Recent Results on R Measurement from the KEDR Detector

Simon Eidelman

Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk, Russia

Outline

- 1. General
- 2. R measurement from 3.12 to 3.72 GeV
- 3. R measurement from 1.84 to 3.05 GeV
- 4. Conclusions

General

High precision determination of $R = \sigma(e^+e^- \to \text{hadrons})/\sigma(e^+e^- \to \mu^+\mu^-)$ at low energies is important to determine various fundamental quantities:

- $(g_{\mu} 2)/2$ $\alpha(M_Z^2)$
- \bullet α_s
- Quark and gluon condensates from QCD sum rules
- Hadronic corrections to muonium properties

VEPP-4M collider

Circumference 366 m

Beam energy $1 \div 5 \text{ GeV}$

Number of bunches 2×2

Luminosity, $E = 1.5 \text{ GeV } 2 \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}$

Luminosity, $E = 5.0 \text{ GeV } 2 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}$

• Resonant depolarization technique:

Instantaneous measurement accuracy $\simeq 1 \times 10^{-6}$ Energy interpolation accuracy $(5 \div 15) \times 10^{-6}$ $(10 \div 30 \text{ keV})$

• Infrared light Compton backscattering:

Statistical accuracy $\simeq 5 \times 10^{-5} / 30$ minutes

Systematic uncertainty $\simeq 3 \times 10^{-5} \ (50 \div 70 \ \text{keV})$

KEDR detector

- 1. Vacuum chamber
- 2. Vertex detector
- 3. Drift chamber
- 4. Threshold aerogel counters
- 5. ToF counters
- 6. Liquid krypton calorimeter
- 7. Superconducting coil
- 8. Magnet yoke
- 9. Muon tubes
- 10. CsI calorimeter
- 11. Compensating s/c solenoid

R Measurement between J/ψ and $\psi(2S)$ at KEDR – I

KEDR scanned \sqrt{s} between J/ψ and $\psi(2S)$ with 1.4 pb⁻¹ selecting $(2-3)\cdot 10^3$ m/h events per point, $\sim 18\cdot 10^3$ in total V.V. Anashin et al., Phys. Lett. B753, 533 (2016)

R Measurement between J/ψ and $\psi(2S)$ at KEDR – II

R measured at 7 points between 3.12 and 3.72 GeV, syst. error 2.1%, total 3.3% V.V. Anashin et al., Phys. Lett. B753, 533 (2016)

R Measurement between 1.84 and 3.05 GeV at KEDR – I

- The c.m. energy range between 1.84 and 3.05 GeV studied
- An integrated luminosity of $0.66~\mathrm{pb^{-1}}$ collected at 13 equidistant points with a step of $\sim 0.1~\mathrm{GeV}$: 1.841, 1.937, ..., 3.048 GeV
- $\sim 10^3$ events per point $\Rightarrow \sim 15 \cdot 10^3$ events in total
- Simulation of the *uds* continuum based on the tuned LUARLW generator, H.M. Hu and A. Tai, hep-ex/0106017
- JETSET 7.4 alternatively used at 5 points for a cross-check
- MHG2000 used below 1.8 GeV, needed for radiative corrections, H. Czyż et al., arXiv:1312.0454, 1406.4639.

More on Monte Carlo Generators

For background estimation in VEPP-2000 experiments a data-driven Monte Carlo generator MHG2000 has been developed.

- MHG2000 uses a database of cross sections of $e^+e^- \to \text{hadrons}$
- Currently about 35 final states are included, sometimes isospin relations are used for missing channels
- Each cross section is approximated by a curve, which is motivated by physics, e.g., a sum of relevant resonances with interference accounted for
- At each $\sqrt{s} \ \sigma_{\text{tot}} = \sum \sigma_i$ is calculated and the specific process is randomly chosen
- This very process is used to generate a random event (4-momenta), when available, underlying dynamics effects are taken into account
- Radiative effects (ISR) are also taken into account

Comparison of the KEDR generator with MHG2000 is underway at $1.8 < \sqrt{s} < 2.0 \text{ GeV}$

R Measurement between 1.84 and 3.05 GeV at KEDR – II

$$\sigma_{\rm obs}(s) = \frac{N_{\rm mh} - N_{\rm res.bg}}{\int \mathcal{L}dt}$$

$$R = \frac{\sigma_{\text{obs}}(s) - \Sigma \varepsilon_{\text{bg}}(s) \sigma_{\text{bg}}(s)}{\varepsilon(s)(1 + \delta(s))\sigma_{\mu\mu}^{0}(s)}$$

- The machine background is estimated from runs with separated e^+/e^- and is (1-2)% of $\sigma_{\rm obs}(s)$ depending on $I_{\rm beam}$ and $P_{\rm vac}$
- Physical background (MC simulation): $e^+e^- \to e^+e^-$ (3.3-6.1)%, $e^+e^- \to \mu^+\mu^-$ (0.8-1.1)%, $e^+e^- \to e^+e^- X$ (0.1-0.3)%
- Radiative corrections vary from 5.7% to 9.7% with \sqrt{s} increase

R Measurement between 1.84 and 3.05 GeV at KEDR – III

The number of tracks from the common vertex in the IP, Fair agreement of simulation with data ($\sqrt{s} = 1.94$ and 2.14 GeV)

R Measurement between 1.84 and 3.05 GeV at KEDR – IV

The ratio of Fox-Wolfram moments H_2/H_0 , Fair agreement of simulation with data ($\sqrt{s} = 1.94$ and 2.14 GeV)

R Measurement between 1.84 and 3.05 GeV at KEDR – V

Sphericity of charged tracks, Fair agreement of simulation with data ($\sqrt{s} = 1.94$ and 2.14 GeV)

R Measurement between 1.84 and 3.05 GeV at KEDR – VI

Energy deposited in the calorimeter, Fair agreement of simulation with data (\sqrt{s} =1.94 and 2.14 GeV)

R Measurement between 1.84 and 3.05 GeV at KEDR – VII

Detection efficiency, comparison of two models

\sqrt{s} , MeV	$arepsilon_{ ext{LUARLW}},\%$	$\varepsilon_{ m JETSET}, \%$	$\delta arepsilon /arepsilon ,\%$
1937	47.2 ± 0.1	46.0 ± 0.1	2.5 ± 0.2
2136	52.5 ± 0.1	51.3 ± 0.1	2.3 ± 0.2
2645	68.2 ± 0.1	68.0 ± 0.1	0.3 ± 0.2
2745	70.3 ± 0.1	70.6 ± 0.1	-0.4 ± 0.2
3048	72.4 ± 0.1	73.2 ± 0.1	-1.1 ± 0.2

R Measurement between 1.84 and 3.05 GeV at KEDR – VIII

Detection efficiency as a function of energy

Selection criteria changed at point 4

R Measurement between 1.84 and 3.05 GeV at KEDR – IX

Source	Syst. error, %	
Luminosity	1.2	
Rad. corr.	2.0 - 0.5	
uds simulation	2.6-1.3	
l+l-	0.6-0.4	
e^+e^-X	0.2	
Trigger	0.3	
Nucl. inter.	0.4	
Cuts	0.7	
Machine bg	0.4-0.9	
Energy	0.1	
Total	3.7-2.1	

R Measurement between 1.84 and 3.05 GeV at KEDR – X

 $\overline{R} = 2.209 \pm 0.020 \pm 0.046$ agrees with $R_{\rm pQCD} = 2.18 \pm 0.02$ based on $\alpha_s(m_{\tau}) = 0.333 \pm 0.013$ derived from hadronic τ decays

Summary

- \bullet R measured at 7 points between 3.05 and 3.72 GeV to 3.3%
- R measured at 13 points between 1.84 and 3.05 GeV to 3.9%
- Results between 1.8 and 2.0 GeV can be matched to those from CMD-3/SND (VEPP-2000) that sum exclusive cross sections
- We are discussing whether inclusive measurement is feasible between 1.5 and 2.0 GeV at CMD-3
- New precise measurement of $\Gamma_{ee}\mathcal{B}_h(J/\psi)$ and $\Gamma_{ee}\mathcal{B}_{\mu\mu}(J/\psi)$
- Data taking: at J/ψ ($\mathcal{B}(\eta_c\gamma)$), around $\psi(3770)$ to improve D masses, then \sqrt{s} increase to measure R and $\gamma\gamma \to \text{hadrons}$ ($4 < \sqrt{s} < 5 \text{ GeV}$)

S.Eidelman, BINP p.19/18

R Measurement between 1.84 and 3.05 GeV at KEDR – Selection

Variable	Range	
$N_{ m tr}^{ m IP}$	≥ 1	
$E_{ m obs}$	> 1.6 GeV	
$E_{\gamma}^{ m max}/E_{ m beam}$	< 0.7	
$E_{\rm obs} - E_{\gamma}^{\rm max}$	> 1.3 GeV	
$E_{ m cal}^{ m tot}$	> 0.55 GeV	
H_2/H_0	< 0.9	
$ P_z^{ m miss}/E_{ m obs} $	< 0.6	
$E_{ m LKr}/E_{ m cal}^{ m tot}$	> 0.15	
$ Z_{ m vert} $	< 15.0 cm	

$$N_{\mathrm{part}} \geq 3 \text{ or } \tilde{N}_{\mathrm{tr}}^{\mathrm{IP}} \geq 2$$