

QCD perturbative series in tau decays: scheme variations of the coupling

Diogo Boito

São Carlos Institute of Physics University of São Paulo

-- In coll. with Matthias Jamin and Ramon Miravitllas (UAB/IFAE, Spain) [arXiv:1606.08659] (to appear in PRL)

TauLepton 2016 - Beijing, China

Introduction

Strong coupling

Not a physical observable: scheme an scale dependent

Key idea of the talk

Perturbative expansions in QFTs are (at best) asymptotic

Different schemes lead to different asymptotic series freedom to exploit and look for the optimal series

Tau2016 - Beijing

Key idea of the talk

Perturbative expansions in QFTs are (at best) asymptotic

Different schemes lead to different asymptotic series freedom to exploit and look for the optimal series

Tau2016 - Beijing

The scale evolution is given by the QCD beta function

$$-Q \frac{\mathrm{d}a_Q}{\mathrm{d}Q} \equiv \beta(a_Q) = \beta_1 a_Q^2 + \beta_2 a_Q^3 + \beta_3 a_Q^4 + \beta_4 a_Q^5 + \beta_5 a_Q^6 \dots$$
Baikov, Chetyrkin, Kühn '16
(mind the different conventions)

A scale invariant (but scheme dependent) QCD scale $\Lambda\,$ can be defined as

$$\Lambda \equiv Q e^{-\frac{1}{\beta_1 a_Q}} \left[a_Q \right]^{-\frac{\beta_2}{\beta_1^2}} \exp\left[\int_{0}^{a_Q} \frac{\mathrm{d}a}{\tilde{\beta}(a)} \right],$$

where we introduced the combination

$$\frac{1}{\tilde{\beta}(a)} \equiv \frac{1}{\beta(a)} - \frac{1}{\beta_1 a^2} + \frac{\beta_2}{\beta_1^2 a}$$

 $\frac{\alpha_s}{\alpha}$

 $a_Q =$

The scale evolution is given by the QCD beta function

$$-Q \frac{\mathrm{d}a_Q}{\mathrm{d}Q} \equiv \beta(a_Q) = \beta_1 a_Q^2 + \beta_2 a_Q^3 + \beta_3 a_Q^4 + \beta_4 a_Q^5 + \beta_5 a_Q^6 \dots$$
Baikov, Chetyrkin, Kühn '16
(mind the different conventions)

A scale invariant (but scheme dependent) QCD scale $\Lambda\,$ can be defined as

$$\Lambda \equiv Q e^{-\frac{1}{\beta_1 a_Q}} [a_Q]^{-\frac{\beta_2}{\beta_1^2}} \exp\left[\int_0^a \frac{\mathrm{d}a}{\tilde{\beta}(a)}\right], \quad \text{See next talk by J. Khün!}$$

where we introduced the combination

$$\frac{1}{\tilde{\beta}(a)} \equiv \frac{1}{\beta(a)} - \frac{1}{\beta_1 a^2} + \frac{\beta_2}{\beta_1^2 a}$$

 $\frac{\alpha_s}{\alpha}$

 $a_Q =$

The scale evolution is given by the QCD beta function

$$-Q \frac{\mathrm{d}a_Q}{\mathrm{d}Q} \equiv \beta(a_Q) = \beta_1 a_Q^2 + \beta_2 a_Q^3 + \beta_3 a_Q^4 + \beta_4 a_Q^5 + \beta_5 a_Q^6 \dots$$
scheme independent
Baikov, Chetyrkin, Kühn '16
(mind the different conventions)

A scale invariant (but scheme dependent) QCD scale Λ can be defined as

$$\Lambda \equiv Q e^{-\frac{1}{\beta_1 a_Q}} [a_Q]^{-\frac{\beta_2}{\beta_1^2}} \exp\left[\int_{0}^{a_Q} \frac{\mathrm{d}a}{\tilde{\beta}(a)}\right], \quad \text{See next talk by J. Khün!}$$

where we introduced the combination

$$\frac{1}{\tilde{\beta}(a)} \equiv \frac{1}{\beta(a)} - \frac{1}{\beta_1 a^2} + \frac{\beta_2}{\beta_1^2 a}$$

 $\frac{\alpha_s}{\alpha_s}$

 $a_Q =$

The scale evolution is given by the QCD beta function

$$-Q \frac{\mathrm{d}a_Q}{\mathrm{d}Q} \equiv \beta(a_Q) = \beta_1 a_Q^2 + \beta_2 a_Q^3 + \beta_3 a_Q^4 + \beta_4 a_Q^5 + \beta_5 a_Q^6 \dots$$
scheme independent
Baikov, Chetyrkin, Kühn '16
(mind the different conventions)

A scale invariant (but scheme dependent) QCD scale Λ can be defined as

$$\Lambda \equiv Q e^{-\frac{1}{\beta_1 a_Q}} [a_Q]^{-\frac{\beta_2}{\beta_1^2}} \exp\left[\int_{0}^{a_Q} \frac{\mathrm{d}a}{\tilde{\beta}(a)}\right], \quad \text{See next talk by J. Khün!}$$

where we introduced the combination

$$\frac{1}{\tilde{\beta}(a)} \equiv \frac{1}{\beta(a)} - \frac{1}{\beta_1 a^2} + \frac{\beta_2}{\beta_1^2 a}$$

In another scheme one would have

Tau2016 - Beijing

 $\frac{\alpha_s}{\pi}$

 $a_Q =$

Celmaster & Gonsalves '79 Diogo Boito

Why varying the scheme?

Scheme variations

Scheme variations

In the large- β_0 limit its convenient to redefine the coupling as

Beneke '99

$$\frac{1}{\hat{a}_Q} \equiv \beta_1 \left(\ln \frac{Q}{\Lambda} + \frac{C}{2} \right) = \frac{1}{a_Q} + \frac{\beta_1}{2} C$$

We propose the following generalisation to the QCD coupling (C-scheme)

 $\hat{a}_Q \equiv \hat{a}_Q(C)$

Scheme variations

In the large- β_0 limit its convenient to redefine the coupling as

Beneke '99

$$\frac{1}{\hat{a}_Q} \equiv \beta_1 \left(\ln \frac{Q}{\Lambda} + \frac{C}{2} \right) = \frac{1}{a_Q} + \frac{\beta_1}{2} C$$

We propose the following generalisation to the QCD coupling (C-scheme)

In this new scheme the beta function takes the simple form:

$$-Q \frac{\mathrm{d}\hat{a}_Q}{\mathrm{d}Q} \equiv \hat{\beta}(\hat{a}_Q) = \frac{\beta_1 \hat{a}_Q^2}{\left(1 - \frac{\beta_2}{\beta_1} \hat{a}_Q\right)}.$$

only scheme independent coefficients appear

The coupling $\widehat{a}(m_{ au}^2)$

The new coupling as a function of *C* for $\alpha_s(m_{\tau}^2) = 0.3160(10)$

(From the numerical solution, not a perturbative result.)

Tau2016 - Beijing

Relations between the different schemes

The perturbative relation between the two schemes up to fifth order is

$$\hat{a}(a) = a + c_1 a^2 + c_2 a^3 + c_3 a^4 + c_4 a^5 + \cdots$$

The first four coefficients read

$$c_{1} = -\frac{9}{4}C$$

$$c_{2} = -\left(\frac{3397}{2592} + 4C - \frac{81}{16}C^{2}\right)$$

$$c_{3} = -\left(\frac{741103}{186624} + \frac{233}{192}C - \frac{45}{2}C^{2} + \frac{729}{64}C^{3} + \frac{445}{144}\zeta_{3}\right)$$

$$c_{4} = -\left(\frac{727240925}{80621568} - \frac{869039}{41472}C - \frac{26673}{512}C^{2} + \frac{351}{4}C^{3} - \frac{6561}{256}C^{4} - \frac{445}{32}\zeta_{3}C + \frac{10375693}{373248}\zeta_{3} - \frac{1335}{256}\zeta_{4} - \frac{534385}{20736}\zeta_{5}\right)$$

Application to tau decays

Applications to hadronic tau decays

Theoretical computation: optical theorem + Cauchy integration

$$R_{\tau}^{(\text{th})} = \frac{-1}{2\pi i} \oint_{|z|=m_{\tau}^2} dz \, w(z) \,\tilde{\Pi}(z)$$

Braaten, Narison, Pich '92

Diogo Boito

The Adler function in the C-scheme

 $\overline{\mathrm{MS}}$ result

$$\widehat{D}(a_Q) = \sum_{n=1}^{\infty} c_{n,1} a_Q^n = a_Q + 1.640 a_Q^2 + 6.371 a_Q^3 + 49.08 a_Q^4 + \dots$$

In the C-scheme we have

$$\hat{D}(\hat{a}_Q) = \hat{a}_Q + (1.640 + 2.25C) \hat{a}_Q^2 + (7.682 + 11.38C + 5.063C^2) \hat{a}_Q^3 + (61.06 + 72.08C + 47.40C^2 + 11.39C^3) \hat{a}_Q^4 + \cdots$$

The Adler function in the C-scheme

Perturbative QCD contribution to the Adler function Gorishnii, Kataev, Larin '91 Surguladze&Samuel '91 \cdots + \cdots + \cdots + \cdots + $(\alpha_s^2) + (\alpha_s^3) + (\alpha_s^4) + \cdots$ Baikov, Chetyrkin, Kühn '08 \overline{MS} result

$$\widehat{D}(a_Q) = \sum_{n=1}^{\infty} c_{n,1} a_Q^n = a_Q + 1.640 a_Q^2 + 6.371 a_Q^3 + 49.08 a_Q^4 + \dots$$

In the C-scheme we have

$$\hat{D}(\hat{a}_Q) = \hat{a}_Q + (1.640 + 2.25C)\hat{a}_Q^2 + (7.682 + 11.38C + 5.063C^2)\hat{a}_Q^3 + (61.06 + 72.08C + 47.40C^2 + 11.39C^3)\hat{a}_Q^4 + \cdots$$

The Adler function in the C-scheme

Using the C dependence we are able to kill the fifth order contribution

Tau2016 - Beijing

10

Dependence on the fifth order coefficient

(Shown only uncertainty due to truncation)

Tau2016 - Beijing

Dependence on the fifth order coefficient

(Shown only uncertainty due to truncation)

Tau2016 - Beijing

Perturbative contribution to the observable R_{τ}

$$R_{\tau} = \frac{\Gamma[\tau \to \text{hadrons}\,\nu_{\tau}]}{\Gamma[\tau \to e^{-}\bar{\nu}_{e}\,\nu_{\tau}]} = N_{c}\,S_{\text{EW}}\left(|V_{ud}|^{2} + |V_{us}|^{2}\right)\left(1 + \delta^{(0)} + \cdots\right)$$

Prescriptions for the RG improvement

Fixed Order PT (FOPT) $\mu = s_0$
$\delta_{\text{FO},w_i}^{(0)} = \sum_{n=1}^{\infty} a(s_0)^n \sum_{k=1}^n k c_{n,k} J_{k-1}^{\text{FO},w_i}$

Contour Improved PT (CIPT) $\mu = -s_0 x$ $\delta_{\text{CI},w_i}^{(0)} = \sum_{n=1}^{\infty} c_{n,1} J_n^{\text{CI},w_i}(s_0, a_s)$

Perturbative contribution to the observable R_{τ}

$$R_{\tau} = \frac{\Gamma[\tau \to \text{hadrons } \nu_{\tau}]}{\Gamma[\tau \to e^{-}\bar{\nu}_{e} \,\nu_{\tau}]} = N_{c} \, S_{\text{EW}} \left(|V_{ud}|^{2} + |V_{us}|^{2}\right) \left(1 + \delta^{(0)} + \cdots\right)$$

Prescriptions for the RG improvement

Fixed C $\mu = s_0$	order PT	(FOPT)
$\delta^{(0)}_{\mathrm{FO},w_i} =$	$\sum_{n=1}^{\infty} a(s_0)^n$	$\sum_{k=1}^{n} k c_{n,k} J_{k-1}^{\mathrm{FO},w_i}$

Contour Improved PT (CIPT) $\mu = -s_0 x$ $\delta_{\text{CI},w_i}^{(0)} = \sum_{n=1}^{\infty} c_{n,1} J_n^{\text{CI},w_i}(s_0, a_s)$

Perturbative contribution to the observable R_{τ}

$$R_{\tau} = \frac{\Gamma[\tau \to \text{hadrons } \nu_{\tau}]}{\Gamma[\tau \to e^{-}\bar{\nu}_{e} \,\nu_{\tau}]} = N_{c} \, S_{\text{EW}} \left(|V_{ud}|^{2} + |V_{us}|^{2}\right) \left(1 + \delta^{(0)} + \cdots\right)$$

Prescriptions for the RG improvement

Fixed Order PT (FOPT) $\mu = s_0$
$\delta_{\text{FO},w_i}^{(0)} = \sum_{n=1}^{\infty} a(s_0)^n \sum_{k=1}^n k c_{n,k} J_{k-1}^{\text{FO},w_i}$

Contour Improved PT (CIPT) $\mu = -s_0 x$

$$\delta_{\text{CI},w_i}^{(0)} = \sum_{n=1}^{\infty} c_{n,1} J_n^{\text{CI},w_i}(s_0, a_s)$$

Tau decays into hadrons: FOPT

Perturbative contribution to the observable

$$R_{\tau} = \frac{\Gamma[\tau \to \text{hadrons } \nu_{\tau}]}{\Gamma[\tau \to e^{-}\bar{\nu}_{e} \,\nu_{\tau}]} = N_{c} \, S_{\text{EW}} \left(|V_{ud}|^{2} + |V_{us}|^{2}\right) \left(1 + \delta^{(0)} + \cdots\right)$$

 $\overline{\mathrm{MS}}$ FOPT result:

$$\delta_{\rm FO}^{(0)}(a_Q) = a_Q + 5.202 \, a_Q^2 + 26.37 \, a_Q^3 + 127.1 \, a_Q^4 + \dots$$

C-scheme FOPT result:

$$\delta_{\rm FO}^{(0)}(\hat{a}_Q) = \hat{a}_Q + (5.202 + 2.25C) \hat{a}_Q^2 + (27.68 + 27.41C + 5.063C^2) \hat{a}_Q^3 + (148.4 + 235.5C + 101.5C^2 + 11.39C^3) \hat{a}_Q^4 + \dots$$

Tau decays into hadrons: FOPT

FOPT results

$$c_{5,1} = 283$$

Perturbative contribution to the observable R_{τ}

$$R_{\tau} = \frac{\Gamma[\tau \to \text{hadrons } \nu_{\tau}]}{\Gamma[\tau \to e^{-}\bar{\nu}_{e} \,\nu_{\tau}]} = N_{c} \, S_{\text{EW}} \left(|V_{ud}|^{2} + |V_{us}|^{2}\right) \left(1 + \delta^{(0)} + \cdots\right)$$

Prescriptions for the RG improvement

CIPT

$$\mu = -s_0 x$$

$$\delta_{\text{CI},w_i}^{(0)} = \sum_{n=1}^{\infty} c_{n,1} J_n^{\text{CI},w_i}(s_0, a_s)$$

Tau decays into hadrons: CIPT

Conclusions

Conclusions

- -> The C-scheme gives an extra handle on the pt. series: optimisation
- -> Can be applied to many different processes Jamin, Miravitllas '16
- -> Having the result for the fifth order coefficient would be excellent.
- Unfortunately, the CIPT vs FOPT problem persists

$$\delta_{\text{CI}}^{(0)}(\hat{a}_{M_{\tau}}, C = -1.246) = 0.1840 \pm 0.0062 \pm 0.0084$$
$$\delta_{\text{FO}}^{(0)}(\hat{a}_{M_{\tau}}, C = -0.882) = 0.2047 \pm 0.0034 \pm 0.0133$$

Optimised results corroborate renormalon models of the Adler function

$$\hat{D}(\hat{a}_{M_{\tau}}, C = -0.783) = 0.1343 \pm 0.0070 \pm 0.0067$$
 [this work]
 $\hat{D}(a_{M_{\tau}}) = 0.1354 \pm 0.0127 \pm 0.0058$ [Renormalon based description]
Beneke & Jamin '08, DB, Beneke, Jamin '13

Uncertainties tend to be smaller with more terms in the pt. series.

Extra

Comparison

Comparison with $\,\overline{\rm MS}$

 $[a(m_{\tau}^2) = 0.1006(32)]$

$$\begin{split} \widehat{D}(a_{M_{\tau}}) &= 0.1316 \pm 0.0029 \pm 0.0060 \,. \quad \overline{\text{MS}} \\ \widehat{D}(\hat{a}_{M_{\tau}}, C = -0.783) &= 0.1343 \pm 0.0070 \pm 0.0067 \,\text{ [this work]} \\ \widehat{D}(a_{M_{\tau}}) &= 0.1354 \pm 0.0127 \pm 0.0058 & \text{[Renormalon based description]} \\ \text{Beneke & Jamin '08, DB, Beneke, Jamin '13} \end{split}$$

$$\begin{split} \delta^{(0)}_{\rm FO}(a_{M_{\tau}}) &= 0.1991 \pm 0.0061 \pm 0.0119 \,. \,\overline{\rm MS} \\ \delta^{(0)}_{\rm BM}(a_{M_{\tau}}) &= 0.2047 \pm 0.0029 \pm 0.0130 \quad \text{[Renormalon based description]} \\ \delta^{(0)}_{\rm FO}(\hat{a}_{M_{\tau}}, C = -0.882) &= 0.2047 \pm 0.0034 \pm 0.0133 \\ \delta^{(0)}_{\rm CI}(\hat{a}_{M_{\tau}}, C = -1.246) &= 0.1840 \pm 0.0062 \pm 0.0084 \end{split}$$

Tau decays into hadrons: FOPT

Tau2016 - Beijing