

The $\gamma\gamma$ Physics Program at +5

September 20, 2016 | Christoph Florian Redmer for the BESIII Collaboration

The 14th International Workshop on Tau Lepton Physics

JG U

Motivation

$$a_{\mu} = \frac{g_{\mu} - 2}{2} = \frac{\alpha}{2\pi} + ... = 0.001161...$$

$$\mathsf{a}_{\mu}^{\mathsf{theo}} = \mathsf{a}_{\mu}^{\mathsf{QED}} + \mathsf{a}_{\mu}^{\mathsf{weak}} + \mathsf{a}_{\mu}^{\mathsf{hadr}}$$

Contribution	Result in 10^{-10} units		
QED(leptons)	11658471.885	± 0.004	Kinoshita et al. (2012)
Weak	15.4	± 0.2	Czarnecki et al. (2003)
HVP(leading order)	692.3	± 4.2	Davier et al. (2011)
HVP(higher order)	-9.84	± 0.07	Hagiwara et al. (2009)
HLBL	11.6	± 4.0	Jegerlehner, Nyffler (2009)
Total	11659181.3	± 5.8	
Experiment	11659208.9	± 6.3	

Prediction completely limited by hadronic contributions!

Challenge:

Perturbative methods cannot be applied in the relevant energy regime

Hadronic Light-by-Light

 a_{μ}^{hLBL} not directly related to measurable quantities

- Hadronic models
 - ChPT at lowest energies
 - pQCD at high energies
 - Intermediate region ?
- Data driven approaches
 - Based on dispersion relations
 - Reduce model dependency
 - Reliable error estimates

Transition form factors (TFF) as experimental input

Glasgow Consensus, arXiv:0901.0306 Jegerlehner/Nyffeler, Phys.Rept.477,1

Collangelo, Hoferichter, et al. (Bern) Vanderhaeghen, Pauk, et al. (Mainz)

JG U

Two-Photon Collisions

- Exchange of two photons in e⁺e⁻ collisions
- Pseudoscalar, axial, and tensor states accessible
- M_X << √s</p>
- $\sigma \propto \alpha^2 \ln^2 E$
- ${\color{red} \bullet } \ \sigma \propto F^2(Q_1^2,Q_2^2)$, with $Q_i^2=-q_i^2$
- Forward peaked kinematic
 - Experimentally challenging
 - Special tagging detectors recommended

BESIII Detector

Operated at BEPCII collider

- $2.0 \le \sqrt{s} \text{ [GeV]} \le 4.6$
- Design luminosity achieved

•
$$\mathcal{L} = 1.0 \times 10^{33} \text{cm}^{-2} \text{s}^{-1} \text{ at } \psi(3770)$$

- Large data sets for
 - Charmonium Spectroscopy
 - **Charm Physics**
 - Light hadrons
 - τ and R-Scan

Integrated luminosities BESIII $\psi(3770)$

NIM A614 (2010) 345

- Main Drift Chamber (MDC)
 - $\sigma(p)/p = 0.5\%$
 - $\sigma_{dE/dx} = 6.0\%$
- Time-of-flight system (TOF)
 - $\sigma(t) = 90ps$ (barrel)
 - $\sigma(t) = 110ps \text{ (endcap)}$
- EMC
 - 6240 CsI(Tl) crystals
 - $\sigma(E)/E = 2.5\%$
 - $\sigma_{7,0}(E) = 0.5 0.7 \text{ cm}$

Muon Chambers

- 8 9 layers of RPC
- p>400 MeV/c
- $\delta R\Phi = 1.4 \sim 1.7 \text{ cm}$

Superconducting Magnet

1 T magnetic field

JG U

Single-Tag Measurements

- Reconstruct
 - only one scattered lepton
 - Produced system
- Unmeasured lepton from momentum conservation
 - Require scattering angle to be small
 - Small virtuality
 - $F(q_1^2, q_2^2) \to F(q_1^2, 0) \to F(q^2)$

Existing Data

- Recent results from B-factories cover only large Q²
 - $(5 < Q^2 [GeV^2] < 40)$
 - Discrepancy for π^0 between BaBar and Belle
- Data scarce at lowest Q²
 - Region of relevance for $(g-2)\mu$

CELLO: Z.Phys.C49 (1991) 401 CLEO: Phys.Rev.D57 (1998) 33

BaBar: Phys.Rev.D80 (2009) 052002

Phys.Rev.D84 (2011) 052001

Belle: Phys.Rev.D86 (2012) 092007

Relevant Energy Range

2D integral representation for pion-pole contribution by Knecht, Nyffeler (2002):

$$a_{\mu}^{\mathrm{HLbL};\pi^{0}} = \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \sum_{i} w_{i}(Q_{1}, Q_{2}) f_{i}(Q_{1}, Q_{2})$$

- Universal weight functions w_i
- Form factor dependence f

Relevant momentum regions:

0.25 - 1.25 GeV

JG|U|

Space-like π⁰ Transition Form Factor

BESIII Monte Carlo, $\Psi(3770)$ L_{int}: 2.93 fb⁻¹, Tagged Lepton: e⁺

- Exactly one lepton
- Two to four photons
- $\cos\theta_{\text{untagged}} < -0.99$
- $-\cos\theta_{\text{Helicity}} < 0.8$

- Angle between γ in π^0 rest frame and π^0 in lab
- Flat for signal
- Peaked for background
- Reject events with $cos(\theta_H) > 0.8$

Space-like π⁰ Transition Form Factor

- ISR results in wrong Q²
 Useful observable: $R_{\gamma} = \frac{\sqrt{s} E_{e^{\pm} \pi^{0}, \eta}^{CMS} p_{e^{\pm} \pi^{0}, \eta}^{CMS}}{\sqrt{s}}$
- If ISR, $R_{\gamma} = \frac{2E_{\gamma}}{\sqrt{s}}$
- Reject events with R_v > 0.05

- Exactly one lepton
- Two to four photons
- $\cos\theta_{\text{untagged}} < -0.99$
- $cos\theta_{Helicity} < 0.8$
- Reject hadronic background

JG U Space-like π⁰ Transition Form Factor

BESIII Monte Carlo, $\Psi(3770)$ L_{int}: 2.93 fb⁻¹, Tagged Lepton: e⁺

- Two to four photons
- $\cos\theta_{\text{untagged}} < -0.99$
- $cos\theta_{Helicity} < 0.8$
- Reject hadronic background

- \blacksquare Analysis useful for π^0 and $\,\eta\,$
- Monte Carlo description of background incomplete

IG U Space-like π^0 Transition Form Factor

- Only statistical errors shown
- Systematic uncertainty dominated by background subtraction

- Two to four photons
- $\cos\theta_{\text{untagged}} < -0.99$
- $\cos\theta_{\text{Helicity}} < 0.8$
- Reject hadronic background
- Bkg subtr. by counting π^0 yield per Q^2 bin
- |F(Q²)|² extracted by division by WZW-MC
- Full BESIII Ψ(3770) data set analyzed
- Competitive accuracy up to 3.1 GeV²
- Unprecedented accuracy below Q²=1.5 GeV²

JG|U

Contribution to a_µ

- Current accuracy of $a_{\mu}: \sim 6.3 \times 10^{-10}$
- Contribution of π^0 : $\sim 7 \times 10^{-10}$ Knecht, Nyffeler Phys. Rev. D65 (2002) 073034
- Expected accuracy of new experiments at FNAL and J-PARC: $\sim 1.6 \times 10^{-10}$

■ Contributions of η and η' relevant!

$$\eta \sim 1.5 imes 10^{-10}$$
 Knecht,Nyffeler $\eta' \sim 1.5 imes 10^{-10}$ Phys.Rev.D65 (2002) 073034

JG U Space-like η,η' Transition Form Factor

$$\eta' \to \pi^+ \pi^- \eta$$

- Any combination of
 - one positron
 - two charged pions
 - two photons
- $cos\theta_{untagged} > 0.99$
- reject hadronic background
- Mass window cuts on yy invariant mass
- Kinematic fit
- Relatively low background conditions

JG U Space-like η,η' Transition Form Factor

- Full BESIII Ψ(3770) data set analyzed
- statistics compatible to previous measurements
 - only one decay channel of η and η' analyzed at BESIII
 - more data available
- Systematic studies to be done

JG U Space-like $\pi^+\pi^-$ Transition Form Factor

- Additional Motivations:
 - Resonance parameters
 - Pion polarizabilities, pion structure
 - Essential for dispersive frameworks
 - Rescattering effects in low mass region

Collangelo, Hoferichter, Procura, Stoffer JHEP 1409,091; JHEP1509,074

Until recently only untagged measurements:

MarkII, Phys. Rev. D42 (1990) 5 CELLO, Z. Phys. C56 (1992) 381 Belle, Phys. Rev D75 (2007) 051101

First single-tagged result by Belle

Phys. Rev. D93 (2016) 032003

JG \cup Space-like $\pi^+\pi^-$ Transition Form Factor

- Additional Motivations:
 - Resonance parameters
 - Pion polarizabilities, pion structure
 - Essential for dispersive frameworks
 - Rescattering effects in low mass region

Collangelo, Hoferichter, Procura, Stoffer JHEP 1409,091; JHEP1509,074

Until recently only untagged measurements:

Calculations by Assmussen, Masjuan, and Vanderhaeghen:

Untagged

Single-Tag
$$(Q_1^2=0.5\,GeV^2)$$

Double-Tag
$$(Q_1^2 = Q_2^2 = 0.5 \, GeV^2)$$

First single-tagged result by Belle

Phys. Rev. D93 (2016) 032003

G U Space-like π⁺π⁻ Transition Form Factor

- At BESIII: Single-Tag measurement
 - Using 1 fb⁻¹, collected at \sqrt{s} = 4360 MeV
 - Event selection analogous to single pseudoscalar analysis
 - Major Backgrounds:

$$e^+e^- \to e^+e^-\pi^+\pi^-$$

- Radiative Bhabha scattering coupling to ρ (s + t channel)
- MC generators missing

$$\gamma \gamma^{(*)} \to \mu^+ \mu^-$$

- Two-photon production of muon pairs
- Precise MC generators available from LEP era (BdkRC + Diag36ABC)
- Train ANN to suppress muon background

G U Space-like π⁺π⁻ Transition Form Factor

- Subtract muon background using MC distributions
 - To be replaced with ANN trained for muon suppression
- Subtract ρ contribution
 - Fit with Kühn-Santamaria parameterization
- Study pion mass in bins of Q^2 and $\cos\theta^*$
- Expectations:
 - About 5000 signal events at \sqrt{s} = 4360 MeV
 - Access to:
 - low momentum transfers 0.2 < Q² [GeV²] < 2.0
 - low invariant masses $m_{\pi^+\pi^-}$ < M [GeV] < 2.0

JG U Outlook: Double-Tagged Measurements

- More than 7.7fb^{-1} on disk at $3.77 < \sqrt{s}$ [GeV] < 4.6
 - Double-tag measurement possible
 - Measure $F_{\gamma^*\gamma^*\pi^0}(Q_1^2, Q_2^2)$
 - 1st Step: Test TFF models
 - e.g. VMD vs. LMD+V

Calculations: A. Nyffeler hep-ph:1602.03398

- Test polarization in $\gamma\gamma$ production
 - General two-photon cross section:

$$d\sigma = F \left\{ v_{TT} \, \sigma_{TT} + v'_{TT} \cos(2\tilde{\phi}) \, \left(\sigma_{\parallel} - \sigma_{\perp} \right) + h_1 h_2 v''_{TT} \, \frac{1}{2} \left(\sigma_0 - \sigma_2 \right) \right. \\ \left. + v_{LL} \, \sigma_{LL} + v_{TL} \, \sigma_{TL} + v_{LT} \, \sigma_{LT} + v'_{TL} \cos(\tilde{\phi}) \, \tau_{TL} + h_1 h_2 v''_{TL} \cos(\tilde{\phi}) \, \tau_{TL}^a \right\}.$$

- $\blacksquare \ \ \widetilde{\phi} \ \ :$ azimuthal angle between lepton planes in $\gamma^*\gamma^*$ CMS
 - Allows to disentangle form factor contributions of multi-meson and tensor states
 - Requires precise measurement of angles

JG U Outlook: Zero Degree Detector

- Tagging of photons and electrons at small angles
 - Polar angle range: 1 10 mrad
- Current design: Pb-SciFi, one sided
- Upgrade: Arrays of 48 crystals (PbWO, LYSO) on both sides

In-beam tests at MAMI (Mainz)

JG U

Summary

- Two-photon physics program established at BESIII
 - Single-tag measurements of π^0 , η , and η' transition form factors
 - Unprecedented accuracy for Q² < 1.5 GeV²
 - Single-tag measurement of $\pi^+\pi^-$
 - First measurement at low Q², low mass
 - To be extended to neutral final states
 - First double-tagged measurement $\gamma^* \gamma^* \to \pi^0$ started
 - New prospects from tagging detectors