Detection of Pre-supernova neutrinos

Gang Guo Shanghai Jiao Tong University

Collaborators: Alex Heger, Yong-Zhong Qian

July 10-11, 2015, IHEP

1/26

IHEP2015

Pre-supernova Neutrino Detections and Related Physics

Neutrino astronomy

IHEP2015 3 / 26

(日) (四) (日) (日) (日)

Neutrino loss driving the evolution of massive stars

- (1) "neutrino" star from Cburning stage;
- (2) neutrino loss speed up the evolution of massive stars; $\tau \simeq E_{nun}/L_{\nu}, E_{nuc} \sim 10^{17}$ erg/g 10³ years for C; years for O; days for Si.
- To study neutrino detection, neutrino (v
 e) spectra are needed.

Neutrino production in stars

Weak interactions for neutrinos: CC + NC

• Nuclear neutrinos:

CC: e^{\pm} capture, β^{\pm} decay

NC: nuclear de-excitation, etc

• Thermal neutrinos:

pair process, plasma process, photo-process, Bremsstrahlung process, etc.

stage	$L_{\nu}(\text{ergs/s})$	Process	Flavor
main sequence	10 ³⁶	CNO (pp)	ν_{e}
He burning	10 ³¹	photo/plasma	all
advanced stages	10 ^{38–46}	pair	all
Si burning	10^{45-48}	e- capture	ν_{θ}
collapse	10^{51-53}	e- capture	ν_{θ}
collapse	10 ⁴⁷⁻⁵⁰	de-excitation	all

4 typical thermal processes

Pair: $e^-e^+ \rightarrow \nu_{\alpha}\bar{\nu}_{\alpha}$

Plasma: $\tilde{\gamma} \rightarrow \nu_{\alpha} \bar{\nu}_{\alpha}$

Photo: $e^- \gamma \rightarrow e^- \nu_{\alpha} \bar{\nu}_{\alpha}$

Bremsstrahlung: $(N, Z)e^- \rightarrow (N, Z)\nu_{\alpha}\bar{\nu}_{\alpha}$

One example: pair process

Amplitude and cross section

 $i\mathcal{M} = i(\mathcal{M}_{Z} + \mathcal{M}_{W}) = \frac{-ig^{2}}{8m_{W}^{2}} \bar{u}_{\nu}(q)\gamma^{\mu}(1 - \gamma^{5})v_{\nu}(q')\bar{v}_{e}(p')\gamma^{\mu}(C_{V} - C_{A}\gamma^{5})u_{e}(p)$ with $C_{V} = (1 + 4s_{W}^{2})/2$ and $C_{A} = 1/2$ for ν_{e} ; $C_{V}' = 1 - C_{V}$ and $C_{A}' = 1 - C_{A}$ for $\nu_{\mu,\tau}$.

• Thermal plasma in stars (T, $\rho Y_e \equiv \rho/\mu_e$, composition)

Fermi distribution for e^{\pm} & Bose distribution for photons;

Neutrino energy loss rate and spectra,

$$\begin{split} F(E_{\nu}) &= \frac{4}{(2\pi)^6} \int \frac{d^3 \rho}{e^{(E-\mu)/kT}+1} \frac{d^3 \rho'}{e^{(E'+\mu)/kT}+1} v \frac{d\sigma}{dE_{\nu}}, \quad [\nu/\text{MeV/cm}^3/\text{s}] \\ Q &= \int F(E_{\nu}) E_{\nu} dE_{\nu}, \quad [\text{ergs/cm}^3/\text{s}] \end{split}$$

High dimensional intergrals !

A few words on other thermal processes

Plasmon "=" modified photons + collective oscillation electrons "
 2 Transvers Modes 1 Longitudinal Mode
 Photon has a non-zero mass and can decay to neutrino pairs.

- Neutrino spectra from photo-process and Bremsstrahlung are difficulty to calculate.
- Thermal neutrino emission from these three processes in massive stars can always be neglected (see later).

Comparison with Itoh's results

IHEP2015 9 / 26

Dominance region

IHEP2015 10 / 26

Typical $\bar{\nu}_e$ spectra for different processes

IHEP2015 11 / 26

Spectra of $\bar{\nu}_e \& \bar{\nu}_x$ from pair process

IHEP2015 12/26

Neutrino oscillation and mass hierarchy

- $F_{\bar{\nu}_e} = pF_{\bar{\nu}_e}^0 + (1-p)F_{\bar{\nu}_x}^0, x = \mu, \tau$ NH: $p = |U_{e3}|^2 = \sin\theta_{13}^2 \simeq 0.025;$ IH: $p = |U_{e1}|^2$ $= \cos^2\theta_{12}\cos^2\theta_{13} \simeq 0.7;$
- Similar spectrum for $\bar{\nu}_e$ and $\bar{\nu}_{\mu,\tau}$, and $F_{\bar{\nu}_x}/F_{\bar{\nu}_e} \simeq 0.19$ at silicon burning stage;
- Overall effect of stellar matter effect,

NH: $F_{\bar{\nu}_e} = 0.76 \ F^0_{\bar{\nu}_e}$, IH: $F_{\bar{\nu}_e} = 0.21 \ F^0_{\bar{\nu}_e}$,

• The Earth matter effect can be safely neglected.

Nearby supergiants

Several nearby supergiants (incomplete list):

Antares(150 pc, 17 M_{\odot}), Betelgeuse (200 pc, 20 M_{\odot}), Epsilon Pegasi (210 pc, 12 M_{\odot}), Pi Puppis (250 pc, 12 M_{\odot}), Zeta Puppis (330 pc, 22 M_{\odot}), Sigma Canis Majoris (340 pc, 12 M_{\odot}), NS Puppis (520 pc), CE Tauri (550 pc, 8 M_{\odot}), etc.

Betelgeuse has been studied extensively & considered as one of the most promising SN candidates. Exploding today or 1 million years later!

A (10) F (10)

Event rate at JUNO

20 M_{\odot} massive star at L = 0.2 kpc

 $R = N_{
m p}/(4\pi L^2) imes \int F_{ar{
u}_{
m e}}(E_{
u}) \sigma(E_{
u}) dE_{
u}$

No oscillations (0.76/0.21 for NH/IH);

100% detection efficiency;

Perfect energy resolution;

Backgrounds in 1.8 $< E_{\nu} <$ 3.27 MeV: Reactor ν s: \sim 5 events/day; Geo- ν s: \sim 1 events/day;

Neutrinos in Pre-SN & SN

15 M_{\odot} at 200 pc; last 2 two days before SN; $E_{\bar{\nu}_e} = 15$ MeV; no oscillation

KamLAND, arXiv:1506.01175

IHEP2015 16 / 26

Sensitivity in KamLAND

4 A N

IHEP2015 17 / 26

• Pre-warning of nearby SN

In SN explosion, neutrinos are hours ahead of photons.

(SNEWS, see Zhe Wang's talk)

Pre-SN neutrinos hours/days ahead of SN explosion could be detected, if the star is close enough.

Pre-warning of nearby SN at KamLAND

Mass $[M_{\odot}]$	Distance [pc]	Mass hierarchy	Reactor status	Time before collapse [hr]
15	150	Normal	Low	79.0
15	150	Inverted	Low	6.44
25	250	Normal	Low	15.6
25	250	Inverted	Low	3.99
15	150	Normal	high	38.0
15	150	Inverted	high	2.36
25	250	Normal	high	9.72
25	250	Inverted	high	1.04

 $B_{\rm low} = 0.071$ event/day, $B_{\rm high} = 0.355$ event/day Rate-only Analysis

KamLAND, arXiv:1506.01175

< ロ > < 同 > < 回 > < 回 >

- Pre-warning of nearby SN
- Telling SN progenitors

- ∢ ∃ ▶

detector	$8.4 \mathrm{M}_{\odot}$		$12 M_{\odot}$		$15 \ \mathrm{M}_{\odot}$	
	normal	inverted	normal	inverted	normal	inverted
Super-K	2.47×10^{-2}	9.68×10^{-3}	21	7	61	21
KamLAND	1.06×10^{-3}	1.50×10^{-3}	31	9	43	13
Hyper-K	0.30	0.13	9	3	77	28
JUNO	2.12×10^{-2}	8.03×10^{-3}	618	189	864	266

L = 0.2 kpc

C. Kato etal., arXiv:1506.02358

イロト イ団ト イヨト イヨ

Telling SN progenitors

(JUNO, No Osc)

Both rate & and shape the Light curve are important

Gang Guo Shanghai Jiao Tong University Co Detection of Pre-supernova neutrinos

IHEP2015 22 / 26

< 🗇 🕨 < 🖃 >

- Pre-warning of nearby SN
- Telling SN progenitors
- Hints on mass hierarchy

< A >

- The distance & progenitor can be determined via pre-SN images, optical light and neutrino burst signals from SN explosion.
- Comparison between the observed neutrino rate and the theoretical expectation gives important information on the mass hierarchy.

A clean way to determine mass hierarchy if theoretical uncertainties are under control

- The spectra of the thermal neutrinos (pair/plasma/photo/Bremsstrahlung) have been well calculated;
- Detection of thermal neutrinos from massive stars at JUNO is possible and could be important (neutrino mass order/pre-warning of SN/progenitor, etc.);
- Sensitivity studies of thermal neutrinos at JUNO will be done.

Thank you !

Gang Guo Shanghai Jiao Tong University Co Detection of Pre-supernova neutrinos

▲ ■ ▶ ■ 少へで IHEP2015 26 / 26

イロト イヨト イヨト イヨト