Perspectives for a measurement of τ polarization in $Z \to \tau \tau$ with CMS

Vladimir Cherepanov for the CMS Collaboration

III.Phys.Institut B, RWTH Aachen

Tau2016, 21.09.2016

Introduction

- The parity violation in the weak neutral current introduces the polarization asymmetry of τ leptons produced in $Z \to \tau \tau$ decay. Knowledge of τ polarization provides:
 - Measurement of the ratio of vector to axial-vector neutral couplings for τ leptons
 - Measurement of effective weak mixing angle $\sin^2 \theta_{eff}$
 - Techniques to analyze the spin of τ leptons can be used to measure CP properties of Higgs boson in the decay $H \to \tau\tau$
 - First step towards precision measurements at LHC with τ leptons
- A first look at τ polarization at LHC in the decay $Z \to \tau \tau$ is performed using $\tau \to \rho \nu$ and $\tau \to a_1 \nu$ decays

Asymmetry in the process $q\bar{q} \to Z \to \tau\tau$

- τ^- are preferably with helicity -1
- Polarization asymmetry: $A_{pol} = \frac{1}{\sigma} [\sigma(h_{\tau} = +1) \sigma(h_{\tau} = -1)]$
- At the Z-pole $A_{pol} \approx 2 \frac{g_V^\tau}{g_A^{\tau}} \approx 2 8 \sin^2 \theta_W$

au helicity state has to be accessed

CMS detector and default τ reconstruction

•0

Tau Reconstruction and identification (2016 JINST 11 p01019)

The main challenge in tau reconstruction is to discriminate between τ_{had} and QCD jets.

The experimental signatures of hadronically-decaying taus:

- collimated jet
- low multiplicity (up to three charged hadrons and up to two π⁰'s)
- decay products are isolated (require low detector activity around tau-jet direction)

A good performance in terms of efficiency&fake-rate is achieved by analyzing jet constituents and building individual decay modes: $\pi^{\pm}\nu_{\tau}, \pi^{\pm}\pi^{0}\nu_{\tau}, (\pi\pi\pi)^{\pm}\nu_{\tau}$

For more details see talk by Olivier Davignon on Tau-ID at CMS.

au polarization observables in the decay

$$\tau \to \rho \nu \to \pi^{\pm} \pi^0 \nu$$

The charge-neutral energy asymmetry in the decay $\tau \to \rho \nu \to \pi^{\pm} \pi^{0} \nu$

- In the tau decay, $\tau \to \rho \nu \to \pi^{\pm} \pi^{0} \nu$, the energy asymmetry between π^{\pm} and π^{0} is a spin-sensitive variable
- $\cos \psi^* \sim [E(\pi^{\pm}) E(\pi^0)]/[E(\pi^{\pm}) + E(\pi^0)]$
- The charge-neutral energy asymmetry is used to measure τ polarization in the decay $Z \to \tau_{\mu} \tau_{\rho}$

Energy asymmetry distribution

The charge-neutral energy asymmetry in Monte Carlo simulation

• Generator level

• After reconstruction

Different τ_{ρ} helicity states are well separated!

Polarization fit using $Z \to \tau_{\mu} \tau_{\rho}$ decay

The control sample selection:

- $\mu \tau_h$ trigger
- Isolation of τ candidates
- τ_h decay mode
- Missing transverse mass, $M_T(\mu, E_T^{miss})$

ML fitting with right- and lefthanded templates to observed distribution in data.

Extracted value (dependent on the acceptance efficiency):

$$\langle P_{\tau} \rangle = (-33.6 \pm 3.7(stat.\ only))\%$$

τ polarization observables in the decay

$$\tau \to a_1 \nu \to 3\pi \nu$$

Spin observables for the decay $\tau^{\pm} \to a_1^{\pm} \nu \to 3\pi^{\pm} \nu$

Spin configurations for the decay $\tau^- \to a_1^- \nu_{\tau}$ in the τ^- rest frame:

The combined distribution: $\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta^*} \propto 1 + \alpha_{a_1} P_{\tau} \cos\theta^*$;

Spin analyzers for $a_1 \to 3\pi$ decay in a_1 rest frame:

- \bullet γ describes the relative pions orientation within its plane
- β is the angle between laboratory and the 3π plane

Optimal observable (M. Davier et al., Phys. Lett. B 306 (1993) 411-417)

The measured decay distribution depends linearly on the weighting of two helicity states, P_{τ}

For any tau decay:
$$\frac{1}{\Gamma_i} \frac{d^n \Gamma_i}{d^n \vec{\xi_i}} = f_i(\vec{\xi_i}) + P_\tau g_i(\vec{\xi_i})$$

$$\vec{\xi_i} = (\cos \theta^*, \gamma, \beta...)$$

One dimensional variable:

$$\omega = \frac{|M_{+}(\vec{\xi})|^{2} - |M_{-}(\vec{\xi})|^{2}}{|M_{+}(\vec{\xi})|^{2} + |M_{-}(\vec{\xi})|^{2}} = \frac{g(\vec{\xi})}{f(\vec{\xi})}$$

All polarization sensitive variables $\vec{\xi}$ can be converted into one-dimensional ω without loss of sensitivity

reconstruction of ξ and hence ω requires the rest frame of tau!

Reconstruction of $Z \to \tau\tau \to \mu\nu\nu, 3\pi\nu$

The measurement relies on the ability of CMS detector to measure flight direction of τ_{a1}

The distance between primary vertex and point of τ decay in units of uncertainties.

Reconstruction of $Z \to \tau \tau \to \mu \nu \nu, 3\pi \nu$ (Event Fit)

- Reconstruction of τ_{a_1} direction
- Calculation of τ_{a_1} momentum
- Assume τ leptons from Z decay and apply constraints:
 - Invariant mass of two taus is equal to M_Z (PDG)
 - Transverse momentum balance of τ pair
 - Constraints on τ leptons direction using muon helix and measured vertices

+1 overconstrained fit allows to fully reconstruct system with kinematic of both τ leptons

The procedure is applicable to any decay $\tau\tau \to X, 3\pi\nu$

Reconstruction of spin sensitive angles

The knowledge of τ lepton kinematics allows to reconstruct the spin sensistive angles

• Resolution of angle θ^*

• Resolution of angle γ

Reconstruction of spin sensitive angles

• Resolution of angle β

• resolution of the combined observable ω_{a_1}

000000000

• Generator level

• After reconstruction

Sizeable separation of helicity states is achieved in $\tau \to a_1 \nu$ decay.

Selection of $Z \rightarrow \tau_{\mu} \tau_{3\pi}$ using 19.7 fb⁻¹ collected at 8 TeV

- $\mu \tau_h$ trigger
- Isolation of τ candidates
- \bullet τ_h decay mode
- Flight length of τ_{a_1}
- Missing transverse mass, $M_T(\mu, E_T^{miss})$

 Main background contribution from QCD multijet and W+Jets events are estimated from data

Mass of visible decay products

Polarization fit using $Z \to \tau_{\mu} \tau_{a_1}$ decay

The τ polarization is measured using $Z \to \tau\tau$ events selected from 19.7 fb^{-1} collected by CMS detector at 8 TeV.

Strategy similar to $\tau \to \rho \nu$:

Fitting the observed distribution of ω_{a_1} by left- and right- handed templates with their relative fraction as a free parameter.

Extracted value (dependent on the acceptance efficiency):

$$\langle P_{\tau} \rangle = (-35.5 \pm 6.4(stat.\ only))\%$$

- First measurements of τ polarization at LHC have started.
- Analysis of $\tau \to \rho \nu$ and $\tau \to a_1 \nu$ indicates the feasibility of this measurement.
- The obtained results in both channels are consistent with expected values.
- Systematic uncertainties and bias correction require a bit more efforts.
- The precision will grow including more data and other τ decay channels.

Backup

Hadron Plus Strips Algorithm (HPS)

- Cluster photons within the jet into strips accounting for possible broadening due to photon conversions
- **②** Combine charged particles in the jet with strips and reconstruct individual τ_h decay mode: $\pi^{\pm}\nu_{\tau}, \pi^{\pm}\pi^{0}\nu_{\tau}, (\pi\pi\pi)^{\pm}\nu_{\tau}$
- Highest pT decay "hypothesis" with compatible visible mass is given preference

