Progress of MDI

Sha Bai, Hongbo Zhu, <u>Qinglei Xiu</u>, Teng Yue, Yiwei Wang, Kai Zhu, Yingshun Zhu, Yin Xu, Dou Wang, Weichao Yao, Zhongjian Ma

> CEPC-SPPC Workshop 2016-4-8

- Tasks of MDI
 - IR lattice and layout design
 - Final Focusing magnets
 - Luminosity Measurement
 - Beam Induced Background Estimation
 - Detector shielding and radiation protection
 - Mechanics and integration
- Regular group meetings
 - Indico: <u>http://indico.ihep.ac.cn/category/323/</u>
 - Twiki: <u>cepc.ihep.ac.cn/~cepc/cepc_twiki/index.php/Machine_Detector_Interface</u>
- Will compare the difference between single ring and partial double ring.

IR Layout -- Single Ring

- L* = 1.5m
- To meet requirements from both accelerator and detector
- Suppress the beam backgrounds as more as possible

IR Layout -- Partial Double Ring

Final Focusing Magnetic -- Single Ring

2D flux lines

Magnetic flux density distribution

Magnet	Length	Field Gradient(T/m)	Coil Inner Radius (mm)	Coil Outer Radius (mm)
QD	1.25	304 → ~200	20	37
QF	0.72	309 → ~110	20	37

Coils in Rutherford type Nb₃Sn cables clamped by stainless steel collar

• The field gradient will be decreased to match the feasibility in technology

Final Focusing Magnetic – Partial Double Ring

1/100							

Magnet	Length	Field Gradient(T/m)	Coil Inner Radius (mm)	Coil Outer Radius (mm)
QD	1.25	~200	12.5	18.5
QF	0.72	~110	20	37

- 2 isolated QD are required to make sure e+ e- pass through the center of the quadrupoles separately.
- The thickness of the coil is tightly limited by the radius of beam pipe and the distance between two beam pipes.
- Cross talk of field between two quadrupoles need be further studied.

Anti-solenoid Design

- Solenoid field of detector will cause the beam coupling between horizontal and vertical direction, which will degrade the luminosity
- $\int B_z ds = 0$
 - The coupling should be cancelled before beam enter the quadrupoles (Compensating solenoid)
 - The longitudinal field inside the quadrupole should be 0 (Screening solenoid)

Influences on the Detector

- length of anti-solenoid is 0.7m
 - The FTD detector need be more compact
 - Dead area to TPC (Reduce Length of TPC ?)
 - Very tight space for LumiCal
 - More backscattered backgrounds to VTX and FTD

- Stronger magnets (Larger Size)
 - 8T @ 4.2K:
 - Known Maximum: 11.7T
 - Lower temperature, higher cost, worse maintainability
- Reduce the detector field
- Anyway, the IR will be more crowded

Anti-Solenoid Detector Solenoid	7.5T	8T
3.5T	0.7m	0.66m
3T	0.6m	0.56m

- Contain the whole shower for event selection
- Accumulate enough events to reduce statistical error
- In the partial double ring , the LumiCal will centered on outgoing beam.
 - The fiducial volume of the detector will be suppressed by the other beam pipe.
- The required accuracy and detector parameters need be further studied.

- Synchrotron Radiation
 - Bending Magnetic
 - Quadrupoles
- Lost Particles
 - Radiative Bhabha
 - Beamstrahlung
 - Beam-Gas Scattering
- Beamstrahlung
 - Pair production
 - Hadronic background

Flux of Synchrotron Radiation

Number of photons hit the beam pipe in each 10 cm

- Beam pipe radius 16mm (Uniform)
- Photons from the bending magnets will be dominant
- Quadrupoles can not be neglected due to the back scattering effects

- Have established a framework for background simulation on the IHEP computing platform.
 - Generator:
 - Guinea-Pig++: Beamstrahlung
 - BBBrem: Radiative Bhabha
 - Self developed codes: Beam-gas scattering and other backgrounds
 - Accelerator Simulation:
 - SAD (Strategic Accelerator Design): Beam particle tracking
 - BDSIM: Also used as generator for synchrotron radiation
 - Detector Simulation:
 - Geant4 (Mokka)
 - Fluka
- Interfaces between all the software have been implemented.
- Developed a toolkit to use these software conveniently

[®] Physical Requirement to Background Level

Readout Time [us]

Parameters	Single Ring	PDR-H Low Power	PDR-H High Power	PDR Z Pole
Number of Bunches	50	57	144	1100
Bunch Spacing (μs)	3.6	0.187	0.074	0.0097
Hit Density in VTX (Hits $\cdot cm^{-2} \cdot BX^{-1}$)	< 200	< 20	< 10	< 1

Hit Density Without Shielding

- Synchrotron radiation is the most important issue because of the huge photon flux
- The beamstrahlung in the partial double ring might be more serious than that in single ring due to the modification of beam pipe.
- Shielding and protection are essential to reach the physical requirements

Methods to Suppress Background Level

- Synchrotron Radiation
 - Shielding the synchrotron photons with collimators
 - Let the synchrotron photons pass through the IR by well designed beam orbit.
- Lost Beam Particles
 - Add collimators along the storage ring.

6

Preliminary Design of Collimators

- Shape and Material
 - Trapezium
 - Tungsten
- Position and Aperture d_c
 - Stop efficiency \rightarrow Upper limit
 - TMCI (Transverse mode coupling instability) → Lower limit

b b(s)

- Vertical injection \rightarrow Lower limit
- Will study more limitations

• Upper Limit:
$$d_c \leq \frac{r_{IR}}{\sqrt{\beta_{IR, \max}}} \sqrt{\beta_c}$$

Cl:
$$d_c \geq \left(\frac{0.215AIZ_0c}{C_1 f_s E \not e}\right)^{\frac{2}{3}} \left(\frac{\alpha}{\sigma_z}\right)^{\frac{1}{3}} \beta_c^{\frac{2}{3}}$$

TM

Effects of Collimators on Lost Particles

- The hit density due to lost particles at VTX are significantly suppressed by collimators
- Shielding of other backgrounds are under studying

- A small error will cause large fluctuation in the results due to the very large photon flux.
- Based on Geant4
- Typical photon energy: several keV ~ several hundreds keV. (Physics list should be optimized for this energy region)
- Suppressing the scattering photons will be one of the most important issues. (Material and geometry of collimators and beam pipe)

- Single Ring
 - Lots of progresses have been made in: IR design, final focusing magnets, luminosity calorimeter, background estimation and detector shielding
 - The beam pipe design, mechanics and integration have not been covered yet.
- Partial Double Ring
 - Most topics are in the starting stage. But will be the main battlefield in future.
 - Great challenging to balance the requirements from both the detector and accelerator
 - Need more new ideas

Thank You

Back Up

Name	Position	Distance to IP[m]	Beta	Range of half width
			function[m]	allowed[mm]
APTX1	DRHS12FFS.4	-200.412	βx = 238.91	0.6-34.1
APTX2	DRHS22FFS.4	-266.412	βx = 238.91	0.6-34.1
APTY1	DRHFFS.7	-283.212	βy = 124.05	3.3-5.4
APTY2	DRHFFS.8	-217.212	βy = 124.05	3.3-5.4

Anti-solenoid Design

 Solenoid field of detector will cause the beam coupling between horizontal and vertical direction, which will degrade the luminosity

•
$$\int B_z ds = 0$$

- The coupling should be cancelled before beam enter the quadrupoles (Compensating solenoid)
- The longitudinal field inside the quadrupole should be 0 (Screening solenoid)
- Coils of anti-solenoid will be made of NbTi-Cu Conductor

Super KEKB

