The status of the strong coupling from tau decays in 2016

Diogo Boito, Maarten Golterman, Kim Maltman, Santiago Peris

TAU 2016, Beijing, Sept. 19-23, 2016

Controversy:

• Pich, Rodríguez-Sánchez (PRD94 (2016) 034027): $\alpha_s(m_{\tau}^2) = 0.328(12)$ Davier *et al.* (EPJC74 (2014) 2803): $\alpha_s(m_{\tau}^2) = 0.332(12)$

• Boito *et al.* (PRD91 (2015) 034003):

$$\alpha_s(m_\tau^2) = 0.301(10)$$

- What explains the difference? This talk: Flaws in P&R (and Davier *et al*.) analysis
- *Technical note:* these are averages between CIPT and FOPT values.
 In this talk we will not consider such averages, because averaging is not justified. Not related to controversy.

V+A non-strange spectral function (Davier et al., 2014, ALEPH)

P&R: take $s_0=m_{ au}^2$ and weights ($x\equiv z/s_0$)

$$w_{00}(x) = (1-x)^{2}(1+2x) \qquad \qquad w^{(2,1)} = 1 - 3x^{2} + 2x^{3}$$

$$w_{10}(x) = (1-x)^{3}(1+2x) \qquad \qquad w^{(2,2)} = 1 - 4x^{3} + 3x^{4}$$

$$w_{11}(x) = (1-x)^{3}(1+2x)x \qquad \text{or} \qquad w^{(2,3)} = 1 - 5x^{4} + 4x^{5}$$

$$w_{12}(x) = (1-x)^{3}(1+2x)x^{2} \qquad \qquad w^{(2,4)} = 1 - 6x^{5} + 5x^{6}$$

$$w_{13}(x) = (1-x)^{3}(1+2x)x^{3} \qquad \qquad w^{(2,5)} = 1 - 7x^{6} + 6x^{7}$$
(ALEPH) ("optimal")

Assume: $(C_{10} =) C_{12} = C_{14} = C_{16} = 0$ and resonance effects negligible \Rightarrow fit four parameters (α_s , C_6 , C_8 , $C_{4/10}$) to five data spectral integrals

However:
$$\frac{1}{2\pi i} \oint dz \, z^n \, \frac{C_{2k}}{z^k} = C_{2(n+1)} \delta_{k,n+1}$$

- need OPE coefficients up to C_{16}
- resonance oscillations around OPE clearly visible in V+A spectral function

P&R:

ALEPH	$\alpha_s(m_\tau^2)$	$C_4 \ (10^{-3} \ { m GeV^4})$	$C_6 \ (10^{-3} \ {\rm GeV^6})$	$C_8 \ (10^{-3} \ {\rm GeV^8})$
FOPT	$0.319\substack{+0.010\\-0.006}$	$-0.8^{+1.6}_{-2.5}$	$1.3^{+1.4}_{-0.8}$	$-0.8^{+0.4}_{-0.7}$
CIPT	$0.339^{+0.011}_{-0.009}$	$-2.8^{+0.8}_{-0.8}$	$0.9\substack{+0.3\\-0.4}$	$-1.0^{+0.5}_{-0.7}$

optimal	$\alpha_s(m_{\tau}^2)$	$C_6 \ (10^{-3} \ {\rm GeV^6})$	$C_8 \ (10^{-3} \ { m GeV^8})$	$C_{10} \ (10^{-3} \ {\rm GeV^{10}})$
FOPT	$0.315\substack{+0.010\\-0.005}$	$1.4^{+1.6}_{-0.9}$	$-0.9^{+0.8}_{-1.4}$	$0.3\substack{+0.8\\-0.5}$
CIPT	$0.334\substack{+0.012\\-0.008}$	$1.0^{+0.6}_{-0.4}$	$-1.0^{+0.5}_{-1.0}$	$0.2^{+0.4}_{-0.4}$

Our check:

ALEPH	$\alpha_s(m_\tau^2)$	$C_4 \ (10^{-3} \ {\rm GeV^4})$	$C_6 \ (10^{-3} \ {\rm GeV}^6)$	$C_8 \ (10^{-3} \ {\rm GeV^8})$	χ^2/dof
FOPT	0.316(3)	-0.6(3)	1.2(3)	-0.8(3)	1.39/1
CIPT	0.336(3)	-2.6(4)	0.9(3)	-1.0(4)	0.89/1

optimal	$\alpha_s(m_\tau^2)$	$C_6 \ (10^{-3} \ {\rm GeV^6})$	$C_8 \ (10^{-3} \ {\rm GeV^8})$	$C_{10} \ (10^{-3} \ {\rm GeV^{10}})$	χ^2/dof
FOPT	0.317(3)	1.4(4)	-1.0(5)	0.4(3)	1.27/1
CIPT	0.337(4)	1.0(4)	-1.1(4)	0.3(3)	0.83/1

(statistical errors only)

P&R: turn on C_{10} in ALEPH fit (not a fit, no degrees of freedom!):

ALEPH	$\alpha_s(m_\tau^2)$	$C_4 \ (10^{-3} \ {\rm GeV^4})$	$C_6 \ (10^{-3} \ {\rm GeV^6})$	$C_8 \ (10^{-3} \ { m GeV^8})$
FOPT	$0.319\substack{+0.010\\-0.006}$	$-0.8^{+1.6}_{-2.5}$	$1.3^{+1.4}_{-0.8}$	$-0.8\substack{+0.4\\-0.7}$
CIPT	$0.339\substack{+0.011\\-0.009}$	$-2.8^{+0.8}_{-0.8}$	$0.9\substack{+0.3\\-0.4}$	$-1.0\substack{+0.5\\-0.7}$

ALEPH	$\alpha_s(m_\tau^2)$	$C_4 \ (10^{-3} \ { m GeV}^4)$	$C_6 \ (10^{-3} \ {\rm GeV}^6)$	$C_8 \ (10^{-3} \ {\rm GeV^8})$	$C_{10} \ (10^{-3} \ {\rm GeV^{10}})$
FOPT	$0.333\substack{+0.013\\-0.012}$	$-1.5^{+1.6}_{-3.7}$	7^{+7}_{-4}	-5^{+4}_{-6}	12^{+12}_{-9}
CIPT	$0.355\substack{+0.016\\-0.015}$	$-3.9^{+1.6}_{-1.2}$	5^{+3}_{-3}	-5^{+3}_{-3}	10^{+8}_{-8}

- OPE coefficients C_6 and C_8 grow by a factor 5 or so!
- OPE not convergent (asymptotic?) \Rightarrow expect growth of C_{2k} with k
- Assumption $C_{10} = C_{12} = C_{14} = C_{16} = 0$ only made to be able to do a fit with 5 data points
- Similar comment for "optimal" (and other) P&R fits

Choose for example $C_{10} = -0.0832 \text{ GeV}^{10}$ $C_{12} = 0.161 \text{ GeV}^{12}$ $C_{14} = -0.17 \text{ GeV}^{14}$ $C_{16} = -0.55 \text{ GeV}^{16}$

Reasonable values on the scale of QCD; we find (stat. errors only):

ALEPH	$\alpha_s(m_\tau^2)$	$C_4 \; (\mathrm{GeV}^4)$	$C_6 \; ({\rm GeV^6})$	$C_8 \; ({\rm GeV^8})$	χ^2/dof
FOPT	0.295(3)	0.0043(3)	-0.0128(3)	0.0355(3)	0.99/1
CIPT	0.308(4)	0.0031(3)	-0.0129(3)	0.0354(3)	0.74/1

Compare with fits assuming $C_{10} = C_{12} = C_{14} = C_{16} = 0$:

ALEPH	$\alpha_s(m_\tau^2)$	$C_4 \; ({\rm GeV^4})$	$C_6 \; ({\rm GeV^6})$	$C_8 \; ({\rm GeV^8})$	$\chi^2/{ m dof}$
FOPT	0.316(3)	-0.0006(3)	0.0012(3)	-0.0008(3)	1.39/1
CIPT	0.336(3)	-0.0026(4)	0.0009(3)	-0.0010(4)	0.89/1

~8% shift in α_s , would increase total P&R error from ± 0.012 to ± 0.025 (similar for "optimal" and other fits)

A more stringent test: fake data

• Start from model having by construction lower $\alpha_s(m_{\tau}^2) = 0.312$ (CIPT) and non-negligible DVs compatible with the experimental spectral function. Test P&R/Davier approach

- Generate fake data from this model (using real-data covariances).
- Perform P&R type fits on these fake data.
- Compare the parameter values ($\alpha_s(m_\tau^2)$) obtained from these fits to the input value, $\alpha_s(m_\tau^2)=0.312$.

Results of this test:

ALEPH	$\alpha_s(m_\tau^2)$	$C_{4,V+A} (\text{GeV}^4)$	$C_{6,V+A} (\mathrm{GeV}^6)$	$C_{8,V+A} (\mathrm{GeV}^8)$	χ^2/dof
true values	0.312	0.0027	-0.013	0.035	
fake data fit	0.334(3)	-0.0024(4)	0.0007(3)	-0.0008(4)	0.95/1

optimal	$\alpha_s(m_{\tau}^2)$	$C_{6,V+A} (\mathrm{GeV}^6)$	$C_{8,V+A} (\mathrm{GeV}^8)$	$C_{10,V+A} \; (\text{GeV}^{10})$	χ^2/dof
true values	0.312	-0.013	0.035	-0.083	
fake data fit	0.334(4)	0.0008(4)	-0.0008(5)	0.0001(3)	0.92/1

(CIPT, statistical errors only)

- P&R fits get it wrong (similar conclusion for FOPT)
- big difference in behavior of OPE

Why do P&R fits get it wrong?

- Rely on uncontrolled assumption about the OPE in higher orders.
- Assume that duality violations (resonance effects) can be neglected, at least in V+A, without testing this.

Why do P&R fits get it wrong?

- Rely on uncontrolled assumption about the OPE in higher orders.
- Assume that duality violations (resonance effects) can be neglected, at least in V+A, without testing this.

How do we distinguish with the real data?

Check s_0 dependence, should work above $\sim 2 \text{ GeV}^2$ ALEPH moments for P&R (all used in fit, $s_0 = m_{\tau}^2$ minus s_0 differences):

How do we distinguish with the real data?

Check s_0 dependence, should work above $\sim 2 \text{ GeV}^2$ ALEPH moments for Boito *et al.* (only w₀₀ used in fit, others predictions):

Our solution (three papers and various conference proceedings)

- Use moments that probe OPE only to order C_8 .
- Compelled to allow for duality violations (resonance effects clearly seen!).
 Need to look at V and A channels separately (different resonances!).
- Our results: P&R: $\alpha_s(m_{\tau}^2) = 0.296(10) \text{ (FOPT)} \qquad \alpha_s(m_{\tau}^2) = 0.319(12) \text{ (FOPT)}$ $= 0.310(14) \text{ (CIPT)} \qquad = 0.335(13) \text{ (CIPT)}$
- Even if you do not accept our model for duality violations, this implies an additional 0.024 (8%) spread in the value of α_s(m²_τ).
 Larger effect than the difference between FOPT and CIPT.
 ⇒ P&R analysis not competitive.

Conclusion

- P&R 2016 type analyses do not hold up:
- 1) No basis for their treatment of the OPE: arbitrary neglect of higher dimension condensates.
- 2) Neglect resonance effects ("duality violations"):
 - Dangerous: clearly visible even at the tau mass.
 - P&R fit strategy not capable of detecting residual DVs.
 - Need to estimate their quantitative effect no escape!
- Theoretical and statistical errors in P&R 2016 criticism of our analysis to be detailed in forthcoming paper.