

CEPC-SppC Symposium, April 8-9, 2016 CEPC RF Power Source

CEPC 650MHz High Efficiency Klystron R&D

Zusheng ZHOU(周祖圣)

RF Power Source Group Accelerator Division, IHEP April. 8, 2016

CEPC-SppC Symposium, April 8-9, 2016 CEPC RF Power Source

Contents

Design proposal
 R&D Progress
 Summary

Collider RF power source

Considering klystron lifetime and power redundancy, 2 cavities will be powered with a CW klystron capable to deliver more than 800 kW.

Parameters mode	Value
Operation frequency	650MHz+/-0.5MHz
Cavity Type	650MHz 5-cell
Cavity number	384
RF input power (kW)	280 CW (250)
RF source number	192
Klystron output power (kW)	800 CW

RF sources number: 192

1 klystron power 2 cavities

Collider RF power source

Klystron key design parameters

Parameters mode	Now	Future
Centre frequency (MHz)	650+/-0.5	650+/-0.5
Output power (kW)	800	800
Beam voltage (kV)	80	70
Beam current (A)	16	15
Efficiency (%)	65 💻	80

Short term Schedule

Year	2015			2016											2017		
Month	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Cathode			Cathode	e Order													
Ceramic				Ceramic	e Order												
			Gun Des	ign	-	Copper	Block										
			Coil/So	cket													
					Collec	tor Des	ign										
Total Design																	
Drawing			Auto In	ventor													
Start Manufacturing							manufa	cturing			Baking						
Test										Gun tes	st						
Klystron Design	CI	lassica	<mark>l Desig</mark>	n _						Compari	ison						
	2nd similation /Output cavity																
							High Et	fficien	cy Desi	gn							
Window Design					Window	design	/Drawir	ig									
U							manufa	cturing	Testin	g							

Klystron Schedule and strategy

Because of klystron efficiency is more than 80%, in order to fulfill this program, there may have following problems:

- 1) we (China) have not an experienced to manufacture the high power, UHF klystrons. There is not the big furnace infrastructure in China also.
- 2) Design and simulation are not enough and matured, therefore we need to step up one by one.
- 3) Let's start from beam tester, classical design and currently progressed design such as HEIKA.
- 4) In order to save the money and time, demountable structure is another way.

Klystron Schedule and strategy(2)

Klystron Concept Design

	Pow	ver	pervea	nce	eff	icie	ency	Cat	chode curre density	ent	frequ	lency	Roug	gh	Pa	rameters
	800	k₩	0.68 µ	P		65%		0	.5A/cm^2	2	65000000Hz		-			
						\checkmark]			\checkmark						
	Voltage	Current	Depressed Beam Potential	Cath rad:	node ius ^B	eam Ra	dius	Tunne Radiı	el b / us	a	阴极面积	、 电子枪面压 缩比	₭ Beam Current Density			Parameters for Electron
	80kV	15.385A	78.844kV	341	mm	16m	m	25m	m 0.6	54	3674cm^	2 4.57	1.91A/cm2			optics
														1		
F N	telativistic lass Factor σ	v/c	βe		γ		γb		γa	Ci fi	ut-off req of tube		Brillouin Flux (Gauss)			
	1.154	0.499	27.27	5	23.629	9	0.378	;	0.591		5.4	7.07	119.251			
-										3.	52E+09	4.60E+09			Pa	arameters for
F	Plasma requency	plasma propagati constan	on plasm t wavelen	a F gth R	Plasma Trequen Reducti Factor	a .cy on c	Mbar		√Mbar	Redu Plas Fred	ıced sma quency	Reduced Plasma propagatio constant βq	reduced n plasma wavelength) in ca	teraction region alculation
1	. 29E+09	8.58	0.73	2	0.222	2	0.8	374	0.93	5 2.8	85E+08	1.905	3.298			

Electron Gun Design and Simulation

阴极电流密度A/cm^2 Egun simulation result: 0.45 0.40 Area compression ratio : 4.4 0.35 0.30 **Perveance**: 0.647µP 0.25 0.20 Cathode current density: 0.39A/cm2~0.43A/cm2 0.15 Max. electric field : 2.520kV/mm 0.10 0.05 0.00 9 11 13 15 17 19 21 23 25 27 29 31 33 **Cathode current density** 160 CEPC650MHz 140 8 R klystron 2. 52E+03V/mm -57kV 1.57E+03V/mm -81.5kV **OkV**

Gun region beam trajectory simulation with Egun

Electrode E fied density optimization with Possion

whole tube beam trajectory simulation with EGUN

CEPC-SppC Symposium, April 8-9, 2016 CEPC RF Power Source

Gun Assembly Design

Basic drawing of gun assembly using Auto Inventor. Geometry is come from the POISSON calculation.

Purpose is determine the ceramic sealing structure. And size to order to the company.

Based on this first drawing, this will be revised by IHEP Mechanical Group to more complete drawing

Current stage of drawing

Gun Assembly Design(2)

Gun Assembly Design(3)

In order to study gun assembly problems, several problems occurred at the HV ceramic due to the multipactor are planed to be analyzed.

Those are simulated by POISSON and CST, and in order to make clear the geometry, basic drawings.

Collector Design and Simulation

• Collector shape and beam dissipation optimization

collector optimization using universal beam spread curve

collector optimization using EGUN code

Time 20.499 ns: PHASESPACE for all particles

	Analytic design	Numerical design
Collector Length	2147mm	1912mm
Collector radius	210mm	210mm
Total Beam power	1231kW	1230kW
Capability of power density in collector	150W/cm2	150W/cm2
Max power density in collector	197W/cm2	207W/cm2

Crosscheck of beam trajectory with EGUN and MAGIC

Collector Design and Simulation(2)

Groove dimensions optimization

Groove	Groove	Total water	Water pressure loss for
number	dimensions(a:b)	flow rate	ideal smooth surface
180	1:2	1400kg/min	

Contour of temperature and water pressure loss

CEPC-SppC Symposium, April 8-9, 2016 CEPC RF Power Source

Collector Design and Simulation(3)

Collector Thermal analysis

Groove structure for 2 meter tapered collector in Ansys-CFX

contour of temperature on inner surface of copper domain

contour of temperature of water domain

Collector Design and Simulation(4)

Collector geometry of tapered part

Geometry of collector tapered part

Section	Α	В	С	D	E
groove number	180	150	120	60	40

Cavities design and optimization

Optimize cavity geometry to get the desired characteristic parameters and high R/Q.

TM₀₁₀ electromagnetic field pattern

Table 1 Cavity geometry and characteristic parameters

Parameters	r_tube	L_right_cavity	r_nose	h_nose	Angle_nose	r_cavity	L_right_gap	f MHz	R/Q	Q	М
Knife edge Output cavity	27.03	70.71	3	10	45deg	110	18.475	650	125	16984	0.8452
Knife edge input cavity	27.03	88.08	3	10	45deg	110	27.7	650	153.5	17399	0.7932
Knife edge 2 nd harmonic cavity	27.03	36.463	3	10	45deg	60	9.25	1300	74	9146	0.616

Cavities design and optimization(2)

1) Cavity high order mode suppression especially TM0nm within 4 times fundamental frequency range.

- 2) Cavity Multipacting suppression using TiN coat or groove
- 3) All cavities design will be finished 2 month later

 $\rm TM_{010}$ electromagnetic field pattern

Multipacting simulation with groove

CEPC-SppC Symposium, April 8-9, 2016 CEPC RF Power Source

Current Status -Beam tester

Latest drawing of Beam test stand

Summary

- Complete gun design
- Order the cathode and ceramic
- Complete the collector design
- Complete the designing / drawing and start manufacturing
- In order to do the quick manufacturing, parallel schedule for manufacturing and cathode manufacturing and processing
- Furnace problem

There is no big furnace in China, we are looking for appropriate company to build it.

How long? We don't know.

CEPC-SppC Symposium, April 8-9, 2016 CEPC RF Power Source

Thanks for your attention!