江门中微子实验简介

中科院高能所

JUNO中微子天文和天体物理学研讨会,北京,2015-5-25

Body

美《科学》杂志十大突破

- ◆ 1998年
 - ⇒ 1 . 通过对超新星的研究发现:宇宙中存在着一种反引力 , 导致宇 宙不断地加速膨胀。(Ia型)
 - ➡ 4.日本进行的实验表明中微子具有质量,这一发现与传统的理论相悖。(Super-K发现中微子振荡)
- ◆ 2001年
 - ⇒ 3 . 太阳中微子的失踪之谜被揭示。加拿大萨德伯里中微子实验 证实太阳中微子事实上没有失踪。(SNO实验)
- ◆ 2002年
 - ⇒ 7.揭开太阳中微子失踪之谜。太阳产生的电子中微子在抵达地 球过程中没有丢失,而是转化成了µ中微子和τ中微子。在日本进行 的研究也为此找到了新线索(KamLAND实验和SNO实验)
- ♦ 2012年
 - ♀ 4 . 中国大亚湾反应堆中微子实验报告了最后一个混合角: θ₁₃等 于8.8度加减0.8度。如果物理学家无法发现超越希格斯玻色子的 新粒子,中微子物理可能会代表粒子物理学的未来,大亚湾的实 验结果可能就是标志着这一领域起飞的时刻。

新物理的窗口:中微子物理

◆ 中微子振荡

➡1998年发现中微子振荡,证实中微子具有微小的质量。这是 唯一超出**粒子物理标准模型**的实验现象。

⇒由6个参数描述,已测4个半。

◆ 非振荡物理

⇒ 无中微子双贝塔(0νββ)过程: 中微子是否为自身反粒子?

⇒中微子的绝对质量?

⇒寻找反常现象

⇒ 中微子天文学

◆ 中微子振荡主要研究手段:

⇒太阳中微子: 证实核聚变, θ₁₂, Δm²₂₁, 物质效应, 太阳物理
 ⇒大气中微子: 发现中微子振荡, θ₂₃, Δm²₃₂, 质量顺序
 ⇒加速器中微子: 验证大气中微子振荡, Δm²₃₂, 质量顺序, CP相角
 ⇒反应堆中微子: 发现中微子, 验证太阳中微子振荡, θ₁₃, 质量顺序

大亚湾反应堆中微子实验

目标为测量中微子混合角θ₁₃。2003年提出项目建议,2007 年开始建设,2011年底建成,2012年发现新的中微子振荡。

◆ 美国承担了约一半的探测器, 俄、捷、港、台都有实质性贡献。

- 3000 米隧道
- 5 个地下实验厅
- 8 个 110 吨重的中微子探测器
- 3 个水切伦科夫探测器(4400 吨纯净水)
- 3200 m² 阻性板探测器
- 8000 道电子学读出。

Daya Bay NPP

大亚湾最新结果

大亚湾探测器

- 中心探测器(中微子探测器)
- 多重反符合探测器
 - 两层水切伦科夫探测器
 - 阻性板探测器(RPC): 4 层 + 望远镜

隧道,7米宽,7米高,全长3000米

组装中心探测器(5米x5米,110吨)

组装中心探测器——吊装光电倍增管

C

组装中心探测器安装反射板

中心探测器完成组装(30吨)

吊装中心探测器至水池中

薑装1300吨超纯水

江门中微子实验 (JUNO)

<u>江门实验探测器</u>

	KamLAND	BOREXINO	JUNO
LS mass	1 kt	0.5 kt	20 kt
Energy Resolution	6%/√ <u></u>	5%/√ <u>E</u>	3%/ √ <i>E</i>
Light yield	250 p.e./MeV	511 p.e./MeV	1200 p.e./MeV

JUNO 物理研究

- ➡ 质量顺序:6年3-4σ,能量精度研究
- ⇒ 精确测量混合参数: $\sin^2 \theta_{12} 0.7\%$, $\Delta m^2_{21} 0.6\%$, $\Delta m^2_{ee} 0.44\%$
- ⇒ 超新星中微子: 5-8k事例, 中性流
- ➡ 超新星背景中微子: 首次3-7σ
- ⇒ 地球中微子: 3TNU, 首次判别模型
- ⇒ 大气中微子: 1-2σ
- ⇒ 惰性中微子
- ➡ 质子衰变: >4x10³⁴ y (10x SuperK)
- ⇒ 间接暗物质寻找
- ⇒ 稀有事例寻找

	Current	DYB II
Δm^2_{12}	3%	0.6%
Δm^2_{23}	5%	0.6%
$\sin^2\theta_{12}$	6%	0.7%
sin ² θ_{23}	20%	N/A
$\sin^2\theta_{13}$	14‰ → 4%	~ 15%

New physics searches: Check the unitary of mixing matrix to ~1%

MH sensitivity with 6 years' data of JUNO (PRD88, 013008 (2013))

- Ideal case: 4σ with relative measurement, 5σ with absolute Δm^2 measurement
- Taking into account the spread of reactor cores, uncertainties from energy non-linearity, etc. 3σ with relative measurement, 4σ with absolute Δm² measurement

- ⇒ 美国Nova+日本 T2K+大亚湾
- ⇒ 美国 DUNE(LBNE): 1万吨液氩, 2024, 每年增加1万吨
- ⇒ 美国南极 PINGU: 2021取数, 4年3σ
- ⇒ 法国 地中海ORCA(KM3): 2020取数, 4年3σ
- ⇒ 日本 Hyper-K: 2016提交建议, 2025取数
- ➡ 韩国RENO-50: 三星支持2M\$预研

⇒ 美国Nova+日本 T2K+大亚湾

- ⇒ 美国 DUNE(LBNE): 1万吨液氩, 2024, 每年增加1万吨
- ⇒ 美国南极 PINGU: 2021取数, 4年3σ
- ⇒ 法国 地中海ORCA(KM3): 2020取数, 4年3σ
- ⇒ 日本 Hyper-K: 2016提交建议, 2025取数
- ➡ 韩国RENO-50: 三星支持2M\$预研

Mass Hierarchy from Atmospheric

- Due to matter effect, oscillation probability of atmospheric muon neutrino when passing the Earth depends on mass hierarchy
- JUNO will have 1-2 σ sensitivity.
 ⇒ Measure both lepton and hadron energy
 ⇒ Good tracking and energy resolution

INO

未来加速器中微子

超新星中微子

Less than 20 events observed so far

Assumptions:

⇒ Distance: 10 kpc (our Galaxy center)

- \Rightarrow Energy: 3×10^{53} erg
- ◆ 江门可探测所有类型中微子;能谱精 度高

- Super-K (2.25万吨水)
- ◆ Hyper-K (50万吨水)
- ◆ JUNO (2万吨LS)
- ◆ DUNE(1-4万吨Ar)

PINGU/KM3NeT

超新星背景中微子

=

DSNB: Past core-collapse events

- ➡ Cosmic star-formation rate
- ➡ Core-collapse neutrino spectrum
- ➡ Rate of failed SNe

Item		Rate (no PSD)	PSD efficiency	Rate (PSD)
Signal	$\langle E_{\bar{\nu}_e} \rangle = 12 \text{MeV}$	12.2	$\varepsilon_{\nu} = 50 \%$	6.1
	$\langle E_{\bar{\nu}_e} \rangle = 15 \text{MeV}$	25.4		12.7
	$\langle E_{\bar{\nu}_e} \rangle = 18 \text{MeV}$	42.4		21.2
	$\langle E_{\bar{\nu}_e} \rangle = 21 \text{MeV}$	61.2		30.8
Background	reactor $\bar{\nu}_e$	1.6	$\varepsilon_{\nu} = 50 \%$	0.8
	atm. CC	1.5	$\varepsilon_{\nu} = 50 \%$	0.8
	atm. NC	716	$\varepsilon_{\rm NC} = 1.1 \%$	7.5
	fast neutrons	12	$arepsilon_{ m FN}=1.3\%$	0.15
	Σ			9.2

10 Years' sensitivity

Syst	. uncertainty BG	5	5%	2	0%
	$\langle E_{\bar{\nu}_e} \rangle$	rate only	spectral fit	rate only	spectral fit
	$12 \mathrm{MeV}$	1.7σ	1.9σ	1.5σ	1.7σ
	$15{ m MeV}$	3.3σ	3.5σ	3.0σ	3.2σ
	$18\mathrm{MeV}$	5.1σ	5.4σ	4.6σ	4.7σ
	$21{ m MeV}$	6.9σ	7.3σ	6.2σ	6.4σ

Event / 225 ke/

- Current results
 KamLAND: 30±7 TNU
 Borexino: 38.8±12.2 TNU
 Statistics dominant
- Desire to reach an error of 3 TNU
- ◆ JUNO: 40 TNU, ×20 statistics
 ⇒ Huge reactor neutrino backgrounds
 ⇒ Need accurate reactor spectra

Source	Events/year
Geoneutrinos	408 ± 60
U chain	311 ± 55
Th chain	92 ± 37
Reactors	16100 ± 900
Fast neutrons	3.65 ± 3.65
⁹ Li - ⁸ He	657 ± 130
${}^{13}C(\alpha, n){}^{16}O$	18.2 ± 9.1
Accidental coincidences	401 ± 4

Combined shape fit of geo- ν and reactor- ν

	Best fit	1 y	3 y	5 y	10 y
U+Th fix ratio	0.96	17%	10%	8%	6%
U (free)	1.03	32%	19%	15%	11%
Th (free)	0.80	66%	37%	30%	21%

Solar and other Physics

• Sola $\Rightarrow M$ M $\Rightarrow ^7H$	r neu Ietallic ISW? Be and	trino ity? Vao ⁸ B at JU	cuum o JNO	Source pp ⁷ Be [line 0.384 MeV] ⁷ Be [line 0.862 MeV] pep ⁸ B ¹³ N	Rate [cpd/1kt] 1337 19 475 28 4.5 25		
Liquid Scintillator	U238	Th232	K40	¹⁵ O ¹⁷ F	28 0.7		
No Distillation	10 ⁻¹⁵	10 ⁻¹⁵	10 ⁻¹⁶	1.4·10 ⁻²²	Borexino CTF,		
After Distillation	10 ⁻¹⁷	10 ⁻¹⁷	10 ⁻¹⁸	KamLAN D	$ \begin{array}{c} \widehat{\mathbf{J}} \\ \widehat{\mathbf{J}} \\ \widehat{\mathbf{J}} \\ \widehat{\mathbf{J}} \\ \widehat{\mathbf{J}} \\ \widehat{\mathbf{J}} \end{array} $	UNO 20 kt	
 Prot Neut Sun Steri 	on De trinos or ga ile ne	ecay from laxy utrino	dark	Ling 10 ³⁴ Super K 22.5 kt 10 ³³ 10 ³³ 10 ³³ 10 ³³ 10 ³³ 10 ³³ 10 ³³ 10 ³³ 10 ³³ 10 ³⁴ 10 ³³ 10 ³⁴ 10 ³⁵ 2000 2005 2010 2015 2	020 2025 2030 2035 2040 Year		

中心探测器

- ⇒ Al₂O₃过滤
- ⇒ 蒸馏
- ⇒ 水萃取
- ⇒ 氮萃取

初步工程设计和原型试验。
 2015年在大亚湾地下实验室进行原型测试(包括意大利设备),纯化20吨烷基苯

Linear Alky Benzene (LAB)	Atte. Length @ 430 nm
RAW (specially made)	14.2 m
Vacuum distillation	19.5 m
SiO ₂ coloum	18.6 m
Al ₂ O ₃ coloum	25 m

2014年成功生产第一支20英寸 MCP-PMT

- ➡ 高能所+北方夜视+西安光机所
- ⇒ 新型光阴极: 高量子效率
- ⇒ 收集效率显著提高
- ⇒ 改进长期稳定性
- ▶ 其它备选方案
 - ➡ 日本滨松
 - ⇒ 海南展创

◆ 探测器小模型测试:各种PMT

20" and 8" MCP-PMTs

4x10 ⁷		100	WGI -I W	MCP_A Entries 409		R5912	R5912- 100	MCP- PMT
3x10 ⁷	Gain	0 90 80 70		SPE	QE@410nm	25%	35%	25%
2x10		60 50			Rise time	3 ns	3.4ns	5ns
0 10 ⁷		40 30	WITH THE AND		Dark noise	1kHz	3.5kHz	2.2kHz
			The second se	Without an Line way	P/V of SPE	>2.5	>2.5	`~2
	1800 1900 2000 2100 Voltage (V)	300 400	500 600 700	800 900 1000 1100 1200 Channel	TTS	5.5ns	1.5 ns	3.5 ns

- ◆ 水切伦科夫探测器+顶部径迹测器优化。采用塑料闪烁体 (OPERA实验,由法国提供)
- ◆ 电子学明确了技术指标:三种读出方案

600 m vertical shaft 1300-m long tunnel(40% slope) 50-m diameter, 80-m high cavern

Project Plan and Progresses

探测器R&D:2013-2016

现场安装: 2018-2019

灌装、取数:2020

江门国际合作组

2014年7月成立国际合作组,成员 380人 高能所~100,国内大学~120,欧洲~160 发言人:王贻芳,副发言人:曹俊,G.Ranucci

观察员

美国 俄罗斯(1) 意大利(1) 奥地利HEPHY 巴西PUC 智利PCUC 芬兰JyvaskylaU

欧洲 (24)

法国(5) 意大利(7) **APC Paris INFN-Frascati CPPM Marseille INFN-Ferrara IPHC Strasbourg INFN-Milano** LLR Paris **INFN-Padova Subatech Nantes INFN-Perugia** 芬兰(1) **INFN-Roma 3** U Oulu 俄罗斯(2) 捷克(1) JINR **Charles U INR Moscow**

(7) 德国(
ascati FZ Julic
rrara RWTH
ilano TUM
dova U Ham
rugia U Mair
ma 3 U Tueb
(2) 比利时
ULB
scow 亚美尼

德国(6)
FZ Julich
RWTH Aachen
TUM
U Hamburg
U Hamburg
U Mainz
U Tuebingen
比利时(1)
ULB
亚美尼亚(1)
YPI

南京大学 北师大 南开大学 地质科学院 交通大学(台) 重庆大学 台湾大学(台) 原子能院 联合大学(台) 东莞理工 华北电力 华东理工 北京大学 广西大学 山东大学 哈工大 上海交大 高能物理所 四川大学 吉林大学

亚洲 (28)

美国(1)

- 江门中微子实验以反应堆中微子实验为主要物理目标,将确定中微子质量顺序,精确测量3个混合参数到<1%精度
- 江门2万吨探测器将国际液闪探测器水平提高一个等级,为 超新星中微子、超新星背景中微子、太阳中微子、暗物质等 天体物理课题提供难得的平台。
- ◆ 成立了国际合作组,共11个国家和地区,58个单位,380人, 以及多个观察员单位。成立了合作组管理机构。国外贡献部 分确定。
- ◆ 江门实验2013年获中科院先导专项支持。 2015年1月10日 土建启动仪式。土建进展顺利,预期2020年建成。
- 探测器设计与研发进展顺利。计划2015年确定中心探测器 方案、确定是否采用3英寸PMT、初步确定电子学方案;将 进行液闪纯化中试、探测器小模型测试等。

