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Strong coupling 1

Not a physical observable: scheme an scale dependent
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Key idea of the talk 2

Perturbative expansions in QFTs are (at best) asymptotic

Different schemes lead to different asymptotic series
             freedom to exploit and look for the optimal series
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A few definitions 3
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Baikov, Chetyrkin, Kühn ’16  

(mind the different conventions)
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Why varying the scheme? 4

Higher-loop calculations allow us to 
gain a better understanding of the 

series at intermediate orders.

Scheme variations give us an extra 
handle on the perturbative series.

Optimisation of the series in the spirit 
of asymptotic expansions.

Applications (not limited to)  tau decays 
(FOPT vs CIPT), Higgs decays, ….
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Scheme variations 5

In the large-     limit its convenient to redefine the coupling as�0
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âQ
+

�2

�1
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We propose the following generalisation to the QCD coupling (C-scheme)
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ln âQ ⌘ �1

⇣
ln

Q

⇤
+

C

2

⌘

=
1

aQ
+

�1

2
C +

�2

�1
ln aQ � �1

aQZ

0

da

�̃(a)
.

Beneke '99

We propose the following generalisation to the QCD coupling (C-scheme)

1

âQ
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In this new scheme the beta function takes the simple form:

only scheme independent coefficients appear



Diogo BoitoTau2016 - Beijing

The coupling 6ba(m2
⌧ )

The new coupling as a function of C for ↵s(m
2
⌧ ) = 0.3160(10)

[a(m2
⌧ ) = 0.1006(32)]

PDG '16

(From the numerical solution, not a perturbative result.)

âQ ⌘ âQ(C)
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Relations between the different schemes 7

The perturbative relation between the two schemes up to fifth order is

â(a) = a+ c1a
2 + c2a

3 + c3a
4 + c4a

5 + · · ·

c1 = � 9
4C

c2 = �
�
3397
2592 + 4C � 81

16 C
2
�

c3 = �
�
741103
186624 + 233

192 C � 45
2 C2 + 729

64 C3 + 445
144⇣3

�

c4 = �
�
727240925
80621568 � 869039

41472 C � 26673
512 C2 + 351

4 C3

� 6561
256 C4 � 445

32 ⇣3C + 10375693
373248 ⇣3 � 1335

256 ⇣4 � 534385
20736 ⇣5

�

The first four coefficients read
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Application to tau decays
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Applications to hadronic tau decays

�µ�(q) = i

Z
d

4
x e

iqx�0|T{Jµ(x)J�(0)†}|⇥

R� =
�[⇥ ! hadrons �� ]

�[⇥ ! e��̄e �� ]

Theoretical computation: optical theorem + Cauchy integration

Z s0

0
dsw(s)

1

�
Im�̃(s) =

�1

2�i

I

|z|=s0

dz w(z) �̃(z)R(th)
⌧

8

Braaten, Narison, Pich '92
m2

⌧
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The Adler function in the C-scheme 9

+ + + + + + · · ·↵3
s )(↵2

s )( ↵4
s )(

Baikov, Chetyrkin, Kühn ‘08

Perturbative QCD contribution to the Adler function

MS result

bD(aQ) =
1X

n=1

cn,1a
n
Q = aQ + 1.640 a2Q + 6.371 a3Q + 49.08 a4Q + . . .

In the C-scheme we have

bD(âQ) = âQ + (1.640 + 2.25C) â2Q + (7.682 + 11.38C + 5.063C2) â3Q

+ (61.06 + 72.08C + 47.40C2 + 11.39C3) â4Q + · · ·

Gorishnii, Kataev, Larin ’91 
Surguladze&Samuel '91
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The Adler function in the C-scheme 10

Using the C dependence we are able to kill the fifth order contribution

bD(âM⌧ , C = �0.783) = 0.1343± 0.0070± 0.0067

[a(m2
⌧ ) = 0.1006(32)]

Beneke & Jamin ’08

extreme case

c5,1 = 283± 283

O(â4) ↵s



Diogo BoitoTau2016 - Beijing

Dependence on the fifth order coefficient 11
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Tau decays into hadrons 12

Prescriptions for the RG improvement

Fixed Order PT (FOPT)
µ = s0

Contour Improved PT (CIPT)
µ = �s0x
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(0
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Perturbative order n 
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R� =
�[⇥ ! hadrons �� ]

�[⇥ ! e��̄e �� ]

�(0)FO,wi
=

1X

n=1

a(s0)
n

nX

k=1

k cn,k J
FO,wi

k�1

�(0)CI,wi
=

1X

n=1

cn,1 J
CI,wi
n (s0)

Perturbative contribution to the observable 

MS

R� =
�[⇥ ! hadrons �� ]

�[⇥ ! e��̄e �� ]
= Nc SEW (|Vud|2 + |Vus|2) (1 + �(0) + · · · )

R⌧

JCI,wi
n (s0, as)

Le Diberder & Pich '92
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Tau decays into hadrons: FOPT 13

MS FOPT result:

C-scheme FOPT result:

�(0)FO(aQ) = aQ + 5.202 a2Q + 26.37 a3Q + 127.1 a4Q + . . .

Perturbative contribution to the observable 

R� =
�[⇥ ! hadrons �� ]

�[⇥ ! e��̄e �� ]
= Nc SEW (|Vud|2 + |Vus|2) (1 + �(0) + · · · )

�(0)FO(âQ) = âQ + (5.202 + 2.25C) â2Q + (27.68 + 27.41C + 5.063C2) â3Q

+ (148.4 + 235.5C + 101.5C2 + 11.39C3) â4Q + . . .
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Tau decays into hadrons: FOPT 14

�(0)FO(âM⌧ , C = �0.882) = 0.2047± 0.0034± 0.0133

[a(m2
⌧ ) = 0.1006(32)]

FOPT results c5,1 = 283± 283
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Tau decays into hadrons 15
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Tau decays into hadrons: CIPT 16

�(0)CI (âM⌧ , C = �1.246) = 0.1840± 0.0062± 0.0084

[a(m2
⌧ ) = 0.1006(32)]

CIPT results c5,1 = 283± 283
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Conclusions
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17

The C-scheme gives an extra handle on the pt. series: optimisation 

Unfortunately, the CIPT vs FOPT problem persists

Optimised results corroborate renormalon models of the Adler function

�(0)CI (âM⌧ , C = �1.246) = 0.1840± 0.0062± 0.0084

�(0)FO(âM⌧ , C = �0.882) = 0.2047± 0.0034± 0.0133

bD(âM⌧ , C = �0.783) = 0.1343± 0.0070± 0.0067

bD(aM⌧ ) = 0.1354± 0.0127± 0.0058

[this work]

[Renormalon based description]

Beneke & Jamin ’08, DB, Beneke, Jamin '13

Can be applied to many different processes

Uncertainties tend to be smaller with more terms in the pt. series.

Conclusions

Having the result for the fifth order coefficient would be excellent.

Jamin, Miravitllas ’16
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Extra
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MSComparison with 

3

FIG. 2. bD(âM⌧ ) of Eq. (12) as a function of C. The yellow
band arises from either removing or doubling the fifth-order
term. In the red dot, the O(â5) vanishes, and O(â4) is taken
as the uncertainty. For further explanation, see the text.

We adopt the notation of Ref. [17], with numerical coe�-
cients in the MS scheme and for Nf = 3. The renormal-
ization scale logarithms ln(Q/µ) appearing in the Adler
function have been resummed with the choice µ = Q.

Using the relation (8), we rewrite the expansion (11)
for bD in terms of the C-scheme coupling âQ, resulting in

bD(âQ) = âQ + (1.640 + 2.25C) â2Q

+(7.682 + 11.38C + 5.063C2) â3Q (12)

+ (61.06 + 72.08C + 47.40C2 + 11.39C3) â4Q + . . .

A graphical representation of Eq. (12) is provided in
Fig. 2, where bD(âM⌧ ) is plotted as a function of C. The
yellow band this time corresponds to an error estimate
from the fifth-order contribution. The required coe�-
cient has been taken to be c5,1 = 283, as estimated in
Ref. [17]. The yellow band then arises by either remov-
ing or doubling the O(â5) term. Generally, it is observed
that around C⇡�1, a region of stability with respect to
the C-variation emerges. For comparison, the blue line
corresponds to using c5,1 = 566 and still doubling the
O(â5) correction. Then, no region of stability is found
which seems to indicate that such large values of c5,1
are disfavored. In the red dot, where C = �0.783, the
O(â5) vanishes, and the O(â4) correction, which is the
last non-vanishing term included, has been employed as
a conservative uncertainty, in the spirit of asymptotic ex-
pansions. Numerically, we find

bD(âM⌧ , C = �0.783) = 0.1343± 0.0070± 0.0067 , (13)

where the second error originates from the uncertainty in
↵s(M⌧ ). The result (13) may be compared to the direct
MS prediction (11), which reads

bD(aM⌧ ) = 0.1316± 0.0029± 0.0060 . (14)

Here, the first error is obtained by removing or doubling
c5,1, and the second error again corresponds to the ↵s

uncertainty.

A final comparison of (13) and (14) may be performed
with the Adler function model that was put forward in
Ref. [17], and which is based on general knowledge of the
renormalon structure for the Borel transform of bD(aQ).
Within this model, one obtains

bD(aM⌧ ) = 0.1354± 0.0127± 0.0058 . (15)

In this case, the first uncertainty results from estimates
of the perturbative ambiguity that arises from the renor-
malon singularities. It is seen that this uncertainty is
much bigger than the one of (14) and still larger than
the one of (13). Therefore, we conclude that the higher-
order uncertainty of (14) appears to be underestimated,
while Eq. (13) seems to provide a more realistic account
of the resummed series. Interestingly enough, also its
central value is closer to the Borel model result.

Now, we turn to the perturbative expansion for the
total ⌧ hadronic width. The central observable is the
ratio R⌧ of the total hadronic branching fraction to the
electron branching fraction. It can be parameterized as

R⌧ = 3SEW(|Vud|2 + |Vus|2) (1 + �(0) + · · ·) , (16)

where SEW is an electroweak correction and Vud as well
as Vus CKM matrix elements. Perturbative QCD is en-
coded in �(0) (see Refs. [4, 17] for details) and the ellipsis
indicate further small subleading corrections. For �(0) a
complication arises, because it is calculated from a con-
tour integral in the complex energy plane. On the other
hand, we seek to resum the scale logarithms ln(Q/µ), and
the perturbative prediction depends on whether those
logs are resummed before or after performing the contour
integration. The first choice is called contour-improved
perturbation theory (CIPT) [18] and the second fixed-
order perturbation theory (FOPT).
In FOPT, the perturbative series of �(0)(aQ) in terms

of the MS coupling aQ is given by [5, 17]

�(0)FO(aQ) = aQ+5.202 a2Q+26.37 a3Q+127.1 a4Q+. . . (17)

On the other hand, in the C-scheme coupling âQ, the
expansion for �(0)(âQ) reads

�(0)FO(âQ) = âQ + (5.202 + 2.25C) â2Q

+(27.68 + 27.41C + 5.063C2) â3Q (18)

+ (148.4 + 235.5C + 101.5C2 + 11.39C3) â4Q + . . .

In Fig. 3, we display �(0)FO(âQ) as a function of C. As-
suming c5,1 = 283, the yellow band again corresponds

to removing or doubling the O(â5) term. Like for bD(â),
a nice plateau is found for C ⇡ �1. Taking c5,1 = 566
and then doubling the O(â5) results in the blue curve
that does not show stability. Hence, this scenario again
is disfavored. In the red dots, which lie at C = �0.882

bD(âM⌧ , C = �0.783) = 0.1343± 0.0070± 0.0067

bD(aM⌧ ) = 0.1354± 0.0127± 0.0058

[this work]

[Renormalon based description]

Beneke & Jamin ’08, DB, Beneke, Jamin '13

MS

4

FIG. 3. �(0)FO(âQ) of Eq. (18) as a function of C. The yellow
band arises from either removing or doubling the fifth-order
term. In the red dots, the O(â5) vanishes, and O(â4) is taken
as the uncertainty. For further explanation, see the text.

FIG. 4. �(0)CI (âQ) as a function of C. The yellow band arises
from either removing or doubling the fifth-order term. In the
red and blue dots, the O(â5) vanishes, and O(â4) is taken as
the uncertainty. For further explanation, see the text.

and C = �1.629, the O(â5) correction vanishes, and the
O(â4) term is taken as the uncertainty. The point to the
right has a substantially smaller error, and yields

�(0)FO(âM⌧ , C = �0.882) = 0.2047±0.0034±0.0133 . (19)

Once more, the second error covers the uncertainty of
↵s(M⌧ ). In this case, the direct MS prediction of Eq. (17)
is found to be

�(0)FO(aM⌧ ) = 0.1991± 0.0061± 0.0119 . (20)

This value is somewhat lower, but within 1� of the
higher-order uncertainty. Comparing, on the other hand,
to the Borel model (BM) result of [17], which is given by

�(0)BM(aM⌧ ) = 0.2047± 0.0029± 0.0130 , (21)

it is found that (19) and (21) are surprisingly similar.
In both cases, the parametric ↵s uncertainty is substan-
tially larger than the higher-order one – especially given
the recent increase in the ↵s uncertainty provided by the
PDG [16] – which underlines the good potential of ↵s

extractions from hadronic ⌧ decays.
In CIPT, contour integrals over the running coupling,

Eq. (10), have to be computed, and hence the result can-

not be given in analytical form. Graphically, �(0)CI (aM⌧ )

as a function of C is displayed in Fig. 4. The general be-
havior is very similar to FOPT, with the exception that
now also for c5,1 = 566 a zero of the O(â5) term is found.
This time, both zeros have similar uncertainties, and em-
ploying the point with smaller error (in blue) yields

�(0)CI (âM⌧ , C = �1.246) = 0.1840±0.0062±0.0084 . (22)

As has been discussed many times in the past (see
e.g. [17]) the CIPT prediction lies substantially below
the FOPT results, especially the C-scheme ones, and the
Borel model. On the other hand, the parametric ↵s un-
certainty in CIPT turns out to be smaller.

In this work, in Eq. (6), we have defined a class of QCD
couplings âQ, such that the scale running is explicitly
scheme invariant, and scheme changes are parameterized
by a single constant C. For this reason, we have termed
âQ the C-scheme coupling. Scheme transformations cor-
respond to changes in the QCD scale ⇤.
We have applied the coupling âQ to investigations of

the perturbative series of the reduced Adler function bD.
Our central result is given in Eq. (13). Its higher-order
uncertainty turned out larger than the corresponding MS
prediction (14), but we consider (13) to be more realistic
and conservative.
We also studied the perturbative expansion of the ⌧

hadronic width, employing the coupling âQ. In this case
our central prediction in FOPT is given in Eq. (19). Sur-
prisingly, the result (19) is found very close to the predic-
tion (21) of the central Borel model developed in Ref. [17],
hence providing some support for this approach.
The disparity between FOPT and CIPT predictions

for �(0) is not resolved by the C-scheme. As is seen from
Eq. (22), the CIPT result turns out substantially lower
(as is the case for the MS prediction). This suggests to
return to investigations of Borel models, this time in the
coupling â, in order to assess the scheme dependence of
such models. This could result in an improved extraction
of ↵s from hadronic decays of the ⌧ lepton.
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as the uncertainty. For further explanation, see the text.
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[Renormalon based description]

[a(m2
⌧ ) = 0.1006(32)]
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