

ARC Centre of Excellence for Particle Physics at the Terascale

Measurement of Higgs Boson couplings and CP Structure using tau leptons at LHC

on behalf of the ATLAS and CMS Collaborations

14th International Workshop on Tau Lepton Physics (Tau2016) 21/09/2016, IHEP Beijing

Outline

- This talk is focused on the potential for the measurement of CP violation in the Higgs boson couplings using $H \rightarrow \tau \tau$ events
- Content:
 - main features of $H \rightarrow \tau \tau$ channel and $H \tau \tau$ coupling measurement in Run-I
 - CP invariance in VBF $H \rightarrow \tau \tau$
 - CP invariance in $H \rightarrow \tau \tau$ decay: no estimate with full detector simulation yet. Overview of observables and final states and focus on experimental issues
- Related talks this week:
 - "Tau reconstruction at ATLAS" by Cristina GALEA/Daniele ZANZI
 - "Tau trigger and Identification at CMS in Run II" by Olivier DAVIGNON
 - "Higgs decays to tau leptons in the Standard Model and beyond" by Laura DODD
 - "Perspective for a measurement of tau-Polarisation in Z --> tau tau with CMS" by Vladimir CHEREPANOV
 - "Search for the Standard Model Higgs boson in the di-tau decay channel with the ATLAS detector" by Dugan O'NEIL

Higgs Boson Couplings

- Importance of measuring CP violation in Higgs boson couplings
 - lack of sources of CP violation in the SM to explain observed baryon asymmetry
 - no observable effect of CP violation expected in production or decay of SM Higgs boson
- Any observation of CP violation involving the observed Higgs boson is an unequivocal sign of physics beyond the SM
- Maybe one of the few chances to get direct hints for new physics at LHC if the new physics mass scale is too high for direct production

The $H \rightarrow \tau \tau$ Channel

- Most sensitive fermionic channel (BR=6.3%)
- One of the most sensitive final states for VBF production at LHC
- Bulk of the sensitivity in events with $p_{T}^{\tau\tau} \ge 100 \text{ GeV}$
- Large irreducible background from $Z \rightarrow \tau \tau$
- 10-20% m(τ,τ) mass resolution due to the presence of at least two neutrinos in final state
- Low-pt electrons, muons and hadronically-decaying tau difficult to trigger on

Decay mode	Meson resonance	B[%]
$\tau^- \rightarrow e^- \overline{\nu}_e \nu_{\tau}$		17.8
$ au^- ightarrow \mu^- \overline{ u}_\mu u_ au$		17.4
$\tau^- \rightarrow h^- \nu_{\tau}$		11.5
$ au^- ightarrow { m h}^- \pi^0 u_{ au}$	$\rho(770)$	26.0
$ au^- ightarrow \mathrm{h}^- \pi^0 \pi^0 u_{ au}$	$a_1(1260)$	9.5
$ au^- ightarrow { m h}^- { m h}^+ { m h}^- u_ au$	a ₁ (1260)	9.8
$ au^- ightarrow { m h}^- { m h}^+ { m h}^- \pi^0 u_ au$		4.8
Other modes with hadrons		3.2
All modes containing hadrons		64.8

D. Zanzi

Run-I Legacy

ATLAS: JHEP04(2015)117, CMS: JHEP05(2014)104, ATLAS and CMS: arxiv:1606.02266 (submitted to JHEP)

- Events / bin 10³ CMS $H\rightarrow\tau\tau$, 4.9 fb⁻¹ at 7 TeV, 19.7 fb⁻¹ at 8 TeV 1 b-value b-¹ Background (µ=1.4) 1σ Background (µ=0) 10⁻² 10⁻³ *H*(125)→ττ (μ=1.4) H(125)→ττ (μ=1) **3**σ 10² 10⁻⁴ 4σ 10⁻⁵ Observed p-value H→tt 10 ATLAS **10**⁻⁶ Expected for SM H(m_) 1s = 8 TeV, 20.3 fb 10⁻⁷ $1 = \sqrt{s} = 7 \text{ TeV}, 4.5 \text{ fb}^{-1}$ $e\mu$, $e\tau_{h}$, $\mu\tau_{h}$, $\tau_{h}\tau_{h}$, $\mu\mu$, ee10⁻⁸ -3 -2 -1 0 1 100 120 140 log₁₀(S / B) m_µ [GeV] Observed ±1σ ATLAS and CMS Th. uncert. LHC Run 1 γγ ggF ZZ S WW ττ γγ VBF ZZ WW ττ -2 8 0 2 4 6 10 $\sigma \cdot B$ norm. to SM prediction TAU2016, Beijing 5
- ATLAS and CMS results based on full Run-I dataset at 7 and 8 TeV
 - very similar selected phase spaces targeting VBF and ggH+jet productions
 - similar background estimates
 - different signal extraction methods (cutbased and MVA)
- Sensitivity dominated by VBF event categories
- ATLAS+CMS combination: >5sigma observation (H->tautau)

	ATLAS	CMS	ATLAS+CMS
Obs. (Exp.) p0	$\begin{array}{r} 1.41^{+0.40}_{-0.36} \\ 4.4(3.3) \end{array}$	$\begin{array}{c} 0.88\substack{+0.30\\-0.28}\\ 3.4(3.7)\end{array}$	$\begin{array}{r} 1.11\substack{+0.24\\-0.22}\\5.5(5.0)\end{array}$

D. Zanzi

Direct test of CP invariance in the VBF Higgs boson production

- Test of CP-violating contributions in HVV coupling. Independent of Higgs decay mode
- Exploit statistical power of VBF in H→ττ channel: O(10) signal events and s/b~0.3
- Limits set on CP-violating effects in EFT framework
- EFT Lagrangian with up to mass dimension six CP-violating operators parametrised by dimensionless coupling \tilde{d} :

 $\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \tilde{g}_{HAA} H \tilde{A}_{\mu\nu} A^{\mu\nu} + \tilde{g}_{HAZ} H \tilde{A}_{\mu\nu} Z^{\mu\nu} + \tilde{g}_{HZZ} H \tilde{Z}_{\mu\nu} Z^{\mu\nu} + \tilde{g}_{HWW} H \tilde{W}^+_{\mu\nu} W^{-\mu\nu}$ $\tilde{g}_{HAA} = \tilde{g}_{HZZ} = \frac{1}{2} \tilde{g}_{HWW} = \frac{g}{2m_W} \tilde{d} \quad \text{and} \quad \tilde{g}_{HAZ} = 0$

 CP-odd Optimal Observable defined as ratio of interference term in ME to the SM contribution

$$|\mathcal{M}|^{2} = |\mathcal{M}_{\rm SM}|^{2} + \tilde{d} \cdot 2\operatorname{Re}(\mathcal{M}_{\rm SM}^{*}\mathcal{M}_{\rm CP-odd}) + \tilde{d}^{2} \cdot |\mathcal{M}_{\rm CP-odd}|^{2}$$
$$\mathcal{OO} = \frac{2\operatorname{Re}(\mathcal{M}_{\rm SM}^{*}\mathcal{M}_{\rm CP-odd})}{|\mathcal{M}_{\rm SM}|^{2}}$$

ATLAS: arxiv:1602.04516 (submitted to EPJC)

D. Zanzi

ATLAS: arxiv: 1602.04516

 $\tau_{lep} \tau_{had}$ Signal Region

 $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$

Events / bin

35

30

25

20

15

10⊢

5

-10

(submitted to EPJC)

0

ATLAS

🔶 Data

VBF H (d=0) ggH/VH

tt+single-top

10

Fake τ Others

- Spin-off of the ATLAS Run-I VBF MVA analysis in II and Ih channels:
 - same selections and background estimates
 - fit of the events selected in the most sensitive BDT-score bins
- The observed <OO> is consistent with zero within statistical uncertainties. No hints for CP-violation:

- II:
$$\langle OO \rangle = 0.3 \pm 0.5$$

- Ih:
$$\langle OO
angle = -0.3 \pm 0.4$$

• 68% CL limits on \tilde{d} :

$$-0.11 < \tilde{d} < 0.05$$

 68% CL limits 10 times better than previous results from H→VV channels. No sensitivity yet for 95% CL interval

Process	$ au_{ m lep} au_{ m lep}$	$\tau_{\rm lep} \tau_{\rm had}$
Data	54	68
$VBF \ H \to \tau \tau / WW$	$9.8{\pm}2.1$	16.7 ± 4.1
$Z \to \tau \tau$	19.6 ± 1.0	19.1 ± 2.2
Fake lepton/ $ au$	2.3 ± 0.3	24.1 ± 1.5
$t\bar{t}$ +single-top	3.8 ± 1.0	4.8 ± 0.7
Others	11.5 ± 1.7	5.3 ± 1.6
$ggH/VH, H \to \tau\tau/WW$	1.6 ± 0.2	2.5 ± 0.7
Sum of backgrounds	38.9 ± 2.3	55.8 ± 3.3

D. Zanzi

CP Invariance in $H \rightarrow \tau \tau$ **Decay**

CP Invariance in $H \rightarrow \tau \tau$ Decay

 $CP - odd : \phi_{\tau} = \pi/2$

 $\overline{\nu}_{\tau}$

- Unique chance for model-independent direct measurement for ν_{τ} CP-violating Yukawa couplings (Higgs production independent)
- Unlike for *HVV* coupling, SM Lagrangian can be extended with tree-level CP-odd Yukawa couplings: $SM: \phi_{\tau} = 0$

$$\mathcal{L}_{h\tau\tau} = -\frac{m_{\tau}}{v} \kappa_{\tau} (\cos\phi_{\tau}\bar{\tau}\tau + \sin\phi_{\tau}\bar{\tau}i\gamma_{5}\tau)h$$
CP-even
CP-odd

 CP-violating Hττ coupling experimentally accessible from transverse tau spin correlations and angular distributions of tau decay products in the Higgs rest frame

$$\frac{1}{\Gamma} \frac{d\Gamma(h \to \tau\tau \to \pi^+\pi^- + 2\nu)}{d\phi_{CP}} \propto 1 - \frac{\pi^2}{16} \cos(\phi_{CP}^* - 2\phi_{\tau})$$

- CP-mixing angle ϕ_{τ} accessible looking at the signed angle of the tau decay planes
- Experimentally challenging: not possible to reconstruct tau momenta and Higgs rest frame, *ττ* Zero-Momentum-Frame (ZMF)

Short literature review: Berge et al. [<u>Phys.Rev.D92, 096012</u>, <u>EPJC(2014)74:3164</u>, <u>Phys.Lett.B727(2013)488–495</u>] Primulando et al. [<u>Phys.Rev.D88,076009]</u> Desch et al. [<u>Phys.Lett.B579(2004)157–164]</u> Was et al. [<u>Phys.Lett.B543(2002)227-234</u>, <u>arxiv:1608.02609]</u>

D. Zanzi

TAU2016, Beijing

11

- Sensitivity to ϕ_{τ} using visible tau decay products and without reconstruction of Higgs rest frame
- Because of only one neutrino, hadronic decays expected to have higher sensitivity to tau spin than leptonic decays
- Impact Parameter (IP) method [Phys.Lett.B727(2013)488–495]:
 - decay plane from the tau leading track and its IP from the primary vertex
 - works for every decay (including leptonic), but best for direct decays τ[±]→π[±]ν.
 For non-direct decays, tune of tau lower pt cut needed due to sign flip in spin analysing power
- ρ method [Phys.Lett.B579(2004)157–164]:
 - tau decay plane spanned by the track and neutral pion in $\tau^{\pm} \rightarrow \rho^{\pm}(770) \rightarrow \pi^{\pm} \pi^{0} \nu$
 - decays need to be classified based on the π^{\pm} - π^{0} energy difference in the $\rho\rho$ rest frame $E_{-\pm} E_{-0}$

$$y_{\pm} = \frac{E_{\pi^{\pm}} - E_{\pi^{0}}}{E_{\pi^{\pm}} + E_{\pi^{0}}}$$

- Effectiveness of observable depends also on:
 - how well it combines with other observables for mixed au au decays
 - how different is its distribution in mis-classified decays (can cancel out modulation in correctly classified decays!)

ATLAS: EPJC(2016)76:295; CMS: JINST11(2016)P01019, CMS-DP-2016-015

- Experimental needs: high reco*ID efficiency and high purity in decay mode classification, good pi0 momentum resolution
- π -decay has low BR, but high reco efficiency. Electron/muon fake contamination
- ρ -decay has high BR and high reco efficiency. High contamination of $\pi^{\pm}2\pi^{0}$

				_	$BR(\tau\tau)$ [%]	lep	π^+	$\pi^+\pi^0$	$\pi^+ \ge 2\pi^0$	$3\pi^+ \ge 0\pi^0$
					lep	12				
					π^{-}	8	1			
					$\pi^{-}\pi^{0}$	18	6	7		
					$\pi^- \ge 2\pi^0$	8	3	6	1	
					$3\pi^- \ge 0\pi^0$	11	4	8	4	3
						45%	, D		43%	
		EPJC(20	016)76:295							
Decay mode	$\mathcal{B}[\%]$	$\mathcal{A} \cdot \boldsymbol{\varepsilon}_{\text{reco}} [\%]$	ε _{ID} [%]		BR*Reco*II) [%]	$ \pi^+$	$\pi^+\pi^0$	$\pi^+ \ge 2\pi^0$	$3\pi^+ \ge 0\pi^0$
h^{\pm}	11.5	32	75			π^{-}	0.08			
$h^{\pm} \pi^0$	30.0	33	55		π	$^{-}\pi^{0}$	0.30	0.30		
$h^{\pm} \ge 2\pi^0$	10.6	43	40		$\pi^- \geq$	$2\pi^0$	0.10	0.20	0.03	
$3h^{\pm}$	9.5	38	70		$3\pi^- \ge$	$0\pi^0$	0.16	0.30	0.10	0.07
$3h^{\pm} \ge 1\pi^0$	5.1	38	46							

ATLAS: EPJC(2016)76:295; CMS: JINST11(2016)P01019, CMS-DP-2016-015

- Experimental needs: high reco*ID efficiency and high purity in decay mode classification, good pi0 momentum resolution
- π -decay has low BR, but high reco efficiency. Electron/muon fake contamination
- ρ -decay has high BR and high reco efficiency. High contamination of $\pi^{\pm}2\pi^{0}$

Tau Decay Reconstruction

Tau Particle Flow

SSS

ATLAS Simulation

ATLAS: EPJC(2016)76:295; CMS: JINST11(2016)P01019, CMS-DP-2016-015

Tau Trigger

CMS: CMS-DP-2016-037; ATLAS: ATLAS TauTriggerPublicResults

L1 bottleneck for hh:

- at L1, taus are pure calorimeter signatures.
 Very expensive as luminosity and pileup increases
- efficiency curve driven by L1 energy resolution
- To reduce rate, additional requirements like **extra jets** or $\Delta \mathbf{R}(\tau, \tau)$ (see new ATLAS L1Topo HW) are used to select the boosted phase space used by $H \rightarrow \tau \tau$ τ_{\uparrow}

⊿R

jet

D. Zanzi

$Z/\gamma^* \rightarrow \tau \tau$ Background

0.3

0.25

0.2

0.15

0.1

0.05

 $1/\sigma \cdot {
m d}\sigma/{
m d} arphi_{
m CP}^*$

 $|2\phi_{\tau}|$

 $m_h = 125 \text{ GeV}$

 2π

EPJC(2014)74:3164

 $\frac{3\pi}{2}$

 π

 φ^*_{CP} [rad]

- $\phi_{\rm CP}$ distribution expected to be **flat** as taus are mostly longitudinally polarised
 - is ϕ_{CP} distribution still flat in boosted Z+j events ($p_T^{\tau\tau}$ >100GeV)?
 - are tau spin correlations in mass tail with 110<m_{ττ}<140 GeV significantly different?
- Current methods to model the $Z \rightarrow \tau \tau$ background is via:
 - <u>MC</u>, tau decays are performed either inside ME calculation or outside. Sherpa includes the tau decay in the ME with the full helicity matrix, while MadGraph/Powheg use TAUOLA/TauSpinner which simulates longitudinal and transverse tau spin correlations as expected in DY events
 - <u>Embedded</u> $Z \rightarrow \mu \mu$ data events, where muons are replaced by taus whose decays is simulated by TAUOLA/TauSpinner
- In Run-I, both ATLAS and CMS used embedded events to reduce theory systematic uncertainties on Z+j,2j productions
- If there are no significant effects that require full Z+j simulation as in Sherpa, we can profit from high statistics and reduce systematics in embedded events

- Contamination from jets faking taus not negligible, especially in interesting m_{ττ} mass range
- Distributions expected flat, but can be sculpted by detector effects
- In hh in Run-I, both ATLAS and CMS used anti-isolated taus to model the multi-jet background
 - anti-isolation means different numbers of neutral and charged pions, that is different decay modes
- For CP measurement, need to have a model for jets faking hadronic taus with the same decay mode as signal
 - may need to use anti-ID'ed taus corrected by fake rates. This is challenging given the not well-defined multi-jet production processes (successfully used in Ih channel)
- In general, studies of multi-jet background based on MC are very hard

D. Zanzi

- Great potential for direct measurement of CP violation using $H \rightarrow \tau \tau$ events, both in Higgs production and decay:
 - 5 σ observation for H $\rightarrow \tau\tau$ decays from ATLAS+CMS combination in Run-I
 - [-0.11, 0.05] limits at 68% CL on CP-mixing parameter \tilde{d} in VBF production
- Test of CP violation in $H \rightarrow \tau \tau$ decays very promising, but experimentally challenging. No estimate yet with full detector simulation. I've tried to present some of the experimental issues
 - sensitive phase spaces at $p^{\tau\tau}{}_{\rm T}$ \gtrsim 100 GeV, especially in VBF topology
 - need to use as many decay modes as possible with observables robust against limited detector resolution and little sensitive to misclassified decays
 - focus on getting good pion angular and energy resolutions, low decay mode misclassification rate, and high decay reconstruction and identification efficiency
 - $Z \rightarrow \tau \tau$ and multi-jets backgrounds may need special treatment for CP analyses
- Work ongoing on all these points

Additional Material

ATLAS: arxiv:1602.04516 (submitted to EPJC)

- Alternative observable is signed $\Delta\phi$ between VBF jets, but the sensitivity is lower
- Possible extensions: idea to probe ggH coupling in ggH+2j events (arxiv:1406.3322)

 For 3-tracks decays, method proposed based on secondary vertex reconstruction (experimentally challenging) or extension of *p* method based on NN [arxiv:1608.02609]

Event Categorisation

 In ATLAS and CMS cut-based analysis, most sensitive categories have at least p^{^{TT}}_T > 100 GeV, both for VBF and ggF production ATLAS: JHEP04(2015)117; CMS: JHEP05(2014)104

 In 110<m_{ττ}<140 GeV, good s/b (~1 in VBF, ~0.1 in 1jet), but large part of the bkg are fakes. Large stat. uncertainty in VBF

Event Categorisation

- CP measurement done in similar phase spaces as H→ττ search to retain sensitivity to Higgs signal → Measurement to be performed in several event categories (or with MVA selection)
- In addition, if the observables have different distributions for different decay modes, each event category may need to be split per ττ decay mode and fitted independently
- This can easily lead to several signal regions with very signal little yields. Important to exploit as much BR(ττ) as possible
- For the IP- and ρ-methods, classifying events based on IP significance and y_± magnitude may improve sensitivity, but this doubles the amount of categories to fit
- The large number of categories would probably require very high statistics of simulated events
 - investigating use of MC event filters for both tau decays and event topologies
 - use of fast simulation may be beneficial even though not much used yet in analysis with hadronic taus

Tau Trigger

- For a precise measurement of CP violation in Hττ Yukawa, the full HL-LHC dataset will be needed and high trigger efficiency is required
- ATLAS and CMS are upgrading their TDAQ systems to cope with higher luminosity and pileup
- Trigger systems will be more and more reliant on tracking rather than calorimeter signatures
- Development of new hardware for tracking (see ATLAS FTK, L1Track, FTK++) and new tracking detector with improved FE (see CMS new tracker with self-seeding track trigger)
- More at <u>DAQ@LHC'16</u>

ATLAS PhaseII Scoping Document,	CERN-LHCC-2015-020
---------------------------------	--------------------

Item	Offline $p_{\rm T}$	Offline	LO	L1	EF
	Threshold		Rate	Rate	Rate
	[GeV]		[kHz]	[kHz]	[kHz]
isolated Single e	22	< 2.5	200	40	2.20
forward e	35	2.4 - 4.0	40	8	0.23
single γ	120	< 2.4	66	33	0.27
single μ	20	< 2.4	40	40	2.20
di- γ	25	< 2.4	8	4	0.18
di-e	15	< 2.5	90	10	0.08
di- μ	11	< 2.4	20	20	0.25
$e - \mu$	15	< 2.4	65	10	0.08
single τ	150	< 2.5	20	10	0.13
di- τ	40,30	< 2.5	200	30	0.08
single jet	180	< 3.2	60	30	0.60^{*}
fat jet	375	< 3.2	35	20	0.35^{*}
four-jet	75	< 3.2	50	25	0.50^{*}
$H_{\rm T}$	500	< 3.2	60	30	0.60^{*}
$E_{\rm T}^{\rm miss}$	200	< 4.9	50	25	0.50^{*}
$ $ jet + $E_{\rm T}^{\rm miss}$	$140,\!125$	< 4.9	60	30	0.30^{*}
forward jet ^{**}	180	3.2 - 4.9	30	15	0.30^{*}
Total			~ 1000	~ 400	~ 10

$Z/\gamma^* \rightarrow \tau \tau$ Background

- In DY events, effects from transverse spin correlations on \u03c6_{CP}-sensitive distributions look negligible (<u>EPJC(2014)74:3177</u>). Is this the case also for Z+j events?
- Important to compare
 - Sherpa and TAUOLA/TauSpinner in events with same initial state
 - predictions with data enhancing sensitivity to transverse spin correlations with kinematic cuts (EPJC(2014)74:3164)

Systematic Uncertainties

- $Z \rightarrow \tau \tau$ data, both in low- $p_T^{\tau \tau}$ regions and in the signal region sidebands (eg 80<m_{\tau \tau}<110 GeV), offers good chance to constrain:
 - theoretical systematic uncertainty on Z+j cross section
 - experimental systematic uncertainty on tau decay mode reconstruction and identification
 - neutral pion momentum and impact parameter resolution
- Systematics which may be more challenging to control:
 - modelling of transverse spin correlations in Z+j events
 - tau decay mode purity