NEUTRINO OSCILLATIONS AND WHAT THEY HAVE TO OFFER IN THE NEAR FUTURE CP violation and Mass Hierarchy reach, sooner and later Jenny Thomas, Tau2016, Beijing # PLAN FOR THE DISCOVERY OF THE MASS HIERARCHY AND CP VIOLATION IN THE NEUTRINO SECTOR - The Present Knowledge - Post Neutrino 2016 - The Near Future - T2K, NOvA - The Further Future - JUNO - The Far Future - PINGU, DUNE Shamelessly showing slides from neutrino 2016: P.Vahle(NOvA), A.Marrone(global fits), G.Ranucci(JUNO), J.Koskinen(PINGU) and ICHEP 2016:K.lwamoto(T2K) also D.Cowen(PINGU), V.Paolone(DUNE), A.Cabrera (Double Chooz) ## REMINDER OF THE QUESTIONS $$\begin{pmatrix} \mathbf{v}_e \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \end{pmatrix}$$ #### Normal hierarchy - Three light neutrinos - Mixing probability modified by mass squared differences - \bullet δ_{CP} and the mass ordering are still unknown but within reach - s₂₃ now limiting next steps ### REMINDER OF THE ANSWERS SO FAR.... ## Precision era in neutrino oscillation phenomenology ### Standard 3v mass-mixing framework parameters #### Known #### (pre-v2016) δm^2 2.4% Δm^2 1.8% $\sin^2 \theta_{12}$ 5.8% $\sin^2 \theta_{13} = 4.7\%$ $\sin^2\theta_{23} \sim 9\%$ #### Unknown CP-violating phase δ Octant of θ_{23} Mass Ordering $\rightarrow \operatorname{sign}(\Delta m^2)$ [Dirac/Majorana neutrinos, Majorana phases, absolute mass scale] #### In this talk $$\Delta m^2 = (\Delta m_{13}^2 + \Delta m_{23}^2)/2$$ Mass Ordering = sign of Δm^2 ### REMINDER OF THE APPROACH $$\begin{pmatrix} \mathbf{v}_e \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \end{pmatrix}$$ ${\color{blue} \circ}$ Looking at disappearance of ${\color{blue} \nu_{\mu}}$ (or ${\color{blue} \nu_{\rm e}}$ disappearance) $$1 - P(\nu_{\mu} \to \nu_{\mu}) = (C_{13}^4 \sin^2 2\theta_{23} + S_{23}^2 \sin^2 2\theta_{13}) \sin^2 \Phi_{32}$$ - \circ First term depends on $\sin^2 2\theta_{23}$ - \circ Second term depends on θ_{13} but also $\sin^2\theta_{23}$ - This means there is information in here about the octant of θ_{23} but its weak ### REMINDER OF THE APPROACH $$\begin{pmatrix} \mathbf{v}_e \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \end{pmatrix}$$ • Searching for electron neutrino appearance tells us about $\sin^2\!\theta_{13}$, mass hierarchy and δ_{CP} $$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) = & 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\Phi_{31}(1+\frac{2a}{\Delta m_{31}^{2}}(1-2S_{13}^{2})) \\ +8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta_{CP}-S_{12}S_{13}S_{23})\cos\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \\ -8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta_{CP}\sin\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \\ +4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2}+S_{12}^{2}S_{23}^{2}S_{13}^{2}-2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta_{CP})\sin^{2}\Phi_{21} \\ -8C_{13}^{2}S_{13}^{2}S_{23}^{2}(1-2S_{13}^{2})\frac{aL}{4E_{\nu}}\cos\Phi_{32}\sin\Phi_{31}, \end{split}$$ Running with anti-neutrinos changes sign of CPV term ### REMINDER OF THE APPROACH $$\begin{pmatrix} \mathbf{v}_e \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \end{pmatrix}$$ • Leading term now relies on $\sin^2\theta_{23}$, and **a**, related to density of electrons in the earth, leads to dependence on sign of Δm^2_{31} $$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) = & 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\Phi_{31}(1+\frac{2a}{\Delta m_{31}^{2}}(1-2S_{13}^{2})) \\ +8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta_{CP} - S_{12}S_{13}S_{23})\cos\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \\ -8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta_{CP}\sin\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \\ +4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta_{CP})\sin^{2}\Phi_{21} \\ -8C_{13}^{2}S_{13}^{2}S_{23}^{2}(1-2S_{13}^{2})\frac{aL}{4E_{\nu}}\cos\Phi_{32}\sin\Phi_{31}, \end{split}$$ Combining appearance and disappearance measurements tells us about the octant New kid on the block, first appearance at a Neutrino conference with data! ## <u>ν_μ disappearance</u> - □ 78 events observed in FD - □ 473±30 with no oscillation - 82 at best oscillation fit - □ 3.7 beam BG + 2.9 cosmic $\chi^2/\text{NDF}=41.6/17$ Driven by fluctuations in tail, no pull in oscillation fit • Only looking at disappearance of v_{μ} , its not maximal at 2.5 σ ! octant is degenerate...more about that later Best Fit (in NH): $$\begin{aligned} \left| \Delta m_{32}^2 \right| &= 2.67 \pm 0.12 \times 10^{-3} \text{eV}^2 \\ \sin^2 \theta_{23} &= 0.40^{+0.03}_{-0.02} (0.63^{+0.02}_{-0.03}) \end{aligned}$$ Maximal mixing excluded at 2.5 σ - \Box Fit for hierarchy, δ_{CP} , $\sin^2\!\theta_{23}$ - □ Constrain ∆m² and sin²θ₂₃ with NOvA disappearance results - Not a full joint fit, systematics and other oscillation parameters not correlated - Global best fit Normal Hierarchy $$\delta_{CP} = 1.49\pi$$ $\sin^2(\theta_{23}) = 0.40$ - best fit IH-NH, $\Delta \chi^2$ =0.47 - both octants and hierarchies allowed at 1σ - 3σ exclusion in IH, lower octant around $\delta_{\rm CP}$ = $\pi/2$ Antineutrino data will help resolve degeneracies, particularly for non-maximal mixing Planned for Spring 2017 ## AT NEUTRINO 2016, LONDON MINOS/MINOS+ Combination of disappearance and appearance, slightly disfavours higher octant ## WHICH OCTANT? THE NEW PARAMETER OF INTEREST! - Up until now, all data consistent with maximal mixing - Octant doesn't matter! - NOvA (and MINOS/MINOS+) show non-maximal mixing evidence - MINOS/MINOS+ has a very slight preference for lower octant - So what does T2K say? ## AT NEUTRINO 2016, LONDON T2K ### Mixing is maximal at T2K $$\sin^2 heta_{23} = 0.514^{+0.055}_{-0.056} \ |\Delta m^2_{32}| = (2.51 \pm 0.11) imes 10^{-3} \mathrm{eV}^2/c^4$$ ### AT ICHEP 2016, CHICAGO • T2K with anti-neutrinos, the tension mounts! - Consistent with maximal mixing | | NH | IH | |--|---------------------------|---------------------------| | $\sin^2\! heta_{23}$ | $0.532^{+0.046}_{-0.068}$ | $0.534^{+0.043}_{-0.066}$ | | $ \Delta m_{32}^2 [10^{-3} \text{eV}^2]$ | $2.545^{+0.081}_{-0.084}$ | $2.510^{+0.081}_{-0.083}$ | ## AT NEUTRINO 2016, LONDON REACTOR VALUES • Double Chooz : $\sin^2 2\theta_{13} = 0.111 \pm 0.018$ • Daya Bay : $\sin^2 2\theta_{13} = 0.0841 \pm 0.0027 \pm 0.0019$ • Reno: $\sin^2 2\theta_{13} = 0.082 \pm 0.009 \pm 0.006$ θ_{13} is the key to the Jaguar!! ## Maximal or non-maximal: a very big question : back to T2K #### Measurement (Data) $$P(\nu_{\mu} \to \nu_{e}) = 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\Phi_{31}(1 + \frac{2a}{\Delta m_{31}^{2}}(1 - 2S_{13}^{2})) + 8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta_{CP} - S_{12}S_{13}S_{23})\cos\Phi_{32}\sin\Phi_{31}\sin\Phi_{21}$$ $$-8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta_{CP}\sin\Phi_{32}\sin\Phi_{31}\sin\Phi_{21}$$ $$-8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta_{CP}\sin\Phi_{32}\sin\Phi_{31}\sin\Phi_{21}$$ $$\delta_{cp} = [-3.13, -0.39](NH), [-2.09, -0.74]$$ (IH) at 90% CL ## Maximal or non-maximal: a very big question : back to T2K #### Measurement (Data) - T2K uncertainty on s²₂₃ is very small because its maximal - \bullet This leads to significant reduction in $\delta_{\mbox{\tiny CD}}$ parameter space space $$\delta_{cp} = [-3.13, -0.39](NH), [-2.09, -0.74]$$ (IH) at 90% CL ## PRELIMINARY JOINT FIT IN REAL TIME! (A.MARRONNE ET AL.) \circ Do we already know that $\delta_{\sf cp}$ is not zero? ### Prognosis for mass hierarchy and cpv - Ultimate precisions depend on run strategy - JPARC upgrade in 2018 is significant (run until 2025) - \circ NH, $\delta_{\rm cp}>1$ is so far preferred - MH could be determined to 3σ by 2022 by NO \mathbf{v} A even if θ_{23} not maximal - Sensitivities already somewhat overtaken by events ### **CHIPS** - 5-10kt WC detector will be deployed in NuMI beam (in N.Minnesota mine pit) in summer 2018 - Funded by ERC grant to UCL and Nikhef, and U.Wisconsin, Madison - 7mrad off axis, will contribute to combined knowledge before 2022 - Innovative design allows detector to grow as more instrumentation becomes available - Could point the way to affordable Mton in the future ## THE FURTHER FUTURE, JUNO, 2022 ## JUNO physics summary Neutrino Physics with JUNO, J. Phys. G 43, 030401 (2016) Gioacchino Ranucci - INFN Sez. di Milano - 20 kton LS detector - ~3 % energy resolution-the greatest challenge - Rich physics possibilities - Mass hierarchy - Precision measurement of 3 mixing parameters - Supernovae neutrino - Geoneutrino - Sterile neutrino - Atmospheric neutrinos - **Nucleon Decay** - **Exotic searches** ## THE FURTHER FUTURE, JUNO, 2022 ## Summary of MH Sensitivity | PRD 88, 013008 (2013) | Relative Meas. | $\Delta m_{\mu\mu}^2$ from LBL Expts | |-----------------------|----------------|--------------------------------------| | Statistics only | 4σ | 5σ | | Realistic case | 3σ | 4σ | Baseline: 53 km Fiducial Volume: 20 kt Thermal Power: 36 GW Exposure Time: 6 years Proton content 12% en. res. 3% Neutrino 2016 - July 6, 2016 Gioacchino Ranucci - INFN Sez. di Milano ### **PINGU** - Independent measurement 5 years from start date, 2017-2022? - \circ 3 σ in 4 years, or 3 years with external prior Fully deployed PINGU data only. Addition of partial deployment PINGU data and multiyear DeepCore data will improve sensitivity - Combination of signal in track and cascade channel - Sensitivity from pseudo-data set based log-likelihood ratio (LLR) and Asimov analysis methods are in good agreement ## DUNE Physics: CP Violation Sensitivity Sensitivity to CP Violation, after 300 kt-MW-yrs (3.5+3.5 yrs x 40kt @ 1.07 MW) (Bands represent range of beam configurations) #### **CP Violation Sensitivity** ## **DUNE Sensitivity CDR Reference Design Normal Hierarchy** - 300 kt-MW-vears ····· Optimized Design $\sin^2 2\theta_{13} = 0.085$ $\sin^2\theta_{23} = 0.45$ **3**σ -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 #### **CP Violation Sensitivity** Official timeline: 2032 for this sensitivity ## **DUNE Physics: MH Sensitivity** Discrimination (between NH and IH) parameter as a function of the unknown $\delta_{\rm CP}$ for an exposure of 300 kt·MW·year (40 kt·1.07 MW·7 years). \rightarrow The minimum significance (the lowest point on the curve on the left) where the mass hierarchy can be determined any value of $\delta_{\rm CP}$ as a function of years of running Official timeline: 2032 for this sensitivity # JUST WHEN WE THOUGHT EVERYTHING WAS SETTLED..... Yesterday, a new result from Double Chooz..... ## DC-IV PRELIMINARY results @CERN (Sept.2016) $\sin^2(2\theta_{13})^{R+S}=(0.119\pm0.016)$ (marginalised over $\Delta m^2 = (2.44 \pm 0.09) \text{ eV}^2$) reactor- θ_{13} key for CP-violation & mass hierarchy \rightarrow redundancy fundamental (DC pushing to resolve: improvements coming soon) ### SUMMARY AND CONCLUSION - The neutrino oscillation parameter list is being ticked off very fast! - Each new neutrino conference leads to progress - \circ Up until today, it looked like things would be wrapped up very soon wrt $\delta_{ ext{cp}}$ - Larger θ_{13} means significance of exclusion of δ_{cp} is less - Larger θ_{13} means reach of NO \mathbf{v} A improved - Swings and roundabouts - Personal feeling is that by 2022 we should know the MH, and we should know that $\delta_{\text{CP}} \neq 0$ at 3σ - \circ The following years should confirm this at 5σ ## AT NEUTRINO 2016, LONDON REACTOR VALUES - Double Chooz : $\sin^2 2\theta_{13} = 0.111 \pm 0.018$ - Daya Bay : $\sin^2 2\theta_{13} = 0.0841 \pm 0.0027 \pm 0.0019$ - Reno: $\sin^2 2\theta_{13} = 0.082 \pm 0.009 \pm 0.006$ $\sin^2 2\theta_{13} = [8.41 \pm 0.27(\text{stat.}) \pm 0.19(\text{syst.})] \times 10^{-2}$ $|\Delta m^2_{ee}| = [2.50 \pm 0.06(\text{stat.}) \pm 0.06(\text{syst.})] \times 10^{-3} \text{eV}^2$ $\chi^2/\text{NDF} = 232.6/263$ θ_{13} is the key to the Jaguar!! ### **PROGNOSIS** - Ultimate precisions depend on run strategy - JPARC upgrade in 2018 is significant - Ultimate precisions depend on run strategy - JPARC upgrade in 2018 is significant - MH will likely be determined to >> 3σ by 2022 by combination ## PRELIMINARY JOINT FIT IN REAL TIME! (A.MARRONNE ET AL.) - Value of s²₂₃ still weakly constrained - But joint fit doesn't resolve the real issue! ## Now to the future, 2027+7 years