Probing New Physics Through Loops at the CEPC

Qing-Hong Cao
Peking University

In collaboration with

Yang Li, Bin Yan, Ya Zhang, Zhen Zhang

Typesetting: slides prepared by Yang Li

ATLAS Preliminary
Status: March $2016 \quad \int \mathcal{L} d t=(3.2-20.3) \mathrm{fb}^{-1} \quad \sqrt{s}=8,13 \mathrm{TeV}$

What if no new physics signals were found at the LHC or even at the HL-LHC?

\author{

1. What could be possibly missed?
}
2. Could CEPC say anything about it?

Degenerate Dark Matter Model

Loop does not care about mass split at all, but demands HIGH PRECISION measurements

The demand for an $\mathrm{e}^{+} \mathrm{e}^{-}$collider

high luminosity

clean background

High precision

Precisions of a few percents are achievable for some of the couplings. The CEPC can robustly improve this precision by an order of magnitude.

Our Framework

Add NP scalar S and/or vector-like fermion F to the SM

1) $e^{+} e^{-} \rightarrow W^{+} W^{-}$

Big savior:

Severely constrained by DM direct detection

Small mass split between real and imaginary components of neutral DM scalar

Simplified New Physics Models

New fermion multiplet

New scalar multiplet

One Loop Corrections to $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}$

(

$\mathcal{L}_{\mathrm{TGC}} / g_{W W V}=i g_{1, V}\left(W_{\mu \nu}^{+} W_{\mu}^{-} V_{\nu}-W_{\mu \nu}^{-} W_{\mu}^{+} V_{\nu}\right)$ $+i \kappa_{V} W_{\mu}^{+} W_{\nu}^{-} V_{\mu \nu}$

$$
+\frac{i \lambda_{V}}{m_{W}^{2}} W_{\lambda \mu}^{+} W_{\mu \nu}^{-} V_{\nu \lambda}
$$

$$
g_{1, V}=g_{1, V, \Delta}+g_{1, V, \mathrm{O}}+\delta g_{1, V}
$$

$$
\kappa_{V}=\kappa_{V, \Delta}+\kappa_{V, O}+\delta \kappa_{V}
$$

$$
\lambda_{V}=\lambda_{V, \Delta}+\lambda_{V, O}
$$

$$
\begin{aligned}
\delta g_{1, \gamma}=\delta \kappa_{\gamma}= & {\left[\frac{\delta \mathrm{Z}_{\mathrm{AA}}}{2}+\frac{c_{W} \delta \mathrm{Z}_{\mathrm{ZA}}}{2 s_{W}}+\delta \mathrm{Z}_{e}+\delta \mathrm{Z}_{W}\right]+\left[-\delta \mathrm{Z}_{\mathrm{AA}}-\frac{c_{W}\left(s \delta \mathrm{Z}_{\mathrm{AZ}}+\delta \mathrm{Z}_{\mathrm{ZA}}\left(s-m_{Z}^{2}\right)\right)}{2 s_{W}\left(s-m_{Z}^{2}\right)}\right] } \\
\delta g_{1, Z}=\delta \kappa_{Z}= & {\left[\frac{\delta \mathrm{Z}_{\mathrm{AZ}} s_{W}}{2 c_{W}}-\frac{\delta \mathrm{s}_{W}}{c_{W}^{2} s_{W}}+\delta \mathrm{Z}_{e}+\delta \mathrm{Z}_{W}+\frac{\delta \mathrm{Z}_{\mathrm{ZZ}}}{2}\right] } \\
& +\left[\frac{\delta \mathrm{Z}_{\mathrm{ZZ}}\left(m_{Z}^{2}-s\right)+\delta \mathrm{m}_{Z}^{2}}{s-m_{Z}^{2}}-\frac{s s_{W}\left(s \delta \mathrm{Z}_{\mathrm{AZ}}+\delta \mathrm{Z}_{\mathrm{ZA}}\left(s-m_{Z}^{2}\right)\right)}{2 s c_{W}}\right]
\end{aligned}
$$

$$
\begin{array}{l|}
g_{1, Z}=-\frac{e^{2}}{120 \pi^{2} s_{W}^{2}} \frac{m_{W}^{2}}{M^{2}} \frac{s_{W}^{2}}{c_{W}^{4}} D_{R} Y_{R}^{2}, \\
\lambda_{Z}=+\frac{e^{2}}{240 \pi^{2} s_{W}^{2}} \frac{m_{W}^{2}}{M^{2}} C_{R}, \\
\text { Effective } \\
\text { Field } \\
\kappa_{Z}=-\frac{e^{2}}{120 \pi^{2} s_{W}^{2}} \frac{m_{W}^{2}}{M^{2}} \frac{s_{W}^{2}}{c_{W}^{4}} D_{R} Y_{R}^{2} \\
g_{1, \gamma}=0, \\
\lambda_{\gamma}=+\frac{e^{2}}{240 \pi^{2} s_{W}^{2}} \frac{m_{W}^{2}}{M^{2}} C_{R} \\
\kappa_{\gamma}=0
\end{array}
$$

$$
\left.\begin{array}{l}
\qquad \begin{array}{c}
g_{1, V}=g_{1, V, \Delta}+g_{1, V, \bigcirc}+\delta g_{1, V} \\
\kappa_{V}=\kappa_{V, \triangle}+\kappa_{V, \bigcirc}+\delta \kappa_{V} \\
\lambda_{V}=\lambda_{V, \triangle}+\lambda_{V, \bigcirc}
\end{array} \\
c=\frac{e^{2}}{16 \pi^{2}}\left\{c^{1}+c^{2} B_{0}(0)+c^{3} B_{0}(s)+c^{4} B_{0}\left(m_{W}^{2}\right)\right. \\
+c^{5} B_{0}\left(m_{Z}^{2}\right)+c^{6} B_{0}^{\prime}(0)+c^{7} B_{0}^{\prime}\left(m_{W}^{2}\right) \\
\left.+c^{8} B_{0}^{\prime}\left(m_{Z}^{2}\right)+c^{9} C_{0}\right\}
\end{array}\right\}
$$

$$
\begin{aligned}
g_{1, Z}{ }^{1} & =\frac{8 C_{R} m_{W}^{2}\left(m_{W}^{2}+s\right)}{3\left(s-4 m_{W}^{2}\right)^{2} s_{W}^{2}} \\
& \ldots \\
& \cdots \\
\kappa_{\gamma}{ }^{9} & =-\frac{16 C_{R} m_{W}^{2}\left(-2 m_{W}^{8}+\left(8 M^{2}+11 s\right) m_{W}^{6}+6\left(M^{2}-s\right) s m_{W}^{4}+s^{2}\left(s-6 M^{2}\right) m_{W}^{2}+M^{2} s^{3}\right)}{s\left(s-4 m_{W}^{2}\right)^{3} s_{W}^{2}}
\end{aligned}
$$

Differential cross section of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}$

$$
\begin{aligned}
\mathcal{L}_{\mathrm{TGC}} / g_{W W V} & =i g_{1, V}\left(W_{\mu \nu}^{+} W_{\mu}^{-} V_{\nu}-W_{\mu \nu}^{-} W_{\mu}^{+} V_{\nu}\right) \\
& +i \kappa_{V} W_{\mu}^{+} W_{\nu}^{-} V_{\mu \nu} \\
& +\frac{i \lambda_{V}}{m_{W}^{2}} W_{\lambda \mu}^{+} W_{\mu \nu}^{-} V_{\nu \lambda}
\end{aligned}
$$

Deviation from the SM contribution

$$
\left.\begin{array}{rl}
\frac{d \Delta \sigma}{d t}= & \frac{\pi \alpha^{2}}{s^{2}} \sum_{i}
\end{array}\right\}
$$

Weak and Hypercharge Quantum Numbers of S

Blue region : Higher Reps excluded by mono-jet + MET data

Yellow region:

 Representations with DM candidateDoublet, Triplet, Quartet, Quintet allowed

Weak and Hypercharge Quantum Numbers of F

$$
Y_{F} \in\left\{-I_{F},-I_{F}+1, \cdots, I_{F}\right\}
$$

Blue region :
exclusion by
mono-jet + MET

Yellow region:

Representations with DM candidate

Only fermion doublet allowed

Deviation of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}$at the CEPC $(240 \mathrm{GeV})$

Gray shaded bands:
excluded by
Mono-jet + MET data

$$
\begin{aligned}
g_{1, Z} & =-\frac{e^{2}}{120 \pi^{2} s_{W}^{2}} \frac{m_{W}^{2}}{M^{2}} \frac{s_{W}^{2}}{c_{W}^{4}} D_{R} Y_{R}^{2} \\
\lambda_{Z} & =+\frac{e^{2}}{240 \pi^{2} s_{W}^{2}} \frac{m_{W}^{2}}{M^{2}} C_{R} \\
\kappa_{Z} & =-\frac{e^{2}}{120 \pi^{2} s_{W}^{2}} \frac{m_{W}^{2}}{M^{2}} \frac{s_{W}^{2}}{c_{W}^{4}} D_{R} Y_{R}^{2}
\end{aligned}
$$

Electron-Positron Colliders $(500 \mathrm{GeV}$ and 1 TeV$)$

$$
\text { 2) } e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}, \tau^{+} \tau^{-}
$$

Simplified new physics model

$$
\begin{aligned}
\Delta \mathcal{L} & =\bar{F}\left(i D D-M_{F}\right) F+\left|D_{\mu} S\right|^{2}-M_{S}^{2} S^{\dagger} S-V(S, H) \\
& +\left\{\begin{array}{l}
y C_{i j k} S^{i} \bar{\mu}_{L}^{k} F^{j}+h . c . \\
y C_{i j} S^{i} \bar{\mu}_{R} F^{j}+h . c .
\end{array}\right.
\end{aligned}
$$

Effective couplings of $Z \mu^{+} \mu^{-} / \gamma \mu^{+} \mu^{-}$

$$
-i e \bar{u}\left(k_{-}\right)\left(\alpha_{V} \gamma^{\mu}+\mathrm{i} \beta_{V} \sigma^{\mu \nu} q_{\nu}+\xi_{1, V} \gamma^{\mu} \gamma_{5}+\xi_{2, V} q^{\mu} \gamma_{5}\right) v\left(k_{+}\right)
$$

Weak and Hypercharge Quantum Numbers of S and F

Yellow region:
Representations with DM candidate

Blue region :
Higher Reps excluded by mono-jet + MET data

Deviation of cross section of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$

The $\mathrm{e}^{+} \mathrm{e}^{-}$collider with 10^{-3} precision can probe certain parameter space

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}: \quad F=S \quad\left(\mu_{R}\right)$

(a)

(b)

(c)

3) $e^{+} e^{-} \rightarrow Z H$

Simplified new physics model

New scalars and fermions

Effective $H Z Z / H Z \gamma$ couplings

$$
i g_{Z} m_{Z}\left[c_{1, V} g^{\mu \alpha}-\frac{c_{2, V}}{m_{Z}^{2}}\left(-g^{\mu \alpha} k \cdot q+k^{\mu} q^{\alpha}\right)\right]
$$

Simplified new physics model

New scalar

$$
\begin{aligned}
V(\phi, H) & =\lambda_{1} C_{i j k l}^{1}\left(H^{i} H^{\dagger j}\right)\left(\phi^{k} \phi^{\dagger l}\right)+\lambda_{2} C_{i j k l}^{2}\left(\phi^{\dagger l} H^{i}\right)\left(\phi^{k} H^{\dagger j}\right)+\lambda_{3} C_{i j k l}^{3}\left(\phi^{\dagger l} H^{\dagger j}\right)\left(\phi^{k} H^{i}\right) \\
& +\lambda_{4} C_{i j k l}^{4}\left(\phi^{l} H^{j}\right)\left(\phi^{k} H^{i}\right)+\lambda_{5} C_{i j k l}^{5}\left(H^{i} H^{j}\right)\left(\phi^{l} \phi^{k}\right) \\
& +\lambda_{6} C_{i j k l}^{6}\left(\phi^{l} H^{\dagger j}\right)\left(\phi^{k} H^{i}\right)+\lambda_{7} C_{i j k l}^{7}\left(\phi^{\dagger l} H^{j}\right)\left(\phi^{k} H^{i}\right) \\
& +\lambda_{8} C_{i j k l}^{8}\left(H^{i} H^{\dagger j}\right)\left(\phi^{k} \phi^{l}\right)+\lambda_{9} C_{i j k l}^{9}\left(H^{i} H^{j}\right)\left(\phi^{k} \phi^{\dagger l}\right) \\
& +\lambda_{10} C_{i j k l}^{10}\left(H^{\dagger i} H^{\dagger j}\right)\left(\phi^{k} \phi^{l}\right)+h . c .+\cdots .
\end{aligned}
$$

Focusing on

$$
\lambda C_{i j k l}\left(\phi^{\dagger l} H^{i}\right)\left(\phi^{k} H^{\dagger j}\right)
$$

New vector fermions

$$
\Delta \mathcal{L}=\bar{F}\left(i D-M_{F}\right) F+\bar{\chi}\left(i D D-M_{\chi}\right) \chi+y C_{i j k} \bar{F}^{i} \chi^{j} H^{k}+\text { h.c. }
$$

Weak and Hypercharge Quantum Numbers of ϕ

Weak and Hypercharge Quantum Numbers of F

$$
M_{i}-M_{F}= \begin{cases} \pm \frac{y v}{\sqrt{2}} \sqrt{\frac{F-i}{2 F}}, & \text { for } \chi=F-\frac{1}{2} \\ \pm \frac{y v}{\sqrt{2}} \sqrt{\frac{F+1+i}{2 F+2}}, & \text { for } \chi=F+\frac{1}{2}\end{cases}
$$

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ ZH: Scalar Loop

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow Z H:$ Fermion Loop

Summary

It is hard to probe DM models with nearly degenerate mass spectrum

Mono-jet (photon)
 + MET

One could probe the loop effects of light NP particles, e.g.

$$
\begin{array}{ll}
F=S \pm 1 / 2 & y C_{i j k} S^{i} \bar{\mu}_{L}^{k} F^{j}+h . c . \\
F=S & y C_{i j} S^{i} \bar{\mu}_{R} F^{j}+h . c .
\end{array}
$$

The e+e- collider with 10^{-3} Precision can probe certain parameter spaces of NP models

Increasing c.m. energy would improve the sensitivity significantly

