The $\gamma \gamma$ Physics Program at BESIII

September 20, 2016 |Christoph Florian Redmer for the BESIII Collaboration

The $14^{\text {th }}$ International Workshop on Tau Lepton Physics

Motivation

$$
\begin{aligned}
& \mathrm{a}_{\mu}=\frac{\mathrm{g}_{\mu}-2}{2}=\frac{\alpha}{2 \pi}+\ldots=0.001161 . . . \\
& \mathrm{a}_{\mu}^{\text {theo }}=\mathrm{a}_{\mu}^{\text {QED }}+\mathrm{a}_{\mu}^{\text {weak }}+\mathrm{a}_{\mu}^{\text {hadr }}
\end{aligned}
$$

Prediction completely limited by hadronic contributions !

Challenge:
Perturbative methods cannot be applied in the relevant energy regime

Hadronic Light-by-Light

$a_{\mu}^{\text {hLBL }}$ not directly related to measurable quantities

- Interaction of virtual mesons with real/virtual photons

- Hadronic models

Glasgow Consensus, arXiv:0901.0306

- ChPT at lowest energies
- pQCD at high energies
- Intermediate region?
- Data driven approaches
- Based on dispersion relations
- Reduce model dependency
- Reliable error estimates
- Transition form factors (TFF) as experimental input

Two-Photon Collisions

- Exchange of two photons in $\mathrm{e}^{+} \mathrm{e}^{-}$collisions
- Pseudoscalar, axial, and tensor states accessible
- $\mathrm{M}_{\mathrm{x}} \ll \sqrt{ } \mathrm{s}$
- $\sigma \propto \alpha^{2} \ln ^{2} E$
- $\sigma \propto F^{2}\left(Q_{1}^{2}, Q_{2}^{2}\right)$, with $Q_{i}^{2}=-q_{i}^{2}$
- Forward peaked kinematic
- Experimentally challenging
- Special tagging detectors recommended

JG \mid
 BESIII Detector

NIM A614 (2010) 345

- Main Drift Chamber (MDC)
- $\sigma(p) / p=0.5 \%$
- $\sigma_{\mathrm{dE} / \mathrm{dx}}=6.0 \%$
- Time-of-flight system (TOF)
- $\sigma(\mathrm{t})=90 \mathrm{ps}$ (barrel)
- $\sigma(\mathrm{t})=110 \mathrm{ps}$ (endcap)
- EMC
- 6240 CsI(TI) crystals
- $\sigma(E) / E=2.5 \%$
- $\sigma_{\mathrm{z}, \mathrm{\phi}}(\mathrm{E})=0.5-0.7 \mathrm{~cm}$
- Muon Chambers
- 8 - 9 layers of RPC
- $\mathrm{p}>400 \mathrm{MeV} / \mathrm{c}$
- $\delta \mathrm{R} \Phi=1.4 \sim 1.7 \mathrm{~cm}$
- Superconducting Magnet - 1 T magnetic field
- Charmonium Spectroscopy
- Charm Physics
- Light hadrons
- τ and R-Scan
- $2.0 \leq \sqrt{\mathrm{s}}[\mathrm{GeV}] \leq 4.6$
- Design luminosity achieved
- $\mathcal{L}=1.0 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ at $\psi(3770)$
- Large data sets for

Integrated luminosities BESIII

,

JG U
 Single-Tag Measurements

- Reconstruct
- only one scattered lepton
- Produced system
- Unmeasured lepton from momentum conservation
- Require scattering angle to be small
- Small virtuality
- $F\left(q_{1}^{2}, q_{2}^{2}\right) \rightarrow F\left(q_{1}^{2}, 0\right) \rightarrow F\left(q^{2}\right)$

Example: π^{0}, η BESIII Monte Carlo,
$\mathrm{L}_{\mathrm{im}}: 2.93 \mathrm{fb}^{-1} @ \Psi(3770)$ Tagged Lepton: e^{+}

[^0]
JG U
 Existing Data

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \pi^{0}$

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \eta^{\prime}
$$

- Recent results from B-factories cover only large Q^{2}
$\left(5<Q^{2}\left[\mathrm{GeV}^{2}\right]<40\right)$
- Discrepancy for π^{0} between BaBar and Belle
- Data scarce at lowest Q2
- Region of relevance for ($\mathrm{g}-2$) μ

CELLO: Z.Phys.C49 (1991) 401
CLEO: Phys.Rev.D57 (1998) 33
BaBar: Phys.Rev.D80 (2009) 052002
Phys.Rev.D84 (2011) 052001
Belle: Phys.Rev.D86 (2012) 092007

JG|U Relevant Energy Range

2D integral representation for pion-pole contribution by Knecht, Nyffeler (2002):

$$
a_{\mu}^{\mathrm{HLbL} ; \pi^{0}}=\int_{0}^{\infty} d Q_{1} \int_{0}^{\infty} d Q_{2} \sum_{i} w_{i}\left(Q_{1}, Q_{2}\right) f_{i}\left(Q_{1}, Q_{2}\right)
$$

- Universal weight functions w_{i}
- Form factor dependence f_{i}

Relevant momentum regions:
$0.25-1.25 \mathrm{GeV}$

- Exactly one lepton
- Two to four photons
- $\cos \theta_{\text {untagged }}<-0.99$
- $\cos \theta_{\text {Helicity }}<0.8$
- Angle between y in π^{0} rest frame and π^{0} in lab
- Flat for signal
- Peaked for background
- Reject events with $\cos \left(\theta_{H}\right)>0.8$

Jg U Space-like π^{0} Transition Form Factor

- Exactly one lepton
- Two to four photons
- $\cos \theta_{\text {untagged }}<-0.99$
- $\cos \theta_{\text {Helicity }}<0.8$
- Reject hadronic background
- ISR results in wrong Q^{2}
- Useful observable: $R_{\gamma}=\frac{\sqrt{s}-E_{e^{ \pm} \pi^{0} n}^{C D S}-p_{e^{ \pm} \pi^{0} \eta}^{C M S}}{\sqrt{s}}$
- If ISR, $R_{\gamma}=\frac{2 E_{\gamma}}{\sqrt{s}}$
- Reject events with $R_{\gamma}>0.05$

Jg U Space-like π^{0} Transition Form Factor

```
BESIII Monte Carlo, \(\Psi(3770)\)
\(\mathrm{L}_{\text {int }}: 2.93 \mathrm{fb}^{-1}\), Tagged Lepton: \(\mathrm{e}^{+}\)
```


- Exactly one lepton
- Two to four photons
- $\cos \theta_{\text {untagged }}<-0.99$
- $\cos \theta_{\text {Helicity }}<0.8$
- Reject hadronic background
- Analysis useful for π^{0} and η
- Monte Carlo description of background incomplete

Jg U Space-like π^{0} Transition Form Factor

- Exactly one lepton

- Only statistical errors shown
- Systematic uncertainty dominated by background subtraction
- Two to four photons
- $\cos \theta_{\text {untagged }}<-0.99$
- $\cos \theta_{\text {Helicity }}<0.8$
- Reject hadronic background
- Bkg subtr. by counting π^{0} yield per Q^{2} bin
- $\left|F\left(Q^{2}\right)\right|^{2}$ extracted by division by WZW-MC
- Full BESIII $\Psi(3770)$ data set analyzed
- Competitive accuracy up to $3.1 \mathrm{GeV}^{2}$
- Unprecedented accuracy below $\mathrm{Q}^{2}=1.5 \mathrm{GeV}^{2}$

Contribution to a_{μ}

- Current accuracy of $\mathrm{a}_{\mu}: \sim 6.3 \times 10^{-10}$

■ Contribution of $\pi^{0}: \quad \sim 7 \times 10^{-10} \quad \begin{aligned} & \text { Knecht,Nyffeler } \\ & \text { Phys.Rev.D65 (2002) } 073034\end{aligned}$

- Expected accuracy of new experiments at FNAL and J-PARC: $\sim 1.6 \times 10^{-10}$
- Contributions of η and η^{\prime} relevant!

$$
\begin{aligned}
\eta \sim 1.5 \times 10^{-10} & \begin{array}{l}
\text { Knecht,Nyffeler } \\
\eta^{\prime}
\end{array} \sim 1.5 \times 10^{-10} \quad \text { Phys.Rev.D65 (2002) } 073034
\end{aligned}
$$

JG|U Space-like η, η^{\prime} Transition Form Factor

BESIII Simulation: $2.9 \mathrm{fb}^{-1} @ 3.773 \mathrm{GeV}$

- $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$
- $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta$
- Any combination of
- one positron
- two charged pions
- two photons
- $\cos \theta_{\text {untagged }}>0.99$
- reject hadronic background
- Mass window cuts on yy invariant mass
- Kinematic fit
- Relatively low background conditions

JG|U Space-like η, η^{\prime} Transition Form Factor

$$
F_{\eta, \gamma, \gamma^{*}}\left(Q^{2}\right)
$$

$$
F_{\eta^{\prime}, \gamma, \gamma^{*}}\left(Q^{2}\right)
$$

- Full BESIII $\Psi(3770)$ data set analyzed
- statistics compatible to previous measurements
- only one decay channel of η and η ' analyzed at BESIII
- more data available
- Systematic studies to be done

JG|U Space-like $\pi^{+} \pi^{-}$Transition Form Factor

- Additional Motivations:
- Resonance parameters
- Pion polarizabilities, pion structure
- Essential for dispersive frameworks
- Rescattering effects in low mass region

■ Until recently only untagged measurements:

Collangelo, Hoferichter, Procura, Stoffer JHEP 1409,091; JHEP1509,074

MarkII, Phys. Rev. D42 (1990) 5
CELLO, Z. Phys. C56 (1992) 381
Belle, Phys. Rev D75 (2007) 051101

- First single-tagged result by Belle

JG|U Space-like $\pi^{+} \pi^{-}$Transition Form Factor

- Additional Motivations:
- Resonance parameters
- Pion polarizabilities, pion structure
- Essential for dispersive frameworks
- Rescattering effects in low mass region
- Until recently only untagged measurements:

Collangelo, Hoferichter, Procura, Stoffer JHEP 1409,091; JHEP1509,074

Calculations by
Assmussen, Masjuan, and Vanderhaeghen:
Untagged
Single-Tag $\quad\left(Q_{1}^{2}=0.5 \mathrm{GeV}^{2}\right)$
Double-Tag $\quad\left(Q_{1}^{2}=Q_{2}^{2}=0.5 \mathrm{GeV}^{2}\right)$

- First single-tagged result by Belle
- At BESIII: Single-Tag measurement
- Using $1 \mathrm{fb}^{-1}$, collected at $\sqrt{ } \mathrm{s}=4360 \mathrm{MeV}$
- Event selection analogous to single pseudoscalar analysis
- Major Backgrounds:
- $e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{+} \pi^{-}$
- Radiative Bhabha scattering coupling to ρ ($s+t$ channel)
- MC generators missing

■ $\gamma \gamma^{(*)} \rightarrow \mu^{+} \mu^{-}$

- Two-photon production of muon pairs
- Precise MC generators available from LEP era (BdkRC + Diag36ABC)
- Train ANN to suppress muon background
- Subtract muon background using MC distributions
- To be replaced with ANN trained for muon suppression
- Subtract ρ contribution
- Fit with Kühn-Santamaria parameterization
- Study pion mass in bins of Q^{2} and $\cos \theta^{*}$
- Expectations:
- About 5000 signal events at $\sqrt{ } \mathrm{s}=4360 \mathrm{MeV}$
- Access to:
- low momentum transfers $0.2<\mathrm{Q}^{2}\left[\mathrm{GeV}^{2}\right]<2.0$
- low invariant masses $\mathrm{m}_{\pi+\pi-}<\mathrm{M}[\mathrm{GeV}]<2.0$

JG|U Outlook: Double-Tagged Measurements

- More than $7.7 \mathrm{fb}^{-1}$ on disk at $3.77<\sqrt{ } \mathrm{s}[\mathrm{GeV}]<4.6$
- Double-tag measurement possible
- Measure $\mathrm{F}_{\gamma^{*} \gamma^{*} \pi^{0}}\left(\mathrm{Q}_{1}^{2}, \mathrm{Q}_{2}^{2}\right)$
- 1st Step: Test TFF models
- e.g. VMD vs. LMD+V

Calculations: A. Nyffeler hep-ph:1602.03398

- Test polarization in $\gamma \gamma$ production
- General two-photon cross section:

$$
\begin{aligned}
d \sigma=F\{ & \left\{v_{T T} \sigma_{T T}+v_{T T}^{\prime} \cos (2 \tilde{\phi})\left(\sigma_{\|}-\sigma_{\perp}\right)+h_{1} h_{2} v_{T T}^{\prime \prime} \frac{1}{2}\left(\sigma_{0}-\sigma_{2}\right)\right. \\
& \left.+v_{L L} \sigma_{L L}+v_{T L} \sigma_{T L}+v_{L T} \sigma_{L T}+v_{T L}^{\prime} \cos (\tilde{\phi}) \tau_{T L}+h_{1} h_{2} v_{T L}^{\prime \prime} \cos (\tilde{\phi}) \tau_{T L}^{a}\right\}
\end{aligned}
$$

- $\tilde{\phi}$: azimuthal angle between lepton planes in $\gamma^{*} \gamma^{*} \mathrm{CMS}$
- Allows to disentangle form factor contributions of multi-meson and tensor states
- Requires precise measurement of angles

$\mathrm{JG} \mid \mathrm{U}$ Outlook: Zero Degree Detector

- Tagging of photons and electrons at small angles
- Polar angle range: 1 - 10 mrad
- Current design: Pb-SciFi, one sided

■ Upgrade: Arrays of 48 crystals (PbWO, LYSO) on both sides

Summary

- Two-photon physics program established at BESIII
- Single-tag measurements of π^{0}, η, and η^{\prime} transition form factors
- Unprecedented accuracy for $\mathrm{Q}^{2}<1.5 \mathrm{GeV}^{2}$
- Single-tag measurement of $\pi^{+} \pi^{-}$
- First measurement at low Q^{2}, low mass
- To be extended to neutral final states
- First double-tagged measurement $\gamma^{*} \gamma^{*} \rightarrow \pi^{0}$ started
- New prospects from tagging detectors

[^0]: Tau2016

