Summary of Theory Study

Hong-Jian He Tsinghua University

CEPC-SPPC Symposium, IHEP, Beijing, April 8-9, 2016

Goal : How to Prepare CDR (Theory) ? — 3 Key Lessons —

- Think about Real Physics Issues !
 -- both Theory Side and Experimental Tests !
- Closely watch out LHC Run-2 Results !
 -- Any possible New Particle Discovery @ Run-2
 will give strong inputs to CDR Writing of CEPC
- How to make Theory Studies Useful for EXP Simulations?!
 -- Cooperate with Detector Group!
 -- Motivate and Help Detector Simulations!

Theory & Exp Interface

Manqi Ruan's talk

Manqi Ruan's talk

Many good progresses from last year

	Probing New Physics Scales a	Sha	io-Feng Ge						
	Probing the nature of electrow transition from CEPC to gravi detectors	Fa-	Peng Huang						
	Searching for dark matter at fu colliders	Per	ng-Fei Yin						
	Searching exotic decay channel Higgs boson at CEPC	Ha	o Zhang						
	A roadmap to rec e+e- and pp collie				ct the Higgs]	potential at	Qi-Shu Yan (UCAS)	
		Interact Detecto	ion between or Simulatio	n Th n Sti	eory-Phenom ıdies	enology &	Manqi Ruan (IHEP)		
P n	henomenology of the Georgi-Machacel nodel at future electron-positron collide	rs	Cheng-Wei Ch	niang					
Constraining Natural Supersymmetry at the HL-LHC, ILC and CEPC			Tian-Jun Li,		B Physics Anon	omalies and High Energy Collider		Ying Li	
Pi el	robing new physics inside Loops at ectron-positron colliders	Qing-Hong Cao,		Understanding t mechanism fron	anding the quarkonium production		Yan-Qing Ma,		
T C	The effective operator analysis of CEPC and Jing Shu, CEPC 400				Interference effe measurement at	Yu-Jie Zhang			

Physics Motivations

LHC New Discovery → **High Energy Physics at <u>Turning Point</u>**

Run-1 Higgs Discovery h(125GeV) in 2012
 Run-2 New Particle Discovery in 2016 ?!

These will lead to

New Set of Key Physics Questions for Future Colliders to answer!!

h(125GeV) Discovery at LHC Run-1 X(750GeV) New Resonance at LHC Run-2 ?!

✓ h(125GeV)

X(750GeV) ??

SM is **Incomplete:** Mass Puzzle

- Yukawa Force is Flavor-dependent & Unnatural ! Why Quark/Lepton Masses differ so much at Tree Level?
- What are underlying Scales of Fermion Mass Generations?
- Why is Higgs Mass itself Unnatural under Loop Corrections?

SM is **Incomplete:** Fermion Mass Puzzle

Yukawa Force is Flavor-dependent & Unnatural! Why Quark/Lepton Masses differ so much at Tree Level?
What are underlying Scales of Fermion Mass Generations?

Upper Bounds on Scales of Fermion Mass Generations:

2nd+3rd Families: 3.5-56 TeV 1st Family: 77-107 TeV

— All these bounds Tied to O(3-100TeV) Scales !

Dicus and He, PRL.94 (2005) 221802 PRD.71 (2005) 093009

See: Nima's Overview in preCDR

$\xi_1\xi_2$	$V_L V_L$	$t\overline{t}$	$b\overline{b}$	$c\overline{c}$	$s\overline{s}$	$d\bar{d}$	$u\overline{u}$	$\tau^- \tau^+$	$\mu^-\mu^+$	e^-e^+	$\nu_L \nu_L$
Mass (GeV)	80.4	178	4.85	1.65	0.105	0.006	0.003	1.777	0.106	$5.11 imes 10^{-4}$	5×10^{-11}
n_s	2	2	4	6	8	10	10	6	8	12	22
$E_{2 \to n}^{\star(\min)} ({\rm TeV})$	1.2	3.49	23.4	30.8	52.1	77.4	83.6	33.9	56.3	107	158
$E_{2 \to 2}^{\star} (\mathrm{TeV})$	1.2	3.49	128	377	$6\! imes\!10^3$	10 ⁵	$2\!\times\!10^5$	606	10^{4}	2×10^6	$1.1{\times}10^{13}$

SM is Incomplete: Vacuum, BA, DM, Inflation??

- Vacuum Puzzle: EW vacuum is Unstable at 10⁹⁻¹¹ GeV !
- Puzzle of Missing Antimatter (Baryon Asymmetry) ?
- Dark Matter Puzzle (80% of all Matter): SM has no DM !
 Inflation Puzzle: naive SM provides no Inflaton !

3 Fundamental Forces Inside SM Itself

- I. Gauge Forces: mediated by Spin-1 Vector Boson.
 Yukawa Forces: mediated by Spin-0 Higgs Boson.
- 3. Higgs Self-Interaction Force: h³ & h⁴ forces, (concerns spontaneous EWSB and generating Higgs mass itself).
- Type-2 & Type-3 Forces are New and Solely associated with Spin-0 Higgs, which were never seen before, despite they already exist in SM !
- In SM, Only Higgs can have Self-Interactions (involving exactly the same particle), but not all other fundamental particles (as forbiden by their spin & charge) !
- Spin-0 Higgs Boson is Unique in many ways, but all its associated forces are not yet directly tested, especially, the New Type-2 and Type-3 forces mediated by Higgs Itself !

3 Fundamental Forces inside SM Itself

Current Status:

- LEP/Tevatron/LHC only have good tests on Gauge Forces.
- LHC only has weak sensitivity to Yukawa couplings of h-τ-τ, h-b-b, h-t-t at order of 15%.
- LHC cannot probe Most Other Yukawa Couplings !
- LHC can hardly probe Higgs Self-Interaction !
- LHC cannot establish h(125GeV) as God Particle !

Higgs 125GeV and Beyond

<u>Conclusion-1:</u> Higgs is not only a New Particle, but also <u>New Forces !!!</u>

Even within SM Forces, strongly motivated to quantitatively test Type-2 & Type-3 New Forces (Higgs Yukawa Forces and Self-Interaction-Forces) mediated by Higgs Boson.

<u>Conclusion-2:</u> Any New Discovery of Run-2 (750GeV?) will require further Precision Tests.

- **This requires to Go Beyond the LHC**!
- → High Energy Circular Colliders: CEPC(ee, 90-250 GeV) SPPC(pp, 50-100TeV)

Physics Analyses

Higgs Factory: CEPC (240-250GeV)

- LHC-8 tells us: h(125) is SM-like. Precision Test is Crucial !
- \succ CEPC produces h(125) mainly via ee \rightarrow hZ and ee \rightarrow vvh.
- CEPC makes indirect probe to New Physics !
 CEPC designed: 5/ab for 2 detectors in10y. -> 10⁶ Higgs Bosons !!

Inputs: Event Rate \rightarrow Cross Section & BR

ΔM_h	Γ _h	$\sigma(Zh)$		$\sigma(uar{ u}h)$	$) \times \mathrm{Br}(h)$	$\rightarrow bb)$
2.6 MeV	2.8%	0.5%	• •		2.8%	
D	ecay Moo	de σ	(Zh)	$\times \mathrm{Br}$	Br	
h	ightarrow bb	•	0.2	1%	0.54%	_
h	ightarrow cc		2.5	5%	2.5%	
h	ightarrow gg		1.7	7%	1.8%	
h	$\rightarrow \tau \tau$		1.2	2%	1.3%	
h	$\rightarrow WW$		1.4	%	1.5%	
h	ightarrow ZZ		4.3	8%	4.3%	
h	$\rightarrow \gamma \gamma$		9.0)%	9.0%	
h	$\rightarrow \mu\mu$		17	%	17%	
h	\rightarrow invisi	ble	-	-	0.14%	latest 1σ uncertainty Software WS, March 26

SM Predictions

Br($b\bar{b}$)Br($c\bar{c}$)Br(gg)Br($\tau\bar{\tau}$)Br(WW)Br(ZZ)Br($\gamma\gamma$)Br($\mu\bar{\mu}$)Br(inv)58.1%2.10%7.40%6.64%22.5%2.77%0.243%0.023%0

Talks of Ge and Ruan

Effective Higgs Couplings: Gauge & Yukawa

$$\mathcal{L} = \kappa_3 \frac{m_H^2}{2v} H^3 + \kappa_Z \frac{m_Z^2}{v} Z_\mu Z^\mu H + \kappa_W \frac{2m_W^2}{v} W^+_\mu W^{-\mu} H + \kappa_g \frac{\alpha_s}{12\pi v} G^a_{\mu\nu} G^{a\mu\nu} H + \kappa_\gamma \frac{\alpha}{2\pi v} A_{\mu\nu} A^{\mu\nu} H + \kappa_Z \gamma \frac{\alpha}{\pi v} A_{\mu\nu} Z^{\mu\nu} H - \left(\kappa_t \sum_{f=u,c,t} \frac{m_f}{v} f \overline{f} + \kappa_b \sum_{f=d,s,b} \frac{m_f}{v} f \overline{f} + \kappa_\tau \sum_{f=e,\mu,\tau} \frac{m_f}{v} f \overline{f} \right) H$$

- See talk of S. F. Ge

Combined Higgs Coupling Precision Ge, He, Xiao, 1603.03385; preCDR

Software WS, March 26

Precision on Higgs Couplings

- See talk of S. F. Ge

Combined Higgs Coupling Precision Ge, He, Xiao, 1603.03385; preCDR

Table: Precisions on measuring Higgs couplings at CEPC (250GeV, $5ab^{-1}$), in comparison with LHC (14TeV, 300fb⁻¹), HL-LHC (14TeV, $3ab^{-1}$) and ILC (250GeV, 250fb⁻¹)+(500GeV, 500fb⁻¹). Software WS, March 26

Precision (%)	CE	PC	LHC	HL-LHC	ILC-250+500
κ_Z	0.249	0.249	8.5	6.3	0.50
κ_W	1.21	1.21	5.4	3.3	0.46
κ_{γ}	4.67	4.67	9.0	6.5	8.6
κ_{g}	1.55	1.55	6.9	4.8	2.0
$\tilde{\kappa_{b}}$	1.28	1.28	14.9	8.5	0.97
κ_c	1.76	1.76	_	—	2.6
$\kappa_{ au}$	1.39	1.39	9.5	6.5	2.0
κ_{μ}	_	8.59	_	—	—
$\mathrm{Br}_{\mathrm{inv}}$	0.135	0.135	8.0	4.0	0.52
Γ _h	2.8	2.8	—	_	_

Indirect Probe of Higgs related New Physics All can be formulated by: Model-Independent Effective Operators @ Dimension-6

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{M^2} \mathcal{O}_{6,i}$$

Higgs	EW Gauge Bosons	Fermions
$\mathcal{O}_H = \frac{1}{2} (\partial_\mu H ^2)^2$	$\mathcal{O}_{WW} = g^2 H ^2 W^a_{\mu\nu} W^{a\mu\nu}$	$\mathcal{O}_L^{(3)} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D}_{\mu}H)(\overline{\Psi}_L \gamma^{\mu}\sigma^a \Psi_L)$
$\mathcal{O}_T {=} \frac{1}{2} (H^\dagger \overset{\leftrightarrow}{D}_\mu H)^2$	$\mathcal{O}_{BB} = g^2 H ^2 B_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{LL}^{(3)} = (\overline{\Psi}_L \gamma_\mu \sigma^a \Psi_L) (\overline{\Psi}_L \gamma^\mu \sigma^a \Psi_L)$
	$\mathcal{O}_{WB} = gg' H^{\dagger} \sigma^a H W^a_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_L = (iH^{\dagger} \overleftrightarrow{D}_{\mu} H)(\overline{\Psi}_L \gamma^{\mu} \Psi_L)$
Gluon	$\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$	$\mathcal{O}_R {=} (i H^\dagger \overleftrightarrow{D}_\mu H) (\overline{\psi}_R \gamma^\mu \psi_R)$
$\mathcal{O}_g \!= g_s^2 H ^2 G^a_{\mu\nu} G^{a\mu\nu}$	$\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$	

Effective Operators & Sizes of New Physics

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{M^2} \mathcal{O}_{6,i}$$

-- Higgs WG Report

Existing EWPO & Future HO

Solution Observables: EWPO (PDG14) + HO (preCDR)

Observables	Central Value	Relative Error	SM Prediction
α	$7.2973525698 \times 10^{-3}$	3.29×10^{-10}	_
G _F	$1.1663787 \times 10^{-5} \text{GeV}^{-2}$	5.14×10^{-7}	_
Mz	91.1876GeV	2.3×10^{-5}	_
Mw	80.385GeV	1.87×10^{-4}	-
σ [Zh]	_	0.51%	-
$\sigma[\nu\bar{\nu}h]$	_	2.86%	-
$\sigma [\nu \bar{\nu} h]_{350 \text{GeV}}$	-	0.75%	-
Br[WW]	_	1.6%	22.5%
Br[ZZ]	-	4.3%	2.77%
Br[bb]	-	0.57%	58.1%
Br[cc]	_	2.3%	2.10%
Br[gg]	-	1.7%	7.40%
$Br[\tau \tau]$	-	1.3%	6.64%
$Br[\gamma\gamma]$	_	9.0%	0.243%
$Br[\mu\mu]$	_	17%	0.023%

Se, He, Xiao, 1603.03385 Se, He, Xiao, 1603.03385

Sensitivities from Existing EWPO & Future HO

Ge, He, Xiao, 1603.03385

Enhancement from M_Z & M_W @ CEPC

Observables	Relative Error								
Observables	Current	CEPC							
M_Z	$2.3 imes 10^{-5}$	$5.5 imes 10^{-6} \sim 1.1 imes 10^{-5}$							
M_W	$1.9 imes10^{-4}$	$3.7 imes \mathbf{10^{-5}} \sim 6.2 imes 10^{-5}$							

Table: The M_Z & M_W @ CEPC [Z.Liang, "Z & W Physics @ CEPC" & preCDR].

Scheme-Independent Analysis

$\frac{\Lambda}{\sqrt{c_i}}$ [TeV]	\mathcal{O}_H	\mathcal{O}_{T}	\mathcal{O}_{WW}	\mathcal{O}_{BB}	\mathcal{O}_{WB}	\mathcal{O}_{HW}	\mathcal{O}_{HB}	$\mathcal{O}_{LL}^{(3)}$	$\mathcal{O}_L^{(3)}$	\mathcal{O}_L	\mathcal{O}_R	$\mathcal{O}_{L,q}^{(3)}$	$\mathcal{O}_{L,q}$	$\mathcal{O}_{R,u}$	$\mathcal{O}_{R,d}$	\mathcal{O}_{g}
HO+EWPO	2.74	10.6	6.38	5.78	6.53	2.15	0.603	8.57	12.1	10.2	8.78	1.85	0.565	0.391	0.337	39.8
$+M_{Z}$	2.74	10.7	6.38	5.78	6.54	2.15	0.603	8.61	12.1	10.2	8.78	1.85	0.565	0.391	0.337	39.8
$+M_W$	2.74	21.0	6.38	5.78	10.4	2.15	0.603	15.5	16.4	10.2	8.78	1.85	0.565	0.391	0.337	39.8
$+M_{Z,W}$	2.74	23.7	6.38	5.78	11.6	2.15	0.603	17.4	18.1	10.2	8.78	1.85	0.565	0.391	0.337	39.8

Note: The CEPC Z-pole simulation is preliminary.
 BUT, this does not really matter for above analysis —
 here the Key of our analysis is to demonstrate the matter of principle
 for probing New Physics: including vs excluding CEPC Z-pole observables

Enhancement from Z-Pole Observables @ CEPC

$$\frac{N_{\nu}}{1.8 \times 10^{-3}} \frac{A_{FB}(b)}{1.5 \times 10^{-3}} \frac{R^{b}}{8 \times 10^{-4}} \frac{R^{\mu}}{5 \times 10^{-4}} \frac{R^{\tau}}{5 \times 10^{-4}} \frac{\sin^{2} \theta_{w}}{1 \times 10^{-4}}$$

Table: The Z-pole measurements at CEPC [Z.Liang, "Z & W Physics @ CEPC" & preCDR].

Ge, He, Xiao, 1603.03385

Z-Pole Observables are **IMPORTANT** for New Physics Scale Probe

\mathcal{O}_H	\mathcal{O}_{T}	\mathcal{O}_{WW}	\mathcal{O}_{BB}	\mathcal{O}_{WB}	\mathcal{O}_{HW}	\mathcal{O}_{HB}	$\mathcal{O}_{LL}^{(3)}$	$\mathcal{O}_L^{(3)}$	\mathcal{O}_L	\mathcal{O}_R	$\mathcal{O}_{L,q}^{(3)}$	$\mathcal{O}_{L,q}$	$\mathcal{O}_{R,u}$	$\mathcal{O}_{R,d}$	\mathcal{O}_{g}
2.74	23.7	6.38	5.78	11.6	2.15	0.603	17.4	18.1	10.2	8.78	1.85	0.565	0.391	0.337	39.8
2.74	23.7	6.38	5.78	11.6	2.15	0.603	17.5	18.3	10.5	8.78	1.85	0.565	0.391	0.337	39.8
2.74	24.0	8.32	5.80	12.2	2.15	0.603	20.7	23.0	12.5	13.0	2.08	1.62	0.391	3.97	39.8
2.74	24.0	8.33	5.80	12.2	2.15	0.603	20.7	23.0	12.5	13.0	7.90	7.89	3.55	4.05	39.8
2.74	24.0	8.54	5.80	12.2	2.15	0.603	20.7	23.4	14.4	14.0	8.63	8.62	4.88	4.71	39.8
2.74	24.0	8.75	5.80	12.3	2.15	0.603	20.7	23.7	15.8	14.9	9.21	9.21	5.59	5.17	39.8
2.74	26.3	12.6	5.93	15.3	2.15	0.603	30.2	35.2	19.8	21.6	9.21	9.21	5.59	5.17	39.8

Extra Factor-2 Improvements from more Z-pole observales!

Sensitivity from EWPO+HO+Z-Pole

Ge, He, Xiao, 1603.03385

Summary of CEPC Precision Tests:

- CEPC produces 10⁶ Higgs Bosons at 250GeV (5/ab).
 Higgs Gauge & Yukawa Couplings ~ O(1%)
 Higgs Self-coupling ~ 30%
- CEPC Indirect Probe of New Physics Scales: up to 10TeV (40TeV for Og) from EWPO + HO. up to 35TeV after including Z-pole(CEPC).
- CEPC can sensitively probe Exotic Higgs Decays (see Zhang Hao's talk)

CEPC Probe of h³ Coupling

M. McCullough, arXiv:1312.3322

Recall: HL-LHC probes h³ to 50%. ILC500 probes h³ to 83%.

Sensitivity to Higgs Self-Coupling h³

Higgs WG
 Comparison: h³ at CEPC(1, 3, 5/ab) and SPPC(3/ab),

vs HL-LHC (3/ab): $|\lambda_{hhh}/\lambda_{hhh}^{sm}-1|$

Comment: Probing h³ Coupling via Zhh Channel

K. Fujii, arXiv:1305.1692

Comments on Shu Jing's Talk regarding ee(400): This does not really gain much, given also the difficulty of ee(400GeV) in circular tunnel.

Probing h³ Coupling @ SPPC(100TeV)

$$\mathcal{L}_{\text{eff}} = \sum_{n} \frac{f_n}{\Lambda^2} \mathcal{O}_n, \qquad \qquad \mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (H^{\dagger} H) \partial_{\mu} (H^{\dagger} H), \\ \mathcal{O}_{\Phi,3} = \frac{1}{3} (H^{\dagger} H)^3.$$

$$gg \rightarrow hh \rightarrow b\bar{b}\gamma\gamma$$

Sensitivity to (r, x): 3/ab: (13%, 5%) 30/ab: (4.2%, 1.6%)

$$x_j \equiv \frac{f_{\Phi,j} v^2}{\Lambda^2} \quad \hat{r} \equiv -x_3 \zeta^2 \frac{2v^2}{3M_h^2}, \qquad \hat{x} \equiv x_2 \zeta^2. \quad \tilde{\Lambda}_j \equiv \frac{\Lambda}{\sqrt{|f_{\Phi,j}|}}.$$

He, Ren, Yao, arXiv:1506.03302 PRD.93(2016)015003

Probing h³ Coupling via gg→hh→WW*WW*

Q. S. Yan's talk

To overcome the b mistag and photo mistag issues, $gg \rightarrow hh \rightarrow WW^*WW^* \rightarrow 3\ell + 2j + MET$ is proposed. By using this mode, SPPC can determine λ_3 to the window [0.9,1.2] Q. Li, Z. Li, QY, X.R. Zhao, PRD92(2015)1,014015, arXiv:1503.07611

Electroweak Phase Transition

See F. P. Huang's talk

For the Higgs potential and the type of the EW phase transition, we know nothing but the quadratic oscillation around the vev v with the mass 125 GeV from the current LHC data.

First order EW phase transition Pre CDR of CEPC

The true shape of Higgs potential
 Baryon asymmetry of the universe
 Gravitational wave : Higgs bubble collision, turbulence with plasma.....

Electroweak Phase Transition

See F. P. Huang's talk

Sensitivities of future colliders

See P. F. Yi's talk

- Investigation of DM-gamma interactions
 through mono-photon searches at e⁺e⁻
 colliders
- Investigation of DM-Z interactions through mono-Z searches at e⁺e⁻ colliders
- Investigation of DM-Z' interactions through mono-jet searches at hadron colliders

Probing New Physics Through Loops at the CEPC see Q.H. Cao's talk

It is hard to probe DM models with nearly degenerate mass spectrum

Mono-jet (photon) + MET

One could probe the loop effects of light NP particles, e.g.

Probing New Physics Through Loops at the CEPC See Q. H. Cao's talk

The e⁺e⁻ collider with 10⁻³ Precision can probe certain parameter spaces of NP models

From Great Wall to Great Collider

see book of Nadis and Yau

▶ 巨型对撞机(Great Collider)与万里长城(Great Wall)相呼应。

巧合的是,这座巨型对撞机很可能就将修建在山海关长城附近。

一个迷人的故事,着重探讨超越希格斯玻色子发现的新物理, 以及能够引领我们实现这个目标的巨型粒子加速器。

从万里长城到 巨型对撞机

中国探索宇宙最深层奥秘的前景

Let us continue to work together and do good works !

[美]丘成桐 史蒂夫·纳迪斯 著 鲜于中之 何红建 译

