

DUNE: Status and Prospects

The 14th International Workshop on Tau Lepton Physics

19-23 September, 2016, IHEP, Beijing, China

Vittorio Paolone University of Pittsburgh (Representing the DUNE collaboration)

- Features of DUNE:
 - 1300 km baseline: "LBL"
 - Large (40 kt) LArTPC far detector and near detector
 - Far detector 1.5 km underground
 - Wide-band, on-axis beam

- Primary physics goals:
 - ν oscillations ($\nu_{\mu}/\overline{\nu}_{\mu}$ disappearance,
 - $\nu_{e}^{\prime}/\overline{\nu}_{e}$ appearance)

• MH,
$$\delta_{CP}$$
 , θ_{23} , θ_{13}

- Nucleon decay
- Supernova burst neutrinos

Tau 2016: Sept. 19-23, 2016

The Collaboration

890 collaborators from 154 Institutions in 28 nations

Tau 2016: Sept. 19-23, 2016

- LBNF (Long Baseline Neutrino Facility): DOE/Fermilab hosted project with international participation
 - LBNF houses, and delivers beam (i.e.beam-line) to detectors • built by the DUNE collaboration

LBNF Beamline

- Conventional horn-focused Beam-Line:
 - -60-120 GeV protons from Fermilab Main Injector
 - 101 mrad beam pitch required to reach S. Dakota
 - -~200-m Decay pipe
 - -Near Detector Hall at edge of Fermilab site
 - -Critical contributions from international partners (UK, CERN)

LBNF Beam-line Characteristics

- DUNE CDR "Reference" (in green)
- Later adopted optimization procedure developed by LBNO
 - This led to DUNE CDR "optimized" configuration (in blue)
 - Further horn optimizations (in red)

Parameter	CDR Reference Design	Optimized Design
Proton Beam Energy	80 GeV	80 GeV
Proton Beam Power	1.07 MW	1.07 MW
Target	Graphite	Graphite
Horn Current	230 kA	297 kA
Horn Design	NuMI-style	Genetic Optimization
Decay Pipe Length	204 m	241 m
Decay Pipe Diameter	4 m	4 m

LBNF: SURF

Sanford Underground Research Facility(SURF), Lead, S. Dakota

- The Homestake Gold Mine (present SURF location) was home to the famous DAVIS experiment
- **LBNF scope:** 4 detector chambers, utility cavern, connecting drifts
- Extensive preparatory work for LBNF/DUNE already done
- Begin excavation & surface building construction in 2017

DUNE: Near Detector(s)

- Design inspired by the NOMAD detector:
 - Magnetized straw-tube based tracking system
 - Pb-scintillator sampling calorimetry
 - RPC-based muon tracker
 - Multiple Targets (incl. Argon)
- Additional NDs being investigated
 High-pressure Ar Gas TPC
 - LArTPC, a la ArgonCube

Fine-Grained Tracker:

 \rightarrow Primary purpose is to support the DUNE oscillation physics program but the LBNF beam-line provides a great opportunity to study v interactions with large statistics and high resolution

Tau 2016: Sept. 19-23, 2016

DUNE: Far Detector Technology: LArTPC

 The far detector will be located deep underground (@4850 feet (1480 meters)) with a fiducial mass of 40 kt

- Study long-baseline oscillations with a 1300 km base-line
- Includes an astroparticle physics program and nucleon decay searches.

• The far detector will consist of four similar modules (~10kt each): Liquid Argon Time-Projection Chamber (LarTPC)

- A LArTPC provides excellent tracking and calorimetry performance.
 - Ideal for massive neutrino detectors requiring:
 - High signal efficiency and background discrimination,
 - Able to identify and precisely measure neutrino events over a wide range of energies
 - Excellent reconstruction capabilities of the kinematic quantities with high resolution.
 - The full imaging of events → study neutrino interactions and other rare processes with unprecedented resolution.

 However a LarTPC this large has never been built before (> x10 ICARUS) and therefore a substantial RD program is required...

Tau 2016: Sept. 19-23, 2016

LArTPC Imagery

Tau 2016: Sept. 19-23, 2016

DUNE: Far Detector

Two Designs being considered: Single-Phase LArTPC

- Based on LBNE modular drift cell design:
 - Readout anode composed of wire planes embedded in the LAr volume
 - Suspended Anode (APA) / Cathode (CPA) plane assemblies 3.6 m spacing
 - APA's w/ "wrapped" induction wire planes
 - Scintillation detection based on light guides embedded in APA's, SiPM read out

Active volume is 12 m high, 14.5 m wide and 58 m longTau 2016: Sept. 19-23, 2016V. Paolone, University of Pittsburgh

DUNE: Far Detector

Two Designs being considered: Dual-Phase LArTPC

- LBNO Design Single TPC volume with Amplification in gas phase above liquid surface:
 - Allows for a finer readout pitch (3 mm), a lower detection-energy threshold
 - 12m max drift (vertical), LEM (Large Electron Multiplier) read-out
 - Features excellent S/N: ~100/1
 - Scintillation via PMT's below cathode

Tau 2016: Sept. 19-23, 2016

DUNE: R&D Path to Full Scale

•The DUNE 10-kt LArTPC Modules represent O(50x) increase in size compared to largest LArTPC modules built to date (ICARUS), 100x scale-up w.r.t. MicroBooNE

- Learning how to built, maintain and operation the large-scale prototypes are important ingredients of the DUNE program
 - Understand production as well as operational issues
 - Provides training and opportunities for Test Beam data analyses (ProtoDUNE Science Program)
- R&D Schedule
 - 35-ton single-phase TPC test at FNAL (completed)
 - 3x1x1 m³ dual-phase TPC at CERN (WA105/NP02), operating Fall 2016
 - Associated dual & single phase ProtoDUNE's @ CERN (NP02,04), 2018
- Should consider these major experiments in their own right...

DUNE: Physics Program

• $\sin^2(2\theta_{13})$ determines size of event sample

- δ_{CP} affects amplitude of oscillations
- Mass differences affects
- frequency of oscillations
- MH effects both amplitude and frequency

 \rightarrow Studying oscillations in a wide band beam helps to sort out the complicated process: Allowing the simultaneous measurement of mass hierarchy, CP-violating phase, and neutrino mixing angles

DUNE: Physics Program

Sample sizes: (MH, θ_{23} , θ_{13} , δ) extracted from combined analysis of 4 samples: (40kt•1.1 MW•3.5 yrs)

Anti-v mode / 150 kt-MW-yr	Ve appearance	$ u_{\mu}$ disappearance
Signal events (NH / IH)	168 (438)	2639
Wrong-sign signal (NH /IH)	47 (28)	1525
Beam ve background	105	-
NC background	9	41
Other background	13	18
v mode / 150 kt-MW-yr	Ve appearance	v_{μ} disappearance
v mode / 150 kt-MW-yr Signal events (NH / IH)	Ve appearance 945 (521)	ν _μ disappearance 7929
v mode / 150 kt-MW-yr Signal events (NH / IH) Wrong-sign signal (NH /IH)	Ve appearance 945 (521) 13 (26)	Vµ disappearance 7929 511
v mode / 150 kt-MW-yr Signal events (NH / IH) Wrong-sign signal (NH /IH) Beam ve background	Ve appearance 945 (521) 13 (26) 204	 V_μ disappearance 7929 511 -
V mode / 150 kt-MW-yr Signal events (NH / IH) Wrong-sign signal (NH /IH) Beam ve background NC background	Ve appearance 945 (521) 13 (26) 204 17	Vµ disappearance 7929 511 - 76
V mode / 150 kt-MW-yr Signal events (NH / IH) Wrong-sign signal (NH /IH) Beam ve background NC background Other background	Ve appearance 945 (521) 13 (26) 204 17 22	Vµ disappearance 7929 511 - 76 29

DUNE Physics: Oscillations

Energy spectra for selected $v_{e} \& v_{u}$ samples: CDR ref & opt beams

Top Plots

Neutrino-beam running (150 kt-MW-yr)

Bottom:

Anti-neutrino beam mode (150 kt-MW-yr)

Beam:

Solid = CDR reference Dashed = CDR optimized (Presently the optimized beam should be considered the default beam configuration)

Tau 2016: Sept. 19-23, 2016

DUNE Physics: CP Violation Sensitivity

Sensitivity to CP Violation, after 300 kt-MW-yrs (3.5+3.5 yrs x 40kt @ 1.07 MW)

(Bands represent range of beam configurations)

CP Violation Sensitivity

V. Paolone, University of Pittsburgh

DUNE Physics: MH Sensitivity

→ Discrimination (between NH and IH) parameter as a function of the unkown $\delta_{_{CP}}$ for an exposure of 300 kt·MW·year (40 kt·1.07 MW·7 years).

 \rightarrow The minimum significance (the lowest point on the curve on the left) where the mass hierarchy can be determined any value of $\delta_{_{CP}}$ as a function of years of running

Tau 2016: Sept. 19-23, 2016

DUNE Physics

Precision Measurement Oscillation Parameters

Exposure as a function of time in kt•MW•years.

Tau 2016: Sept. 19-23, 2016

DUNE Physics: Nucleon Decay

- Using the imaging and dE/dx, calorimetric capabilities of LArTPC: Enables sensitive, background-free searches
- Many modes accessible: SUSY-favored channel $p \rightarrow \ \mathsf{K}^{\scriptscriptstyle +} \ \nu$

Simulated $p \rightarrow \ K^{\scriptscriptstyle +} \, \nu \; decay$

21

DUNE

DUNE Physics: Supernova v Bursts

- Few thousand events expected from galactic SNB
- \bullet In LAr, dominant process is: $u_e + {}^{40}\!Ar o e^- + {}^{40}\!K^*$
 - \bullet In contrast, anti-v_{\rm e}'s dominate in water/organic scintillator-based detectors
 - $\bullet\,$ LAr uniquely sensitivity to neutronization process at ${\sim}30\mbox{ ms}$
- Elastic scattering events potentially give directionality
- Note distinct features in time (left plot) and energy (right plot) spectra

Could expect several hundred tau neutrino CC interactions/year/40kt Note this is not observed CC v_{r} ! - detection efficiencies being presently studied.

DUNE Timeline

2017	Cavern excavation
2018	ProtoDUNEs (SP & DP) operational at CERN
2020	Cryostat Construction
2022	Far detector installation (1 st module)
2023	Far detector installation (2 st module)
2024	20 kt operational and first data taking
2026	First beam operations at 1.2 MW

• LBNF/DUNE will be a world-leading facility for study of neutrino and astroparticle physics. Will address fundamental physics questions:

- Neutrino Oscillations
- Nucleon decay
- Supernova burst neutrinos
- Long-baseline neutrino oscillation measurements in a broad band beam will allow simultaneous measurement of mass hierarchy, CP-violating phase, and neutrino mixing angles:
 - Allowing for detailed study of the neutrino mixing paradigm
- On path to understanding how to build a 40 kt of liquid argon detector and a 1.2 MW neutrino beam:
 - Construction phase starting \rightarrow excavation of far site to start next year
 - LArTPC prototypes will be operational soon
- DUNE physics program will produce exciting results over its 20+ years of expected operation:
 - This program will be an international effort.

Backup Slides

Tau 2016: Sept. 19-23, 2016