceleration in γ -ray bursts

IceCube Collaboration*

Very energetic astrophysical events are required to accelerate cosmic rays to above 10¹⁸ electronvolts. GRBs (γ -ray bursts) have been proposed as possible candidate sources¹⁻³. In the GRB 'fireball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and γ -rays⁴. Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux⁵⁻⁷. Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions⁽⁴⁸⁻¹⁰. This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 10¹⁸ electronvolts or that the efficiency of neutrino production is much lower than has been predicted.

As in our previous study⁷, we conducted two analyses of the IceCube data. In a model-dependent search, we examine data during the period of γ -ray emission reported by any satellite for neutrinos with the energy spectrum predicted from the γ -ray spectra of individual GRBs^{6,9}. The model-independent analysis searches more generically for neutrinos on wider timescales, up to the limit of sensitivity to small numbers of events at \pm 1 day, or with different spectra. Both analyses follow the methods used in our previous work⁷, with the exception of slightly changed event selection and the addition of the Southern Hemisphere to the model-independent search. Owing to the large background of downgoing muons from the southern sky, the Southern Hemisphere analysis is sensitive mainly to higher-energy events (Supplementary Fig. 3). Systematic uncertainties from detector effects have been included in the reported limits from both analyses,

Solar neutrino problem

- Early searches for solar neutrinos failed to find the predicted number (about 1/3 of predicted)
- Debate:
 - Astrophysics wrong?
 - Physics wrong?
- It turns out that neutrinos oscillate – physics was wrong

Homestake Solar Neutrino Observatory

Super Kamiokande

A GRB neutrino problem?

- Icecube did not detect high energy neutrinos from GRBs as expected from the theories
- A similar question arises:
 - Astrophysics wrong?
 - Physics wrong?
- This time, very likely astrophysics is wrong!

GRB models invoke a lot more uncertainties than solar models.

LETTER

doi:10.1038/nature11068

An absence of neutrinos associated with cosmic-ray acceleration in γ -ray bursts

IceCube Collaboration*

Very energetic astrophysical events are required to accelerate cosmic rays to above 10¹⁸ electronvolts. GRBs (γ -ray bursts) have been proposed as possible candidate sources¹⁻³. In the GRB 'fireball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and γ -rays⁴. Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux⁵⁻⁷. Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions⁴⁻¹⁰. This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 10¹⁸ electronvolts or that the efficiency of neutrino production is much lower than has been predicted.

As in our previous study⁷, we conducted two analyses of the LecCube data. In a model-dependent search, we examine data during the period of γ -ray emission reported by any satellite for neutrinos with the energy spectrum predicted from the γ -ray spectra of individual GRBs^{6,9}. The model-independent analysis searches more generically for neutrinos on wider timescales, up to the limit of sensitivity to small numbers of events at ± 1 day, or with different spectra. Both analyses follow the methods used in our previous work⁷, with the exception of slightly changed event selection and the addition of the Southern Hemisphere to the model-independent search. Owing to the large background of downgoing muons from the southern sky, the Southern Hemisphere analysis is sensitive mainly to higher-energy events (Supplementary Fig. 3). Systematic uncertainties from detector effects have been included in the reported limits from both analyses,

centralphotosphereinternalexternal shocksengine(reverse)(forward)

What is the jet composition (baryonic vs. Poynting flux)?Where is (are) the dissipation radius (radii)?How is the radiation generated (synchrotron, Compton scattering, thermal)?

Model-dependent PeV neutrino flux

- Neutrino flux depends on proton flux and $p\gamma$ optical depth
 - Proton flux depends on L_p (normalized to L_y)
 - Optical depth depends on L_{γ} , Γ and R
- Different models may have different $f_{\gamma/p} = L_{\gamma} / L_p$
- Given the same observed L_{γ} and Γ , different models invoke different *R*
 - Internal shock model: $R = \Gamma^2 c \, \delta t_{\min}$
 - Photosphere model: *probably* $R < \Gamma^2 c \ \delta t_{\min}$
 - Internal Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model: $R = \Gamma^2 c \ \delta t_{slow} > \Gamma^2 c \ \delta t_{min}$

Internal Shock Model

- Internal shocks develop at $R = \Gamma^2 c \ \delta t_{\min}$
- Both electrons and protons are accelerated in internal shocks; most electron energy goes to radiation (fast cooling), so $f_{\gamma/p} = L_{\gamma} / L_p$ $= \varepsilon_e / \varepsilon_p \sim 0.1$
- This ratio also allows GRBs to be dominant UHECR SOURCES (Waxman 1995)

Rees & Meszaros Paczynski & Xu Kobayashi, Piran & Sari Daigne & Mochkovitch Panaitescu, Spada, Meszaros

.

Dissipative Photosphere Model

- At photosphere quasi-thermal photons are released.
 Dissipation and particle acceleration are envisaged around the photosphere, so that a non-thermal spectrum emerges
- $R \leq \Gamma^2 c \, \delta t_{\min}$, δt_{\min} can be defined by minimum central engine activity, not necessarily $R / \Gamma^2 c$.
- Can be rich of photons, so that $f_{\gamma/p} = L_{\gamma} / L_p$ can be larger than 0.1
- GRBs are not dominant UHECR sources

Rees & Meszaros Thompson et al. Beloborodov Giannios Ioka Lazzati Toma, Veres

ICMART Model

(Internal Collision-induced MAgnetic Reconnection & Turbulence)

Zhang & Yan (2011)

ICMART Model

- ICMART radius is at $R = \Gamma^2 c \ \delta t_{slow} > \Gamma^2 c \ \delta t_{min}$
- $f_{\gamma/p} = L_{\gamma} / L_p$ can be $=\varepsilon_e / \varepsilon_p \sim 0.1$ (no pair) or > 0.1 (pair-rich dissipation)
- GRBs can either be or not be dominant UHECR sources

H. Gao et al. 2012

Zhang & Yan 2011

Non-detection of neutrinos by Icecube

Latest Constraints from the IceCube Team

The Astrophysical Journal Letters, 805:L5 (7pp), 2015 May 10

AARTSEN ET AL.

Figure 2. Total predicted neutrino fluence for various values of the bulk Lorentz factor Γ under different model assumptions. Bold lines reflect the energy region in which 90% of events are expected based on simulation. Normalization scales linearly with the assumed baryonic loading f_p , which is set here to 10. Models are arranged from left to right in order of increasing predicted fluence for given values of f_p and Γ .

Figure 3. Allowed region for the baryonic loading f_p and bulk Lorentz factor Γ under different model assumptions.

Aartsen et al. 2015, ApJL, 805, L5

Topic 2:

Electromagnetic counterparts of kHz gravitational wave sources

Detection of gravitational wave is around the corner

Event Rate $0.2 \sim 2000 yr^{-1}$

Top candidate of GW sources: NS-NS mergers

- Known systems in the Galaxy
- Indirect evidence of GW emission from PSR 1913+16 system
- Well studied "chirp" signals (short duration of detected signal – GW bursts or GWBs)
- What EM signals accompany with these events?

http://physics.aps.org/articles/v3/29 (adapted from Kiuchi et al. 2010, PRL, 104, 141101)

Possible NS-NS merger products: BH vs. millisecond magnetar

Bartos, I., Brady, P., Marka, S. 2012, arXiv:1212.2289

EM signals for a BH post-merger product

Metzger & Berger (2012)

SGRB

Multi-wavelength afterglow ~*hours, days*

Li-Paczyński Nova (Macronova, Kilonova)

Li & Paczyński, 1998 Opical flare ~ 1 day

Ejecta-ISM interaction shock

Nakarć Piran, 2011

Radio

~years

Talks by Li & Ioka

Short GRBs as GWB EM counterpart: issues

- Observationally, NS-NS origin of short GRBs is not firmly established: the NS-NS model cannot simultaneously interpret the BATSE and Swift short GRB data (Virgili et al. 2012)
- Even if there is a SGRB-GWB association, SGRBs are collimated, only a small fraction of GWBs will have SGRBs.

Short GRBs Issue: Beamed

- In different types of host galaxies, including a few in elliptical/earlytype galaxies, but most in starforming galaxies
- Large offsets, in regions of low star formation rate in the host galaxy. Some are outside the galaxy.
- Leading model: NS-NS or NS-BH mergers

Rezzolla et al. 2011

Kilo-novae: faint, in IR?

 Li-Paczynski novae: 1-day V-band luminosity: 3×10⁴¹ erg/s (Metzger et al. 2010): 3-5 orders of magnitude fainter than GRB afterglow

Barnes & Kasen (2013):
High opacity from heavier elements (e.g.
lanthanides) – peak in IR

 Detection in GRB 130603B?

Kilo-novae and radio afterglow: Too faint to detect

- Li-Paczynski novae: 1-day V-band luminosity: 3×10⁴¹ erg/s (Metzger et al. 2010): 3-5 orders of magnitude fainter than GRB afterglow
- Radio afterglow (Nakar & Piran): bright enough when n=1 cm⁻³. For mergers, one expects n ~ 10⁻³ – 10⁻⁴ cm⁻³, then radio afterglow not detectable

Observational hints of a magnetar as the post-merger product (I)

- NS with mass > 2 M_{\odot} has been discovered
- NS-NS systems: total mass can be below ~ 2.6 M_☉

Neutron	Star – Neutron Star	Binaries	(mean = 1.325 M_{\odot} , wei	ghted mean $= 1.4$	$403 M_{\odot})$
J1829 + 2456	$1.338^{+0.002}_{-0.338}$	z (20)	J1829+2456 (c)	$1.256^{+0.346}_{-0.003}$	z (20)
J1811-1736	$1.608^{+0.066}_{-0.608}$	A (21)	J1811-1736 (c)	$0.941^{+0.787}_{-0.021}$	A (21)
J1906+07	$1.694^{+0.012}_{-0.694}$	B (22)	J1906+07 (c)	$0.912^{+0.710}_{-0.004}$	B (22)
J1518 + 4904	$0.72^{+0.51}_{-0.58}$	C (23)	J1518+4904 (c)	$2.00^{+0.58}_{-0.51}$	C (23)
1534 + 12	$1.3332^{+0.0010}_{-0.0010}$	K (24)	1534+12 (c)	$1.3452^{+0.0010}_{-0.0010}$	K (24)
1913 + 16	$1.4398^{+0.0002}_{-0.0002}$	q (25)	1913+16 (c)	$1.3886^{+0.0002}_{-0.0002}$	q (25)
$2127{+}11\mathrm{C}$	$1.358^{+0.010}_{-0.010}$	x (26)	2127+11C (c)	$1.354_{-0.010}^{+0.010}$	x (26)
J0737-3039A	$1.3381^{+0.0007}_{-0.0007}$	i (27)	J0737-3039B	$1.2489^{+0.0007}_{-0.0007}$	i (27)
J1756-2251	$1.312^{+0.017}_{-0.017}$	J (<u>28</u>)	J1756-2251 (c)	$1.258^{+0.017}_{-0.017}$	J (28)

Lattimer & Prakash (2010)

Observational hints of a magnetar as the post-merger product (I)

Stiff equation-of-state: maximum NS mass close to 2.5 M_{\odot}

Observational hints of a magnetar as the post-merger product (2)

X-ray plateaus in some short GRB afterglows

Rowlinson et al. (2010)

Rowlinson et al. (2013)

Additional energy budget from the magnetar: the spin energy

$$E_{rot} = 2 \times 10^{52} \ erg \ I_{45} P_{0,-3}^{-2}$$
$$L_{sd,0} = 10^{49} \ erg \ s^{-1} B_{p,15}^2 R_6^6 P_{0,-3}^{-4}$$
$$T_{sd} = \frac{E_{rot}}{L_{0,sd}} \sim 10^3 \ s \ I_{45} B_{p,15}^{-2} R_6^{-6} P_{0,-3}^2$$

A postmerger magnetar would be initially rotating near the Keplerian velocity P~1ms.

A huge energy budget: released in the EM form in different channels

Early EM signals from GWBs (Zhang, 2013, ApJ, 763, L22)

- Magnetar wind is essentially isotropic
- If the post-merger product of NS-NS coalescence is a millisecond magnetar, essentially every GWB would be accompanied by a bright early EM afterglow
- This applies regardless of whether NS-NS mergers are accompanied by short GRBs

EM signals for a (supra-massive / stable) millisecond magnetar post-merger product

SGRB?

Late central engine activity ~Plateau & X-ray flare

Magnetic Dissipation X-ray Afterglow up to $\sim 10^{-8} erg s^{-1} cm^{-2}$ 1000 ~10000 s Zhang, 2013

Magnetar-fed merger-novae

Yu et al, 2013; Metzger & Piro 2014

Ejecta-ISM interaction with continuous energy injection

Multi-band transient ~hours, days, weeks, or even years

Gao et al, 2013

Forming a supra-massive / stable neutron star via a NS-NS merger

For small enough NS masses and a reasonable NS equation of state, a stable magnetar can survive a NS-NS merger.

Giacomazzo & Perna (2013)

Bright early X-ray Afterglow from NS-NS mergers

Zhang, 2013, ApJ, 763, L22

Enhanced (Magnetar powered) Merger Novae

Yu, Zhang & Gao, 2013, ApJ, 763, L22

Figure 2. Light curves of the merger-nova (thick) and afterglow (thin) emissions at different observational frequencies as labeled. The dashed and dotted lines are obtained for an optionally taken magnetar collapsing time as $t_{col} = 2t_{md}$ and $t_{col} = 10^4$ s, respectively. The ambient density is taken as 0.1 cm^{-3} , and other model parameters are the same as Figure 1.

Figure 3. Optical (~1 eV) light curves of the millisecond-magnetar-powered merger-nova, in comparison with the light curves of two supernovae (bolometric) and one radioactive-powered merger-nova (as labeled). The dash-dotted (blue) and solid (orange) lines represent $M_{\rm ej} = 10^{-2} M_{\odot}$ and $10^{-4} M_{\odot}$, respectively. The thick and thin lines correspond to a magnetar collapsing time as $t_{\rm col} = 10^4 \, \text{s} \ll t_{\rm md}$ and $t_{\rm col} = 2t_{\rm md}$, respectively. The zero-times of the supernovae are set at the first available data.

See also Metzger & Piro (2014)

Ejecta-ISM shock with Energy Injection

Gao et al. 2013, ApJ, 771, 86

Observational strategy

Nissanke et al. 2011

X-ray observational strategy

 Small field of view (e.g. Swift XRT), requires fast-slew to search for the entire error box in 10³-10⁴ s

Not easy

2) Large field of view with moderate sensitivity, rapid-slew to increase chance coincidence with GWB triggers

e.g. Einstein Probe, Lobster, ASTAR ...

Observational strategy

Nissanke et al. 2011

Optical observational strategy

Large field of view, look for chance coincidence with GWB triggers; Follow-up observations if Xray triggers are made

Radio observational strategy

No need of prompt follow up; All-sky radio survey important

If all the required observations can be made, how likely can we discover these early afterglows?

- We don't know
- Because we do not know the NS equation-of-state, so that we do not know what fraction of NS-NS mergers will leave behind a magnetar rather than a black hole
- If a magnetar forms, essentially every one will have bright X-ray early afterglow
- The brightness of the multi-wavelength afterglow depends on viewing angle, ejecta mass, and medium density

Story I

- Imagine some time beyond 2015
- Advanced LIGO sends an alert to the EM community about a "chirp" GWB signal
- Einstein Probe / ISS-Lobster / ASTAR happens to cover the error box of advanced LIGO, but no bright X-ray emission is discovered
- The magnetar possibility is essentially ruled out. The upper limit of NS maximum mass constraints NS equation of state
- Continuously processing the GWB signal revealed a "ring-down" phase – consistent with a BH as the post-merger product
- Deep searches of optical signal in the error box did not reveal a bright optical transient
- Deep searches of radio signal one year after the GWB trigger revealed a very faint object. It takes years to figure out whether it is a variable source, and hence, whether it is related to the NS-NS merger.

Story II

- Imagine some time beyond 2015
- Advanced LIGO sends an alert to the EM community about a "chirp" GWB signal
- Einstein Probe / ISS-Lobster / ASTAR happens to cover the error box of advanced LIGO, and a bright X-ray emission is discovered
- Optical and radio telescopes immediately slews to the error box provided by the X-ray detector, and discovers a bright afterglow
- Follow-up GW signal analysis reveals a phase of secular bar-model instability signal of a hyper-massive neutron star
- From the duration of the X-ray plateau, the magnetar magnetic field is constrained.
- Combining GW analysis and afterglow analysis, one is able to derive many interesting physical parameters: the mass of the two parent NSs, ejecta mass, maximum mass of the survived NS, maximum mass of a non-spinning NS, equation-of-state of nuclear matter ...

Look Early!

Both positive and negative detections are of great interest!

Only observations will make breakthrough!