Supernova Neutrinos

Yong-Zhong Qian

Center for Nuclear Astrophysics Shanghai Jiao Tong University & School of Physics and Astronomy University of Minnesota

JUNO Workshop on Neutrino Astronomy & Astrophysics

Institute of High Energy Physics Chinese Academy of Sciences, Beijing July 10, 2015

Outline

- varieties of core-collapse supernovae (CCSNe): theory & observations
- varieties of CCSNe: their neutrinos & nucleosynthesis
- neutrino signals with & without oscillations
- what can we learn from neutrino signals: CCSN physics & neutrino properties

How to Become a Star

Virial theorem for a contracting gas cloud

$$T_c + \frac{\hbar^2}{2m_e d^2} \sim \frac{GMm_p}{R}$$

$$\left(\frac{M}{m_p}\right)d^3 \sim R^3 \Rightarrow$$

$$T_c \sim \frac{GMm_p}{R} - \frac{\hbar^2}{2m_e} \left(\frac{M}{m_p}\right)^{2/3} \frac{1}{R^2}$$

 $\Rightarrow T_{c,\max} \propto M^{4/3}$

"Onion-Skin" Structure of Pre-SN Stars

Hydrogen

 $\sim 9-100 M_{\odot}$

 $\dot{q}_{
u N} \propto rac{L_{
u}}{\langle E_{
u}
angle} rac{\langle E_{
u} \sigma_{
u N}
angle}{r^2}$ $\dot{q}_{eN} \propto n_e \langle E_e \sigma_{eN} \rangle$ $\propto T^6$ gain radius rg $\dot{q}_{\nu N}(r_q) = \dot{q}_{eN}(r_q)$ outside gain radius $\dot{q}_{\nu N}(r) > \dot{q}_{eN}(r)$ Bethe & Wilson 1985

Compactness & Explodability

Light Curve of SN 1987a

Neutron Star & Black Hole Masses

black hole formation & hypernovae

"neutronization" pulse at shock breakout

 $e^- + p \rightarrow n + \nu_e \Rightarrow \text{predominantly } \nu_e$

Neutrino Emission from Proto-NS Cooling

signature of BH formation: interruption of ν signals

followed by neutrino emission from accretion disk around **BH**?

CCSN physics & neutrinos without oscillations existing neutrino detectors: Super-K, IceCube $\bar{\nu}_e + p \rightarrow n + e^+$

duration of accretion phase

progenitors, neutrino-driven explosion

termination of thermal emission

black hole formation

progenitors

nuclear equation of state

Neutrino Emission from a Low-Mass SN

Neutrino Opacities!

Martinez-Pinedo et al. 2012; Roberts & Reddy 2012

progenitor dependences of neutrino flavor evolution

density profile

positions and adiabaticity of MSW resonances modulation by shock propagation (Schirato & Fuller 2002)

comparison with neutrino density: collective oscillations due to neutrino self-interaction

(Pantaleone 1992; Kostelecky & Samuel 1993; Duan et al. 2006 & subsequent works; Raffelt & collaborators; Mirizzi & collaborators)

Survival Probability at r = 225 km (Duan et al. 2006)

$\bar{\nu}_e + p \rightarrow n + e^+$ in IceCube (Wu et al. 2015)

neutronization neutrino signal from low-mass CCSNe (Duan et al. 2007; Cherry et al. 2010, 2011, 2012)

need sensitivity to low-energy ν_e liquid argon: $\nu_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$

Summary: supernovae and their neutrino signals *interruption of neutrino signals reveals BH formation* progenitor density structure (accretion rate) nuclear equation of state (phase transition) *main weight the second structure is the second structure in the second structure is the second struct* propagation, neutrino emission & flavor evolution "neutronization" pulse at shock breakout relatively simple to study as a probe of neutrino properties bulk emission of "thermal" neutrinos gives potential probes of supernova physics & neutrino properties (systematic study of collective & shock effects needed)

templates of neutrino signals important for study of relic/diffuse supernova neutrino background

Interplay between Supernova and Neutrino Physics

LHC, RHIC, FAIR nuclear EOS, NS properties

LIGO gravitational waves from NS mergers

NOvA, PINGU, DUNE, JUNO neutrino mass hierarchy, CP violation

> SuperK, IceCube, JUNO SN neutrino detection

FRIB, HIRFL-CSR nuclear properties far from stability

Astronomical Surveys (APOGEE, GAIA) elemental abundances in stars