The Mu3e Experiment @ PSI

searching for the neutrinoless muon decay $\mu^+ \rightarrow e^+e^-e^+$

Alessandro Bravar for the Mu3e Collaboration

Tau 2016 Beijing, Sept. 23, 2016

LFV in "Standard Model"

Flavor Conservation in the charged lepton sector:

processes like
$$\begin{array}{ccc} \mu \ A \to e \ A \\ \mu \to e \ + \gamma \\ \mu \to e \ e \ e \end{array} \text{ have not been observed yet (down to 10^{-13} !)}.$$

In SM ($m_v = 0$) Lepton Flavor is conserved absolutely (not by principle but by structure!)

neutrino oscillations \rightarrow m_v \neq 0 & Lepton Flavor is not anymore conserved (v oscillations) \rightarrow charged LFV possible via loop diagrams, but heavily suppressed

→ measurement not affected by SM processes

New Physics in $\mu \rightarrow eee$

Supersymmetry
Little Higgs Models
Seesaw Models
GUT models (Leptoquarks)
many other models ...

Tree Diagrams

Higgs Triplet Models New Heavy Vector Bosons (Z') Extra dimensions (K-K towers) many other models ...

several cLFV models predict sizeable effects, accessible to the next generation of experiments!

if cLFV seen, unambiguous signal for new physics (going beyond Dirac $m_v > 0$)

explore physics up to the PeV scale complementary to direct searches at LHC

LFV Searches: Current Situation

The best limits on LFV come from PSI muon experiments

$$\mu^+ \rightarrow e^+e^-e^+$$
 BR < 1 × 10⁻¹² SINDRUM 1988

$$\mu^-$$
 + Au \rightarrow e⁻ + Au BR < 7 × 10⁻¹³ SINDRUM II 2006

$$\mu^{+} \rightarrow e^{+} + \gamma$$
 BR < 4.2 × 10⁻¹³ MEG 2016

Mu3e $\mu^+ \rightarrow e^+e^-e^+$ Phase I : BR < 10⁻¹⁵ Phase II: BR < 10⁻¹⁶

SINDRUM I

LFV μ Decays: Experimental Signatures

kinematics: 2-body decay monochromatic e+, γ

back to back

quasi 2-body decay monoenergetic e-

3-body decay coplanar, $\Sigma \mathbf{p}_i = 0$ $\Sigma E_i = m_u$

backgrounds: accidentals

decay in orbit antiprotons, pions

radiative decay accidentals

beam: continuous beam

pulsed beam

continuous beam

none of these decays, however, have been yet observed experimentally

Model Comparison ($\mu \rightarrow e\gamma$ and $\mu \rightarrow e\bar{e}$

Effective charge LFV Lagrangian ("toy" model) (Kuno and Okada)

$$L_{LFV} = \frac{m_{\mu}}{\Lambda^{2} \left(1 + \kappa\right)} H^{dipole} + \frac{\kappa}{\Lambda^{2} \left(1 + \kappa\right)} J_{\sigma}^{e\mu} J^{\sigma,ee} \qquad \begin{array}{c} \Lambda = \text{common effective scale} \\ \kappa = \text{"contact" vs "loop"} \end{array}$$

 $\kappa \to \infty$

$$\frac{BR(\mu^{+} \to e^{+}e^{-}e^{+})}{BR(\mu^{+} \to e^{+}\gamma)} = \infty$$

Z - penguin

appeared in the literature in 1995 (Hisano et al.) and "rediscovered" recently dominates if $\Lambda >> {\rm M_Z}$ $BR \propto \frac{m_\mu^4}{m_\tau^4} f\left(\Lambda^4\right)$ (no decoupling in some models)

SINDRUM @ PSI (~ 80s)

beam (π E3 beamline @ PSI):

 $5 \times 10^6 \,\mu$ / sec

28 MeV/c surface muons

resolution:

 $\sigma(p_T) = 0.7 \text{ MeV}/c^2$ vertex ~ 1 mm statistics limited!

$$\frac{\Gamma(\mu^{+} \to e^{+}e^{-}e^{+})}{\Gamma(\mu^{+} \to e^{+}\overline{\nu}_{\mu}\nu_{e})} < 10^{-12} \quad (90\% \text{ CL})$$

MEG @ PSI : $\mu \rightarrow e + \gamma$ (today)

Currently undergoing a significant upgrade of the apparatus to improve sensitivity on $\mu \rightarrow e + \gamma$ to $< 5 \times 10^{-14}$ (2016+)

1m

MEG @ PSI : $\mu \rightarrow e + \gamma$ (today)

MEG EPJC76(2016)434

 $B.R.(\mu \to e + \gamma) \le 4.2 \times 10^{-13}$ @ 90% C.L.

Mu3e @ PSI: the Challenge


```
search for \mu^+ \to e^+ e^- e^+ with sensitivity BR ~ 10<sup>-16</sup> (PeV scale) \tau_{(\mu \to eee)} > 700 years (\tau_{\mu} = 2.2~\mu s)
```

using the most intense DC (surface) muon beam in the world (p \sim 28 MeV/c)

suppress backgrounds below 10⁻¹⁶

```
find or exclude \mu^+ \rightarrow e^+ e^- e^+ at the 10^{-16} level 4 orders of magnitude over previous experiments (SINDRUM @ PSI)
```

```
Aim for sensitivity 10^{-15} \text{ in Phase I} \\ 10^{-16} \text{ in Phase II} \\ \text{(i.e. find one } \mu^+ \rightarrow e^+e^-e^+ \text{ decay in } 10^{16} \text{ muon decays)}
```

```
\rightarrow observe ~10<sup>17</sup> μ decays (over a reasonable time scale) rate ~ 2 × 10<sup>9</sup> μ decays / s \rightarrow build a detector capable of measuring 2 × 10<sup>9</sup> μ decays / s minimum material, maximum precision
```

project (Phase I) approved in January 2013

Mu3e Baseline Design

acceptance ~ 70% for $\mu^+ \rightarrow e^+ e^- e^+$ decay (3 tracks!)

thin (< 0.1% X₀), fast, high resolution detectors (minimum material, maximum precision)

275 M HV-MAPS (Si pixels w/ embedded amplifiers) channels20 k ToF channels (SciFi and Tiles)

Staged Approach

Phase IA

rate $\leq 10^7 \,\mu$ / s

only central pixel

Phase IB

rate $\sim 10^8 \,\mu\,/\,s$

- + inner recurl sta.
- + time of flight

Phase II

rate $\sim 10^9 \,\mu\,/\,s$

+ outer recurl sta.

Muons @ PSI

most intense DC muon beam

590 MeV/c proton cyclotron

 π E5 beamline > 10⁸ μ / s

- surface muons ~ 28 MeV/c
- high intensity monochromatic beam (ΔP/P < 8% FWHM)
- polarization ~ 90%(MEG exp., Mu3e phase I)

SINQ (spallation neutron source) could even provide $5 \times 10^{10} \, \mu \, / \, s$ High-intensity Muon Beamline (HiMB)

e / μ 12 cm separation at last collimator

Mu3e – Phase I

muon rates of $1.4 \times 10^8 \ \mu$ / s achieved in the past

Signal and Backgrounds

signal

e⁺

backgrounds

internal conversion

Features

common vertex

$$\Sigma {m p}_i = 0, \quad \Sigma E_i = m_\mu$$
 in time

common vertex

$$\Sigma \mathbf{p}_i \neq 0$$
, $\Sigma E_i < m_{\mu}$ in time

no common vertex

$$\Sigma \mathbf{p}_i \neq 0$$
, $\Sigma E_i \neq m_{\mu}$ out of time

Rejecting the background requires

$$\sigma_{\text{vtx}}$$
 < 300 μ m σ_{p} < 0.5 MeV/ c σ_{t} < 0.5 ns

Irreducible Background

μ radiative decay with internal conversion

BR (
$$\mu^+ \rightarrow e^+ \, e^- \, e^+ \nu_e \nu_\mu$$
) = 3.5 x 10⁻⁵

 $\Sigma \mathbf{p}_i \neq 0$, $\Sigma \mathbf{E}_i \neq \mathbf{m}_{ii}$

high momentum and energy resolution required to suppress this background $\sigma_{\rm n} < 0.5~{\rm MeV}/c$ and $\Delta m_{\rm u} < 0.5~{\rm MeV}/c^2$

Acceptances

acceptance as a function of minimum e+/e- energy

µ → eee Signal Simulations

Timing

additional ToF information < 500 ps

to suppress accidental backgrounds requires excellent timing

- < 500 ps SciFis
- < 100 ps scint. tiles

Background Suppression

Events per stopped μ⁺

background rejected with tracking and timing (tracking alone not sufficient to reject accidental background)

Sensitivity Projection

Silicon Pixel Detector HV-MAPS

High Voltage Monolithic Active Pixel Sensors: HV-MAPS

readout logic and amplifiers embedded in the pixel n-well

thin active region (10 μ m) \rightarrow fast charge collection via drift

< 50 μm thickness

operated at 85 V

HV-MAPS R & D

Latest prototype: MUPIX 7

Characteristics

thickness 50 μm

pixel size $103 \times 80 \mu m^2$

chip size $3.2 \times 3.2 \text{ mm}^2$

 32×40 pixel matrix

LVDS link 1.25 Gbit / s (~30 M hits / s)

Performance

efficiency > 98 %

time resolution < 14 ns

First large scale $10 \times 21 \text{ mm}^2$ just submitted

MEG II at a Glance

MEG II aims at $B.R.(\mu \rightarrow e + \gamma) \le 6 \times 10^{-14}$ @ 90% C.L. by the end of the decade

Summary

Mu3e will search for the neutrinoless muon decay $\mu \to e^+e^-e^+$ with a sensitivity at the level of 10^{-16} i.e. at the PeV scale \to suppress backgrounds below 10^{-16} (16 orders of magnitude!)

Novel technologies:

HV-MAPS (Si pixels, 50 µm thickness) Si-PMs (SciFi fibers and tails) they meet the requirements

Staged approach

Stage I (2018 – 2020)

 $\sim 10^8 \, \mu \, decays / s$

approved in January 2013

Stage II (> 2020)

 $\sim 2 \times 10^9 \,\mu$ decays / s

HiMB feasibility study already started

BR($\mu \rightarrow eee$) < 10^{-15}

 $BR(\mu \rightarrow eee) < 10^{-16}$

Construction in 2017 (incl. magnet)
Commissioning earliest 2018

Mu3e Collaboration

University of Geneva

Heidelberg University

Karlsruhe Institute of Technology

Mainz University

Paul Scherrer Institut (PSI)

Physics Institute, University of Zurich

