

A D N A B N A B N

Pion Form Factor Measurement and ISR at BESIII

Yaqian WANG

Johannes Gutenberg University Mainz

The 14th International Workshop on Tau Lepton Physics

19-23 September 2016 Beijing, China

Yaqian WANG (JGU)

Pion Form Factor

TAU 2016 1 / 25

BESIII

Outline

2 BESIII Experiment

Initial State Radiation

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Outline

2 BESIII Experiment

g-2

- Muon magnetic moment: $\vec{\mu}_{\mu} = g_{\mu} \left(rac{q}{2m}
 ight) \vec{S}$
- Anomalous magnetic moment: $a_{\mu} = \frac{1}{2}(g_{\mu} 2)$
- Experiments and precisions:

E821@BNL

0.54 ppm

ppm:parts per million

g – 2

- Muon magnetic moment: $\vec{\mu}_{\mu} = g_{\mu} \left(rac{q}{2m}
 ight) \vec{S}$
- Anomalous magnetic moment: $a_{\mu} = \frac{1}{2}(g_{\mu} 2)$
- Experiments and precisions:

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

g – 2

- Muon magnetic moment: $\vec{\mu}_{\mu} = g_{\mu} \left(rac{q}{2m} \right) \vec{S}$
- Anomalous magnetic moment: $a_{\mu} = \frac{1}{2}(g_{\mu} 2)$
- Experiments and precisions:

g – 2

- Muon magnetic moment: $\vec{\mu}_{\mu} = g_{\mu} \left(rac{q}{2m} \right) \vec{S}$
- Anomalous magnetic moment: $a_{\mu} = \frac{1}{2}(g_{\mu} 2)$
- Experiments and precisions:

Hadronic VP and muon g-2

Hadronic vacuum polarization

Yaqian WANG (JGU)

伺 ト イ ヨ ト イ ヨ

Hadronic VP and muon g-2

Hadronic vacuum polarization

$$-$$

Yaqian WANG (JGU)

TAU 2016 5 / 25

伺 ト イ ヨ ト イ ヨ

g – 2

Hadronic VP and muon g-2

Hadronic vacuum polarization

Yaqian WANG (JGU)

g – 2

- $a_{\mu}^{exp} = (116592089 \pm 54 \pm 33) imes 10^{-11}$ [PRD 73 072003 (2006); PDG]
- $a^{
 m SM}_{\mu} = (116591802 \pm 42 \pm 26) imes 10^{-11}$ [EPJC 71 1515 (2011)]
- $\Delta a_{\mu} = (287 \pm 80) \times 10^{-11} \Rightarrow 3.6\sigma$ deviation

M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Eur. Phys. J. C 71 1515 (2011)

Yaqian WANG (JGU)

Pion Form Factor

TAU 2016 6 / 25

Outline

Initial State Radiation

Beijing Spectrometer III Collaboration

Yaqian WANG (JGU)

Pion Form Factor

TAU 2016 8 / 25

BEPCII

Beijing Electron-Positron ColliderII

- τ -charm factory
- Beam energy: 1.0 2.3 GeV
- Beam spread: 5.16×10^{-6}
- Design luminosity: $1 \times 10^{33} \,\mathrm{cm}^{-2} s^{-1}$ @ 3.773 GeV 100% achieved

BESIII Detector

- Multilayer Drift Chamber
 - $\sigma(p)/p = 0.5\%$
 - $\sigma_{\rm dE/dx} = 6.0\%$
- Time of Flight system
 σ(t) = 90 ps (barrel)
 - $\sigma(t) = 110 \text{ ps} (\text{endcap})$
- EM Calorimeter
 - 6240 CsI(T1) crystals
 - <u>σ(E)/E=2.5%</u>
 - σ_{Z,φ}(E)=0.5-0.7 cm

- Superconducting Manet
 1T magnetic field
- Muon Chamber
 - 8-9 layers of RPC

$$\delta_{R\phi}$$
=1.4-1.7 cm

Data samples

-

Data Samples

Data samples

TAU 2016 11 / 25

Outline

2 BESIII Experiment

Initial State Radiation

Radiator Function

•
$$\sqrt{s'} = \sqrt{s - 2\sqrt{s}E_{\gamma}}$$

- Emission of ISR photon is suppressed by α/π
- High integrated luminosity is necessary

Strategy: tag and untag the $\gamma_{\rm ISR}$

- Hadronic system should be detected
- Angular distribution of the $\gamma_{\rm ISR}$

Strategy: tag and untag the γ_{ISR}

- Hadronic system should be detected
- Angular distribution of the $\gamma_{\rm ISR}$
 - tagged:

A

Strategy: tag and untag the γ_{ISR}

- Hadronic system should be detected
- Angular distribution of the γ_{ISR}
 - tagged: Wide range, huge BG in high $\sqrt{s'}$ $\sqrt{s'} < 1 \text{ GeV}$

Yaqian WANG	(JGU)
-------------	-------

A >

- E - N

Strategy: tag and untag the $\gamma_{\rm ISR}$

- Hadronic system should be detected
- Angular distribution of the $\gamma_{\rm ISR}$

untagged:

- tagged: Wide range, huge BG in high $\sqrt{s'}$
- $\sqrt{s'}$ < 1 GeV

TAU 2016 14 / 25

Strategy: tag and untag the $\gamma_{\rm ISR}$

- Hadronic system should be detected
- Angular distribution of the $\gamma_{\rm ISR}$
 - tagged: Wide range, huge BG in high $\sqrt{s'}$
 - untagged: higher statistics, less BG

TAU 2016 14 / 25

Outline

2 BESIII Experiment

イロト イヨト イヨト イヨト

${\it e}^+ {\it e}^- \rightarrow \pi^+ \pi^-$

M. Davier et al., Eur. Phys. J. C 71 1515 (2011)

 $\pi^+\pi^-$

イロン イ理 とく ヨン 一

$e^+e^- ightarrow \pi^+\pi^-$

M. Davier et al., Eur. Phys. J. C 71 1515 (2011)

 $\pi^+\pi^-$

BaBar and KLOE

- 3% diff. on ρ peak
- New measurement

Tagged Selections

- Kinematic Fit for $\pi^+\pi^-\gamma_{ISR}$
- MDC, TOF, and EMC for electron rejection
- Artificial Neuronal Network (ANN) for $\mu \pi$ separation

 $\pi^+\pi^-$

-

QED test

QED test $e^+e^- \rightarrow \mu^+\mu^-\gamma$

- Select μ using ANN
- Small π background
- Efficiency corrections
- Compare to PHOKHARA
 - 0.5% accuracy

- Good agreement:
 - $1.0 \pm 0.3 \pm 0.9\%$ ($\chi^2/ndf = 134/139$)
 - 2.0 \pm 1.7 \pm 0.9% (0.6 < $M_{\mu^+\mu^-}$ < 0.9)

QED test

QED test $e^+e^- \rightarrow \mu^+\mu^-\gamma$

- Select µ using ANN
- Small π background
- Efficiency corrections
- Compare to PHOKHARA
 - 0.5% accuracy

Good agreement:

- $1.0 \pm 0.3 \pm 0.9\%$ ($\chi^2/ndf = 134/139$)
- 2.0 \pm 1.7 \pm 0.9% (0.6 < $M_{\mu^+\mu^-}$ < 0.9)

Systematic Uncertainties

Source	Uncertainty (%)	
Photon efficiency	0.2	
Tracking efficiency	0.3	
Pion ANN efficiency	0.2	
Pion e-PID efficiency	0.2	
Angular acceptance	0.1	
Background subtraction	0.1	
Unfolding	0.2	
FSR correction δ_{FSR}	0.2	
Vacuum polarization correction δ_{vac}	0.2	
Radiator function	0.5	
Luminosity $\mathcal L$	0.5	
Sum	0.9	

 $\pi^+\pi^-$

Cross section

 $\pi^+\pi$

TAU 2016 20 / 25

Cross section

 $\pi^+\pi$

Yaqian WANG (JGU)

TAU 2016 20 / 25

Contribution to $a_{\mu}^{VP,LO}$

 $\pi^+\pi^-$

(3)

Contribution to $a_{\mu}^{VP,LO}$

 $\pi^+\pi^-$

TAU 2016 21 / 25

(4) (3) (4) (4) (4)

Contribution to $a_{\mu}^{VP,LO}$

 $\pi^+\pi$

Precision competitive with previous measurements

Yagian WANG (JGU)
---------------	------

TAU 2016 21 / 25

Contribution to $a_{\mu}^{VP,LO}$

 $\pi^+\pi$

- Precision competitive with previous measurements
- BESIII measurement well agrees with KLOE

Van		111	- / L	
rad	ian -	VVF	- (J)	GU)

TAU 2016 21 / 25

Contribution to $a_{\mu}^{VP,LO}$

 $\pi^+\pi$

- Precision competitive with previous measurements
- BESIII measurement well agrees with KLOE
- Confirmed deviation between experiment and theory

Yaqian WANG (JGU)

Pion Form Factor

$\pi^+\pi^-$ Form Factor

 $\pi^+\pi^-$

Parameter	BESIII value	PDG 2014
m _ρ [MeV/c ²] Γ _ο [MeV]	776.0 ± 0.4 151.7 ± 0.7	775.26 ± 0.25 147.8 \pm 0.9
m_{ω} [MeV/ c^2] Γ_{ω} [MeV]	782.2 ± 0.6 fixed to PDG	782.65 ± 0.12 8.49 ± 0.08
$ c_{\omega} [10^{-3}]$	1.7 ± 0.2	-
$ \phi_{\omega} $ [rad]	0.04 ± 0.13	-

Yaqian WANG (JGU)

Pion Form Factor

э TAU 2016 22/25

 $\pi^+\pi$

Yaqian WANG (JGU)

Pion Form Factor

TAU 2016 23 / 25

 $\pi^+\pi$

Yaqian WANG (JGU)

Pion Form Factor

TAU 2016 23 / 25

A B b 4 B b

 $\pi^+\pi$

Yaqian WANG (JGU)

TAU 2016 23 / 25

 $\pi^+\pi$

 $\pi^+\pi$

Outline

2 BESIII Experiment

Summary

- $e^+e^- \rightarrow \pi^+\pi^-$
 - Cross section is measured with sys. below 1%
 - Δa_{μ} is confirmed
- Outlook
 - Extend tagged $\pi^+\pi^-$ ISR study to threshold region
 - Untagged ISR for $\pi^+\pi^-$ cross section at higher mass range
 - Analyze $\pi^+\pi^-$ form factor from R-scan data (130 points, $\mathcal{L} \approx 1.3 \text{fb}^{-1}$)
 - Studies for $\pi^+\pi^-\pi^0(\pi^0)$ are under study

TAU 2016 25 / 25

Summary

- $e^+e^- \rightarrow \pi^+\pi^-$
 - Cross section is measured with sys. below 1%
 - Δa_{μ} is confirmed
- Outlook
 - Extend tagged $\pi^+\pi^-$ ISR study to threshold region
 - Untagged ISR for $\pi^+\pi^-$ cross section at higher mass range
 - Analyze $\pi^+\pi^-$ form factor from R-scan data (130 points, $\mathcal{L} \approx 1.3 \text{fb}^{-1}$)
 - Studies for $\pi^+\pi^-\pi^0(\pi^0)$ are under study

Thank you!