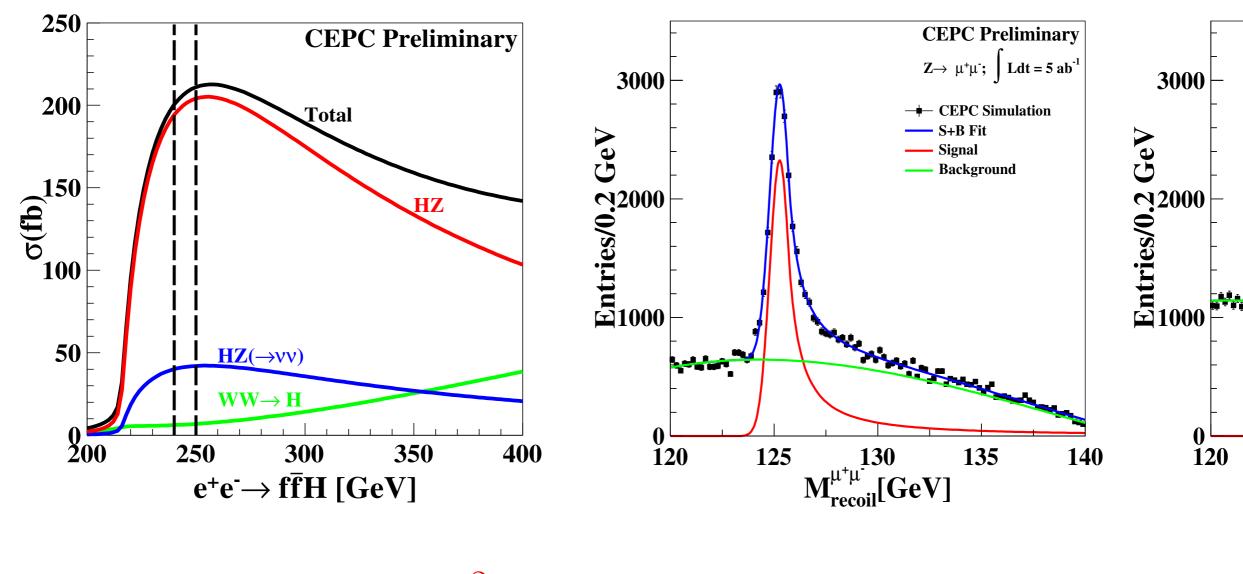


Searching exotic decay channels of the SM Higgs boson at CEPC

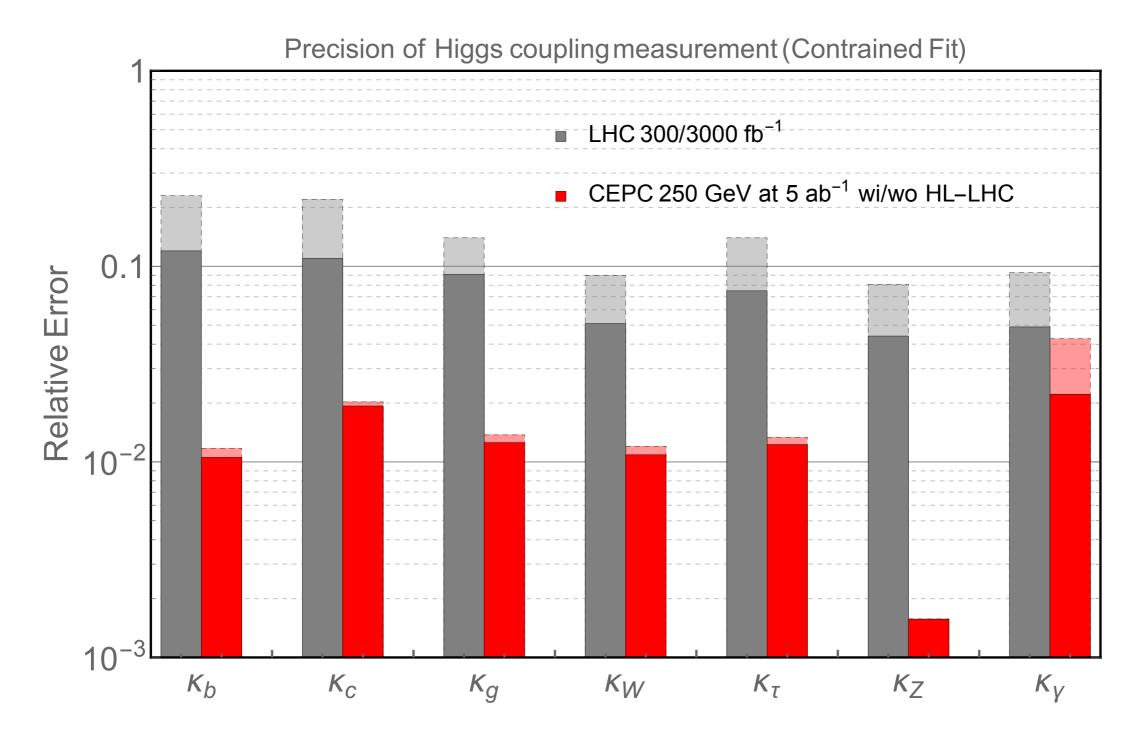

Hao Zhang

University of California, Santa Barbara For CEPC-SPPC Symposium, Apr 08-09, 2016, Beijing

Base on the work in collaboration with Zhen Liu and Lian-Tao Wang.

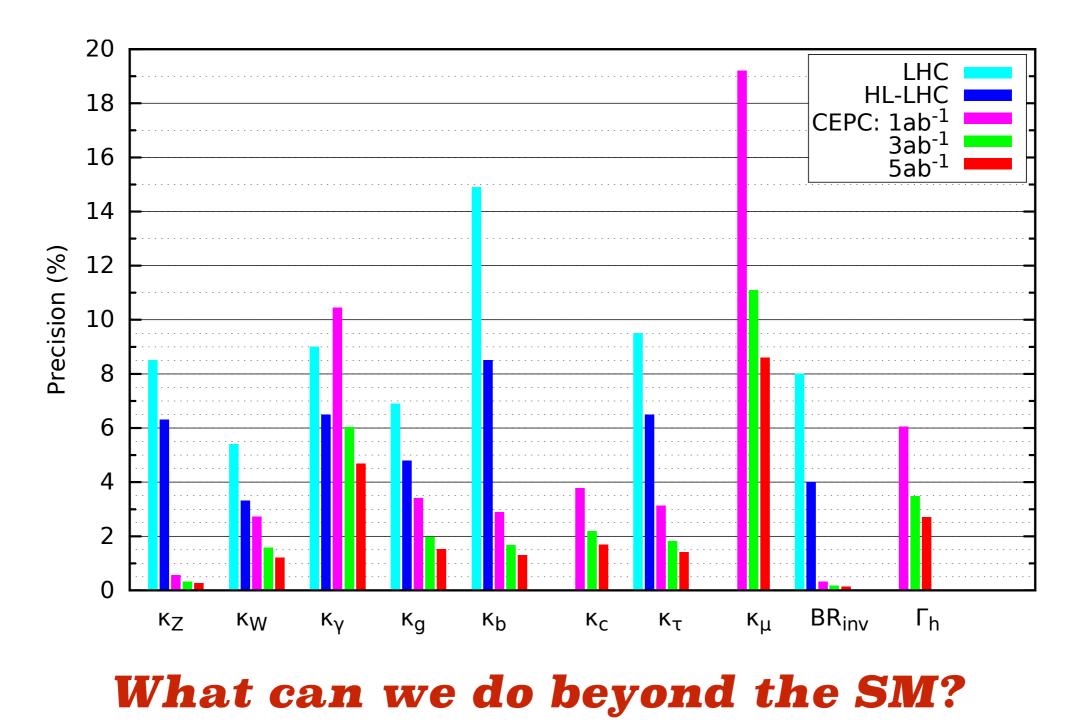
 Z^* CEPC: a Higgs factory

• More than 1,000,000 ZH signal events in the SM!

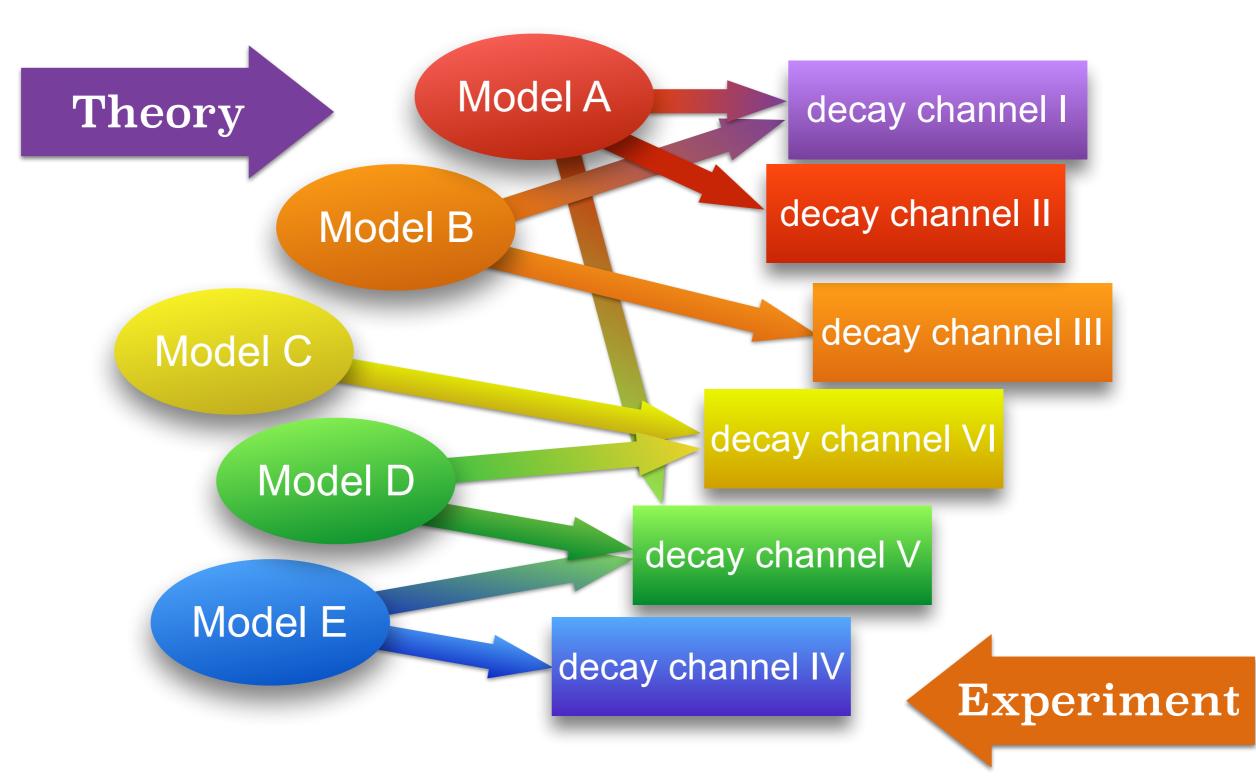


 $m_{\text{recoil}}^2 \equiv \left(\sqrt{s} - E_{f\bar{f}}\right)^2 - \overrightarrow{p}_{f\bar{f}}^2 = s - 2E_{f\bar{f}}\sqrt{s} + m_{f\bar{f}}^2$

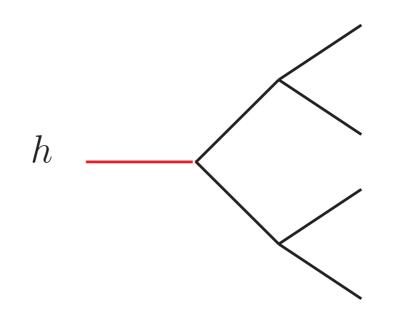
CEPC: a Higgs factory


• The combination of different Z decay modes gives:

CEPC: a Higgs factory

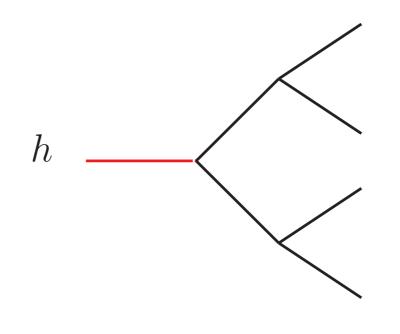

• The combination of different Z decay modes gives:

- Light exotic particles weakly couple to the SM sector:
 - SUSY model: MSSM, NMSSM, ...
 - Warped Extra Dimension model: light radion;
 - Hidden valley with Higgs boson as the mediator: "Higgs portal";
 - Dark matter: dark force, ...
 - Bayrogenesis: exotic light scalar;
 - Neutrino mass: *N*-loop radiative seasaw;



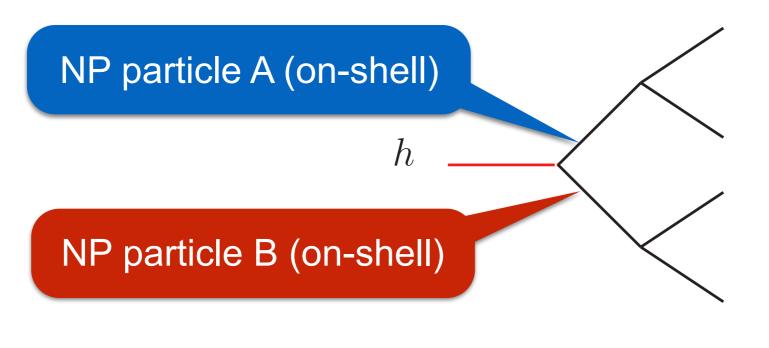
The dictionary links models and signals.

- Phenomenology: investigate the detail of the signals.
- Topology \Rightarrow Insert fields \Rightarrow signals at CEPC.
- Example:



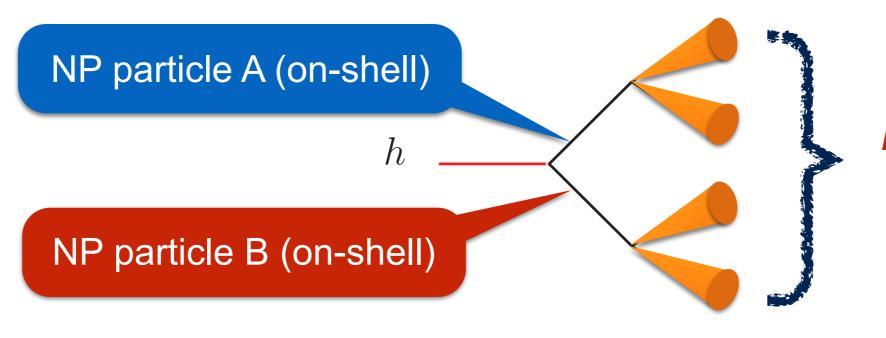
 $h \to 2 \to 4$

- Phenomenology: investigate the detail of the signals.
- Topology \Rightarrow Insert fields \Rightarrow signals at CEPC.
- Example:



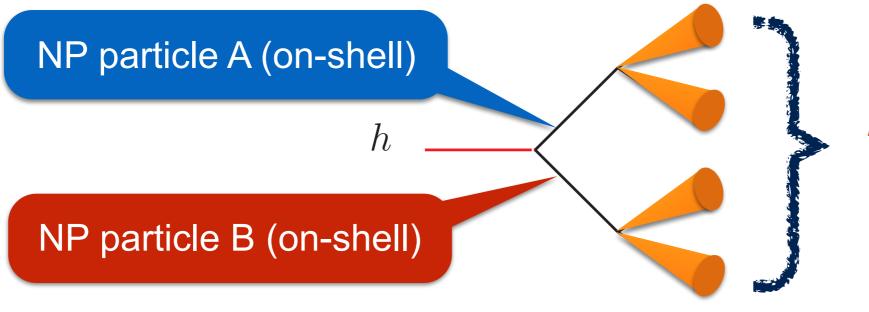
 $h \to 2 \to 4$

- Phenomenology: investigate the detail of the signals.
- Topology \Rightarrow Insert fields \Rightarrow signals at CEPC.
- Example:



- Phenomenology: investigate the detail of the signals.
- Topology \Rightarrow Insert fields \Rightarrow signals at CEPC.
- Example:

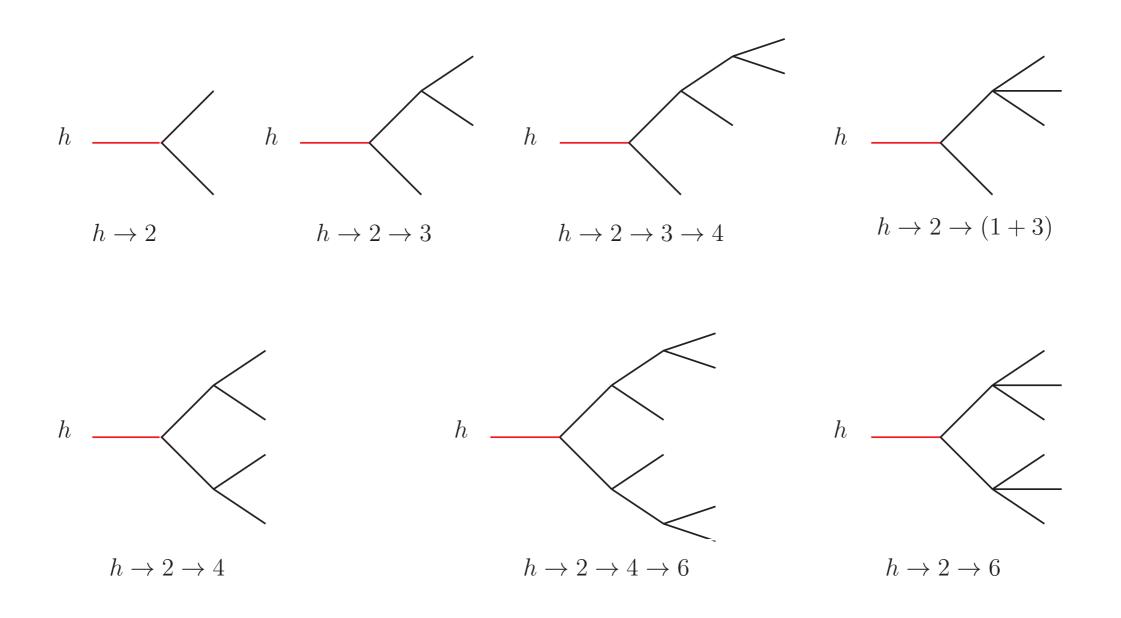
Insert fields


SM particles measured by the detector, dark matter

 $h \rightarrow 2 \rightarrow 4$

- Some assumptions:
 - The first decay is two-body decay;
 - In the final state, there are only SM particles or missing energy.

Insert fields



SM particles measured by the detector, dark matter

 $h \to 2 \to 4$

- Some assumptions:
 - The first decay is two-body decay;
 - In the final state, there are only SM particles or missing energy.

• What can we do with HL-LHC?

PHYSICAL REVIEW D 90, 075004 (2014) Exotic decays of the 125 GeV Higgs boson David Curtin, ^{1,a} Rouven Essig, ^{1,b} Stefania Gori, ^{2,3,4,c} Prerit Jaiswal, ^{5,d} Andrey Katz, ^{6,e} Tao Liu, ^{7,f} Zhen Liu, ^{8,g} David McKeen, ^{9,10,h} Jessie Shelton, ^{6,i} Matthew Strassler, ^{6,j} Ze'ev Surujon, ^{1,k} Brock Tweedie, ^{8,11,1} and Yi-Ming Zhong^{1,m}

• For some channels the results are bad.

TABLE XIII. As in Table XII, estimates for various processes in $h \rightarrow aa$ if a decays only to SM gauge bosons through loops. The central columns show the case where the couplings are generated by initially degenerate SU(5) multiplets; the right columns show the case where the $a \rightarrow \gamma\gamma$ rate is enhanced by a factor of 10. An asterisk denotes that all 14 TeV estimates shown require 300 fb⁻¹ of data.

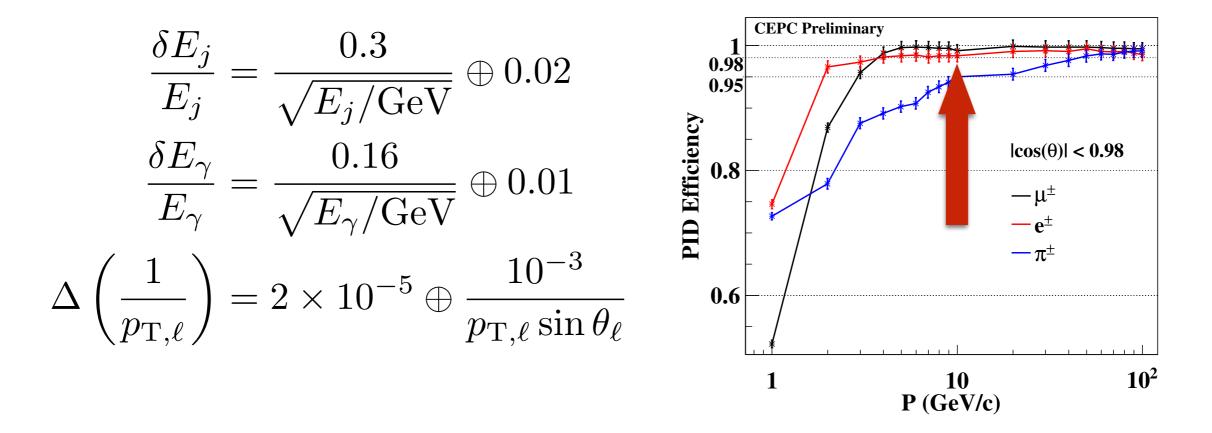
			Br(a	$\rightarrow \gamma \gamma) \approx 0.004$	Br(a	$\rightarrow \gamma \gamma) \approx 0.04$	
Decay mode \mathcal{F}_i	Projected/current 2σ limit on Br(\mathcal{F}_i) 7 + 8 [14] TeV	Production mode	$\frac{\text{Br}(\mathcal{F}_i)}{\text{Br}(\text{non-SM})}$	Limit on $\frac{\sigma}{\sigma_{SM}} \cdot Br(non-SM)$ 7 + 8 [14] TeV	$\frac{\text{Br}(\mathcal{F}_i)}{\text{Br}(\text{non-SM})}$	Limit on $\frac{\sigma}{\sigma_{SM}} \cdot Br(non-SM)$ 7 + 8 [14] TeV	Comments
jjjj	> 1 [0.1*]	W	0.99	> 1 [0.1*]	0.92	> 1 [0.1*]	Theory study [220,269], Sec. VII

• There should be a list for CEPC.

			_		
/	Decay Topologies	Decay mode \mathcal{F}_i	-	Decay Topologies	Decay mode \mathcal{F}_i
	$h \rightarrow 2$	$h \to \not\!\!\!E_{\mathrm{T}}$	-	$h \rightarrow 2 \rightarrow 4$	$h \to (b\bar{b})(b\bar{b})$
\backslash	$h \rightarrow 2 \rightarrow 3$	$h \to \gamma + \not\!\!\! E_{\mathrm{T}}$	-		$h \to (b\bar{b})(\tau^+\tau^-)$
		$h \to (b\bar{b}) + E_{\mathrm{T}}$			$h \to (b\bar{b})(\mu^+\mu^-)$
		$h \rightarrow (jj) + \not\!\!\!E_{\mathrm{T}}$		\sim	$h \to (\tau^+ \tau^-)(\tau^+ \tau^-)$
		$h \to (\tau^+ \tau^-) + \not\!\!\!E_{\rm T}$		\rightarrow	$h \to (\tau^+ \tau^-)(\mu^+ \mu^-)$
	\mathbf{i}	$h \to (\gamma \gamma) + \not\!\!\!E_{\mathrm{T}}$			$h \to (jj)(jj)$
		$h \to (\ell^+ \ell^-) + \not\!\!E_{\mathrm{T}}$	_		$h \to (jj)(\gamma\gamma)$
	$h \rightarrow 2 \rightarrow 3 \rightarrow 4$	$h \rightarrow (bb) + E_{\mathrm{T}}$			$h \to (jj)(\mu^+\mu^-)$
		$h \to (jj) + \not\!\!\!E_{\mathrm{T}}$			$h \to (\ell^+ \ell^-)(\ell^+ \ell^-)$
		$h \to (\tau^+ \tau^-) + \not\!\!\!E_{\rm T}$			$h \to (\ell^+ \ell^-)(\mu^+ \mu^-)$
		$h \rightarrow (\gamma \gamma) + \not\!\!E_{\mathrm{T}}$			$h \to (\mu^+ \mu^-)(\mu^+ \mu^-)$
		$h \to (\ell^+ \ell^-) + \not\!\!E_{\rm T}$			$h ightarrow (\gamma \gamma)(\gamma \gamma)$
	$b \rightarrow 0 \rightarrow (1 + 2)$	$\frac{h \to (\mu^+ \mu^-) + \not\!\!E_{\rm T}}{h \to h \bar{h} + \not\!\!E_{\rm T}}$	\langle		$h \to \gamma \gamma + \not\!\!\!E_{\mathrm{T}}$
	$h \to 2 \to (1+3)$	$egin{array}{l} h ightarrow bb + ot\!$		$h \rightarrow 2 \rightarrow 4 \rightarrow 6$	$h \to (\ell^+ \ell^-)(\ell^+ \ell^-) + \not\!\!\!E_{\mathrm{T}}$
	\leftarrow	$h \to jj + \not\!$			$h \to (\ell^+ \ell^-) + \not\!\!E_{\mathrm{T}} + X$
		$h \rightarrow \gamma \gamma + E_{\mathrm{T}}$		$h \rightarrow 2 \rightarrow 6$	$h \to \ell^+ \ell^- \ell^+ \ell^- + \not\!\!\!E_{\rm T}$
		$h \to \ell^+ \ell^- + E_{\rm T}$		\leftarrow	$h \to \ell^+ \ell^- + \not\!\!\!E_{\mathrm{T}} + X$
				\sim	
				\sim	

• There should be a list for CEPC.

/	Decay Topologies	Decay mode \mathcal{F}_i	Decay Topologies	Decay mode \mathcal{F}_i
	$h \rightarrow 2$	$h \to \not\!\!\! E_{\mathrm{T}}$	$h \rightarrow 2 \rightarrow 4$	$h o (b\bar{b})(b\bar{b})$
\backslash	$h \rightarrow 2 \rightarrow 3$	$h \to \gamma + \not\!\!\! E_{\mathrm{T}}$	-	$h \to (b\bar{b})(\tau^+\tau^-)$
		$h \to (b\bar{b}) + E_{\mathrm{T}}$		$h \to (b\bar{b})(\mu^+\mu^-)$
		$h \to (jj) + \not\!\!\!E_{\mathrm{T}}$		$h \to (\tau^+ \tau^-)(\tau^+ \tau^-)$
		$h \to (\tau^+ \tau^-) + \not\!\!\!E_{\rm T}$		$h \to (\tau^+ \tau^-)(\mu^+ \mu^-)$
	\backslash	$h \to (\gamma \gamma) + \not\!\!\!E_{\mathrm{T}}$		$h \to (jj)(jj)$
		$h \to (\ell^+ \ell^-) + \not\!\!E_{\mathrm{T}}$		$h ightarrow (jj)(\gamma\gamma)$
	$h \to 2 \to 3 \to 4$	$h \rightarrow (bb) + E_{\mathrm{T}}$	~05	$h \rightarrow (jj)(\mu^+\mu^-)$
		$h \rightarrow (jj) + E_{T}$		$h \to (\ell^+ \ell^-)(\ell^+ \ell^-)$
		$h \to (\tau^+ \tau^-) - \not \!$		$h \to (\ell^+ \ell^-)(\mu^+ \mu^-)$
		$h \rightarrow (\gamma \gamma) + E_{\mathrm{T}}$		$h \to (\mu^+ \mu^-)(\mu^+ \mu^-)$
		$h \to (\ell^+ \ell^-) + \not\!\!E_{\rm T}$		$h ightarrow (\gamma \gamma) (\gamma \gamma)$
	$b \rightarrow 2 \rightarrow (1+2)$	$\frac{h \to (\mu^+ \mu^-) + \not\!\!E_{\rm T}}{h \to h \bar{h} + \not\!\!\!E}$	\langle	$h \to \gamma \gamma + \not\!\!\!E_{\mathrm{T}}$
	$h \to 2 \to (1+3)$	$h ightarrow bb + ot\!$	$h \to 2 \to 4 \to 6$	$h \to (\ell^+ \ell^-)(\ell^+ \ell^-) + \not\!\!\!E_{\mathrm{T}}$
	\leftarrow	$h \rightarrow JJ + \not\!$		$h \to (\ell^+ \ell^-) + \not\!\!E_{\mathrm{T}} + X$
		$h ightarrow \gamma \gamma + E_{ m T}$	$\checkmark h \rightarrow 2 \rightarrow 6$	$h \to \ell^+ \ell^- \ell^+ \ell^- + \not\!\!\!E_{\rm T}$
		$h \rightarrow \ell^+ \ell^- + E_{\rm T}$	\leftarrow	$h \to \ell^+ \ell^- + \not\!\!\!E_{\mathrm{T}} + X$
	I	$\gamma \gamma $		

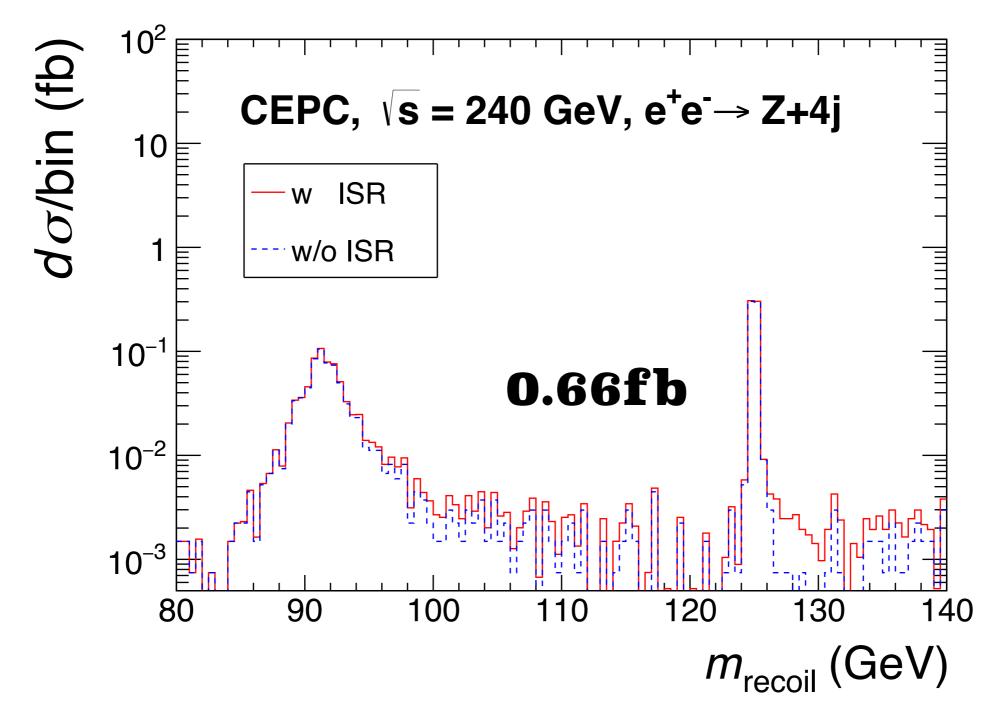

- An example:
 - $h \rightarrow 2 \rightarrow 4$
 - Insert light (pseudo)scalar (a, s) or vector boson (Z').
 - $h \rightarrow ss(aa) \rightarrow (jj)(jj), h \rightarrow Z'Z' \rightarrow (jj)(jj).$
 - Effective Lagrangian:

$$\mathcal{L}_{\text{eff}} = \sqrt{2}\varepsilon_s vhss + \sqrt{2}\varepsilon_a vhaa + \varepsilon_1 g'_1 vhZ'_{1\mu} Z'^{\mu}_1 + \varepsilon_2 g'_2 vhZ'_{2\mu} Z'^{\mu}_2$$
$$+ y_s s\bar{f}f + iy_a a\bar{f}\gamma_5 f + \frac{\alpha_s c_s}{\Lambda_s} sG_{\mu\nu} G^{\mu\nu} + \frac{\alpha_s c_a}{\Lambda_a} aG_{\mu\nu} \tilde{G}^{\mu\nu}$$
$$+ g'_1 Z'_{1\mu} \bar{f}\gamma^{\mu} f + g'_2 Z'_{2\mu} \bar{f}\gamma^{\mu} P_R f$$

Spin correlations are kept for model distinguishing.

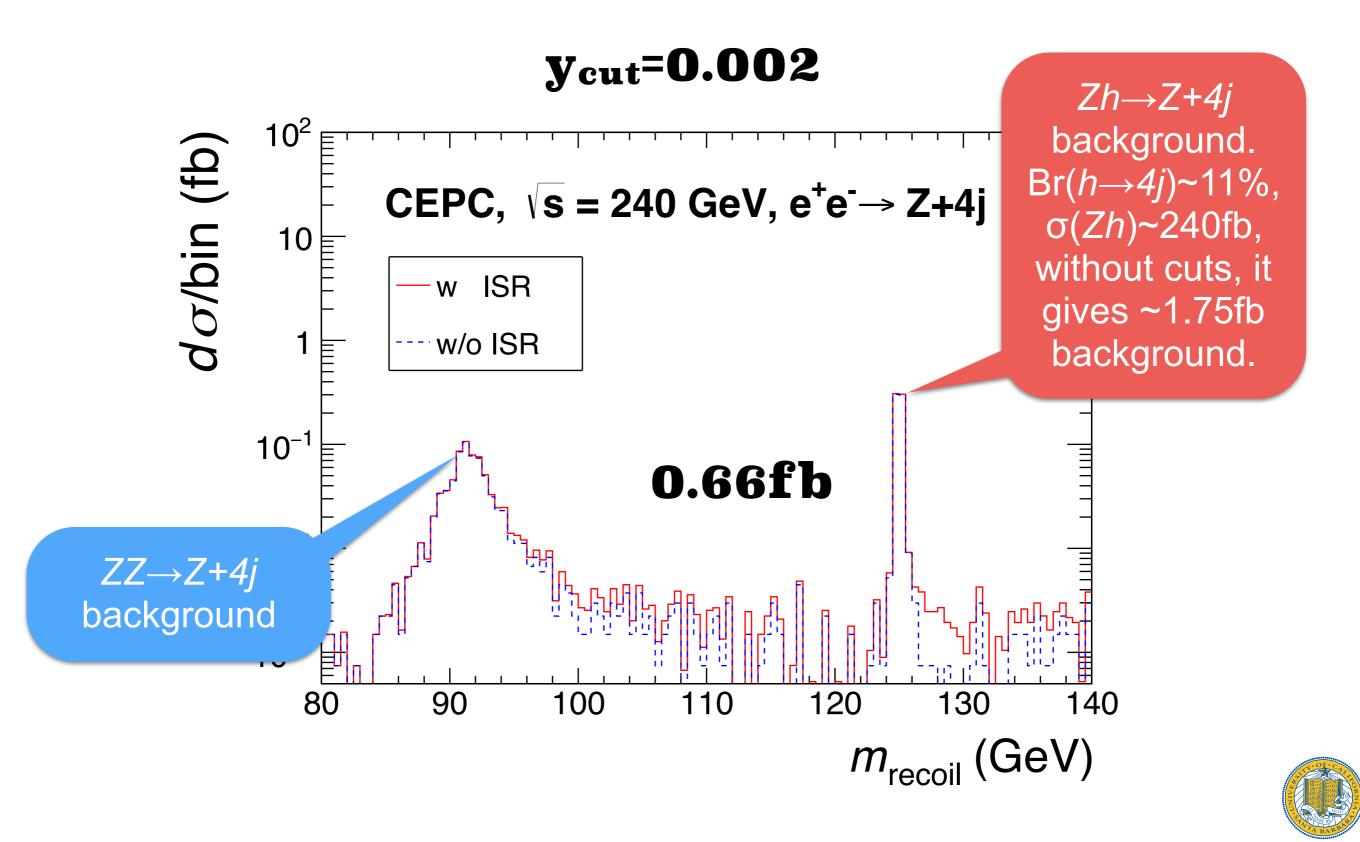
- An example:
 - Parton level simulation.
 - Detector effects (energy resolution, PID efficiency):

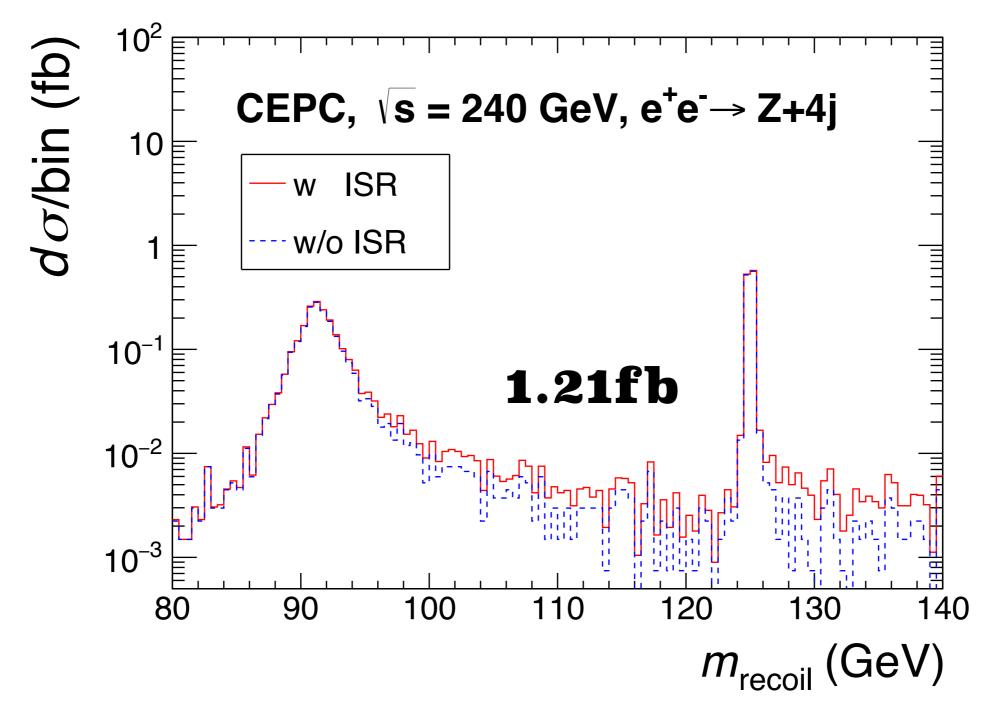
- An example:
 - Parton level simulation.
 - Main SM backgrounds: $e^+e^- \rightarrow Z_{jjjj} + X$.
 - Systematic error of the simulation due to the ISR effect. (We thank M.-Q Ruan for helpful discussion.)
 - A parton level simulation which could give a reasonable estimation of the significance with clearly error estimation is acceptable in current study.

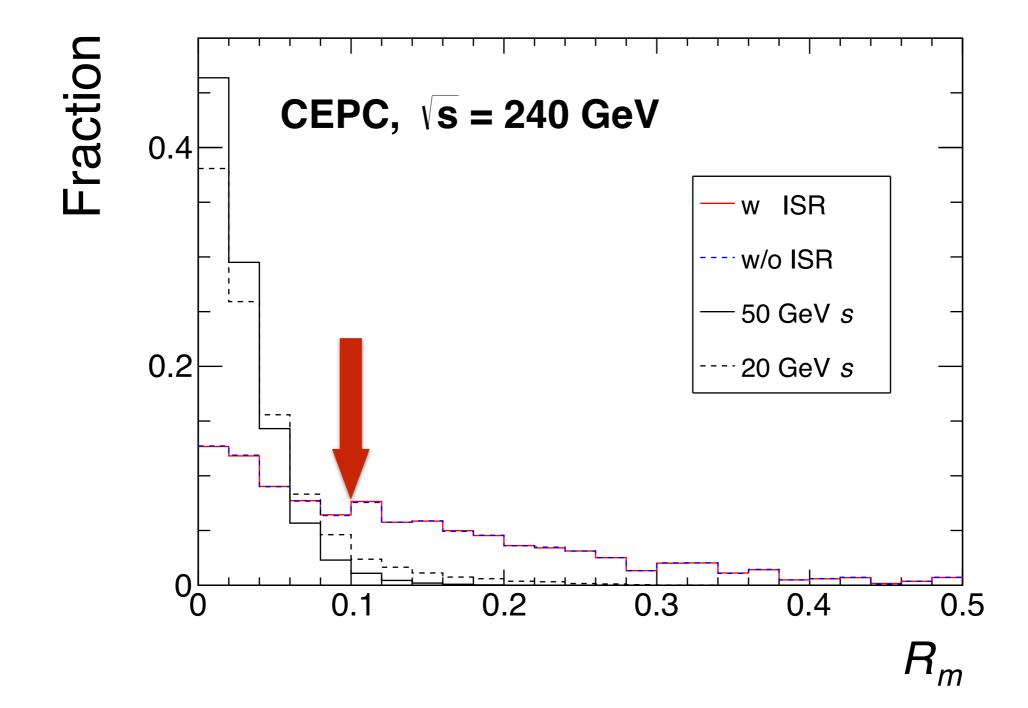

- An example:
 - Preselection cuts: $|\cos \theta_{j,\ell}| < 0.98, E_{j,\ell} > 10 \text{GeV},$

$$y_{ij} \equiv \frac{2\min\left(E_i^2, E_j^2\right)\left(1 - \cos\theta_{ij}\right)}{E_{vis}^2} > y_{\text{cut}},$$

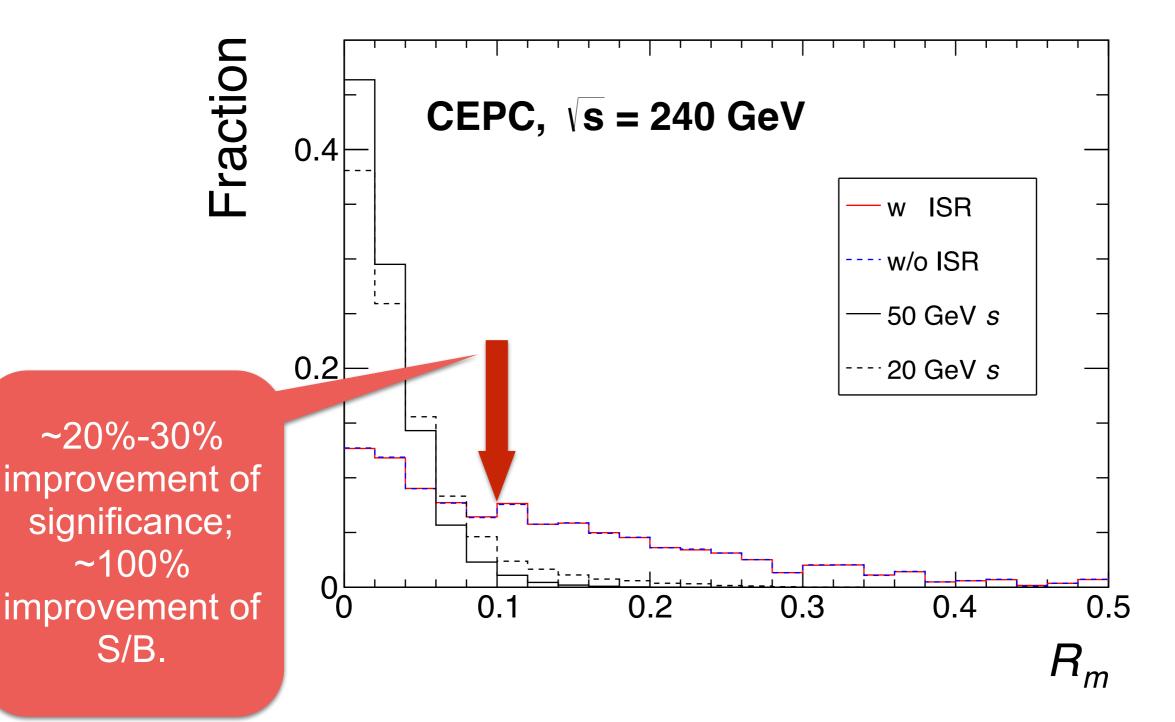
a pair of OSSF leptons, $\theta_{\ell\ell} > 80^\circ$
 $|m_{\ell\ell} - m_Z| < 10 \text{GeV}, |m_{\text{recoil}} - m_h| < 5 \text{GeV}.$


- MadGraph5_aMC@NLO.
- The ISR effect of the background is roughly mimicked by generating events with 1 additional photon (with pT>1GeV to avoid the IR divergence). (No ISR for signal events!)
- Additional cut to suppress the ISR effect: $E_{vis} > 225 \text{GeV}$.

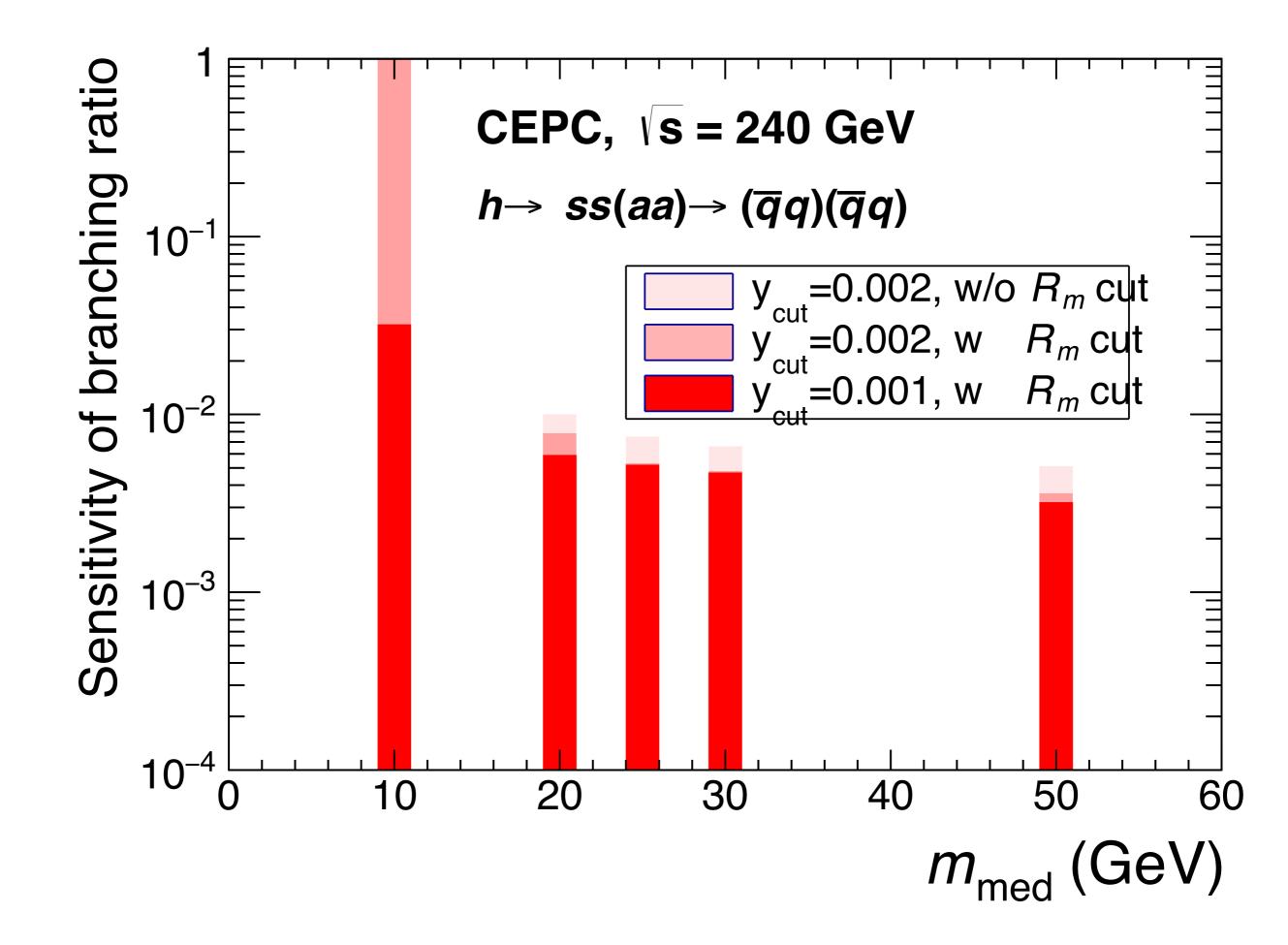

ycut=**0.002**

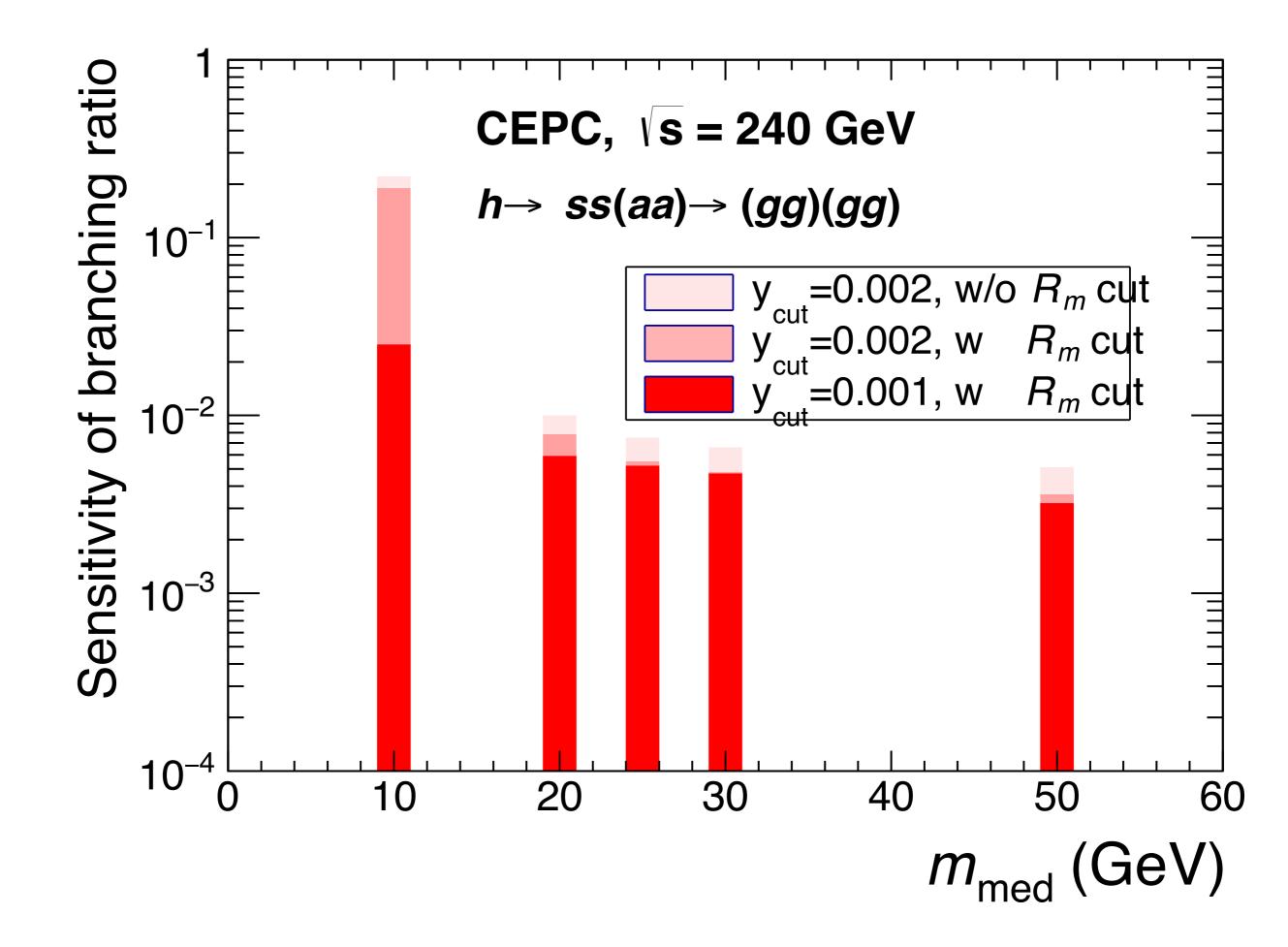


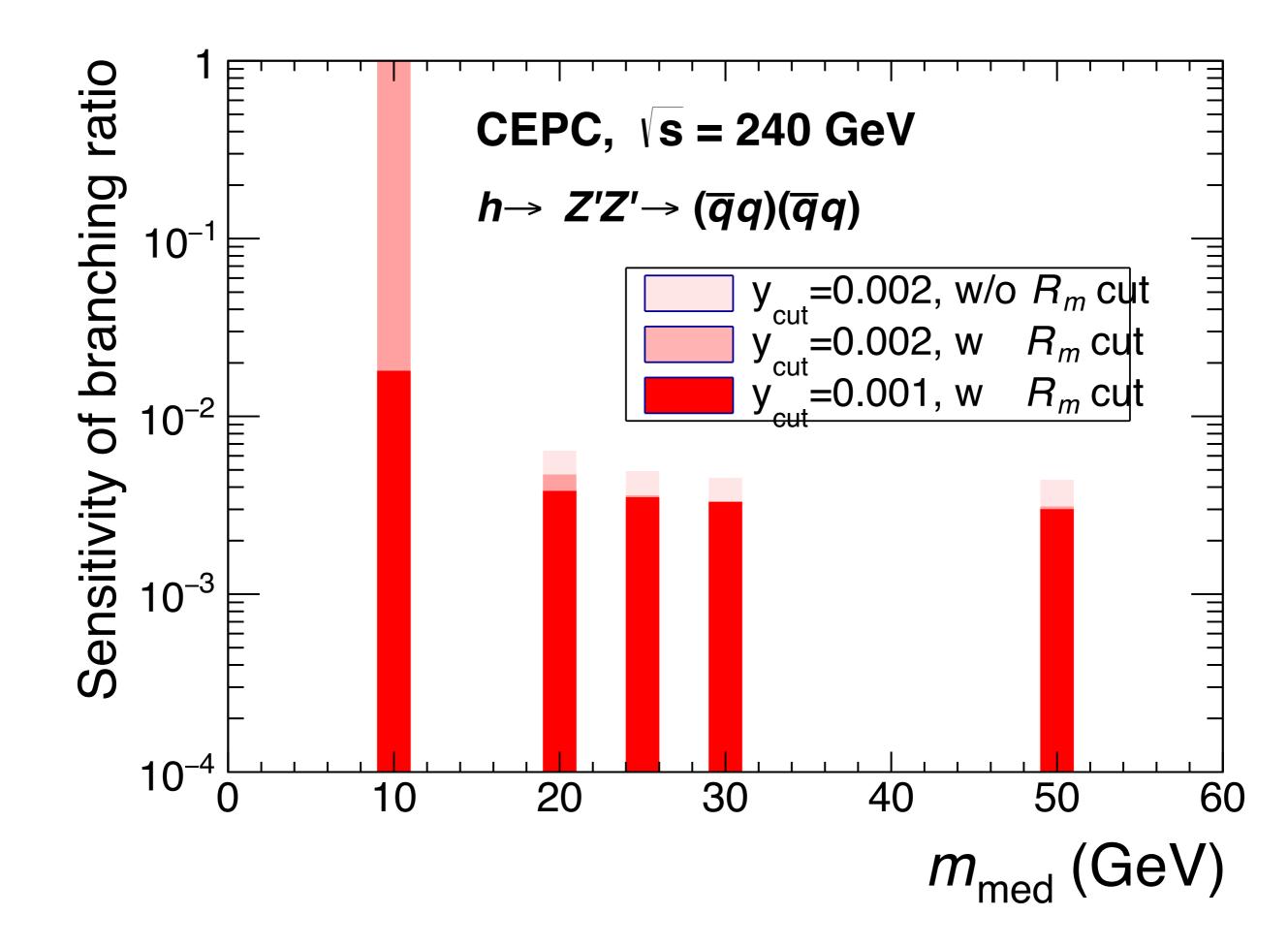
ycut=**0.001**



• Additional cut:
$$R_m \equiv \min_{\sigma \in S_4} \left(\frac{\left| m_{j_{\sigma(1)} j_{\sigma(2)}} - m_{j_{\sigma(3)} j_{\sigma(4)}} \right|}{m_{j_{\sigma(1)} j_{\sigma(2)}} + m_{j_{\sigma(3)} j_{\sigma(4)}}} \right)$$


• Additional cut:
$$R_m \equiv \min_{\sigma \in S_4} \left(\frac{\left| m_{j_{\sigma(1)} j_{\sigma(2)}} - m_{j_{\sigma(3)} j_{\sigma(4)}} \right|}{m_{j_{\sigma(1)} j_{\sigma(2)}} + m_{j_{\sigma(3)} j_{\sigma(4)}}} \right)$$




• 3σ sensitivity at $5ab^{-1}$ CEPC.

	$m_{\rm med} \ ({\rm GeV})$	10	20	25	30	50
$sar{f}f, aar{f}\gamma_5 f$	$y_{\rm cut} = 0.002$	> 100%	0.78%	0.53%	0.48%	0.36%
	$y_{\rm cut} = 0.001$	3.2%	0.59%	0.52%	0.47%	0.32%
$sG_{\mu\nu}G^{\mu\nu}, aG_{\mu\nu}\tilde{G}^{\mu\nu}$	$y_{\rm cut} = 0.002$	19%	0.78%	0.55%	0.48%	0.36%
	$y_{\rm cut} = 0.001$	2.5%	0.59%	0.52%	0.47%	0.32%
$V_{\mu}\bar{f}\gamma^{\mu}f, V_{\mu}\bar{f}\gamma^{\mu}P_{R}f$	$y_{\rm cut} = 0.002$	>100%	0.47%	0.36%	0.32%	0.31%
	$y_{\rm cut} = 0.001$	1.8%	0.38%	0.35%	0.33%	0.30%

• 3σ sensitivity at $5ab^{-1}$ CEPC.

	$m_{\rm med}~({\rm GeV})$	10	20	25	30	50
$sar{f}f, aar{f}\gamma_5 f$	$y_{\rm cut} = 0.002$	>100%	0.78%	0.53%	0.48%	0.36%
	$y_{\rm cut} = 0.001$	3.2%	0.59%	0.52%	0.47%	0.32%
$sG_{\mu\nu}G^{\mu\nu}, aG_{\mu\nu}\tilde{G}^{\mu\nu}$	$y_{\rm cut} = 0.002$	19%	0.78%	0.55%	0.48%	0.36%
	$y_{\rm cut} = 0.001$	2.5%	0.59%	0.52%	0.47%	0.32%
$V_{\mu}\bar{f}\gamma^{\mu}f, V_{\mu}\bar{f}\gamma^{\mu}P_{R}f$	$y_{\rm cut} = 0.002$	> 100%	0.47%	0.36%	0.32%	0.31%
	$y_{\rm cut} = 0.001$	1.8%	0.38%	0.35%	0.33%	0.30%

• HL-LHC? Four jets, very difficult!

TABLE XIII. As in Table XII, estimates for various processes in $h \rightarrow aa$ if a decays only to SM gauge bosons through loops. The central columns show the case where the couplings are generated by initially degenerate SU(5) multiplets; the right columns show the case where the $a \rightarrow \gamma\gamma$ rate is enhanced by a factor of 10. An asterisk denotes that all 14 TeV estimates shown require 300 fb⁻¹ of data.

		Br(a		$\rightarrow \gamma \gamma) \approx 0.004$	Br(a	$\rightarrow \gamma \gamma) \approx 0.04$	
Decay mode \mathcal{F}_i	Projected/current 2σ limit on Br(\mathcal{F}_i) 7 + 8 [14] TeV	Production mode	$\frac{\text{Br}(\mathcal{F}_i)}{\text{Br}(\text{non-SM})}$	Limit on $\frac{\sigma}{\sigma_{SM}} \cdot Br(non-SM)$ 7 + 8 [14] TeV	$\frac{\text{Br}(\mathcal{F}_i)}{\text{Br}(\text{non-SM})}$	Limit on $\frac{\sigma}{\sigma_{SM}} \cdot Br(non-SM)$ 7 + 8 [14] TeV	Comments
jjjj	> 1 [0.1*]	W	0.99	> 1 [0.1*]	0.92	> 1 [0.1*]	Theory study [220,269], Sec. VII

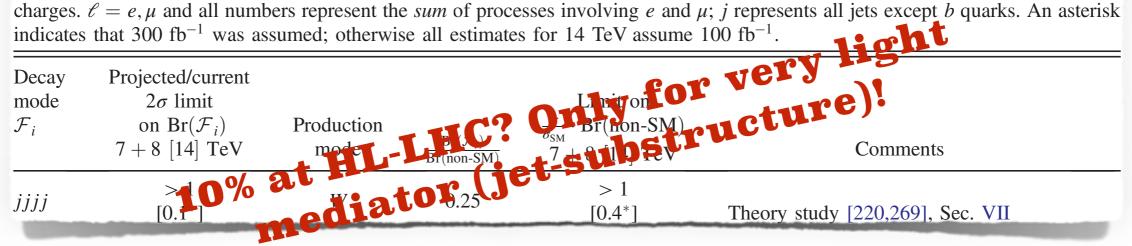
3σ sensitivity at 5ab⁻¹ CEPC.

	$m_{\rm med}~({\rm GeV})$	10	20	25	30	50
$sar{f}f, aar{f}\gamma_5 f$	$y_{\rm cut} = 0.002$	> 100%	0.78%	0.53%	0.48%	0.36%
	$y_{\rm cut} = 0.001$	3.2%	0.59%	0.52%	0.47%	0.32%
$sG_{\mu\nu}G^{\mu\nu}, aG_{\mu\nu}\tilde{G}^{\mu\nu}$	$y_{\rm cut} = 0.002$	19%	0.78%	0.55%	0.48%	0.36%
	$y_{\rm cut} = 0.001$	2.5%	0.59%	0.52%	0.47%	0.32%
$V_{\mu}\bar{f}\gamma^{\mu}f, V_{\mu}\bar{f}\gamma^{\mu}P_{R}f$	$y_{\rm cut} = 0.002$	> 100%	0.47%	0.36%	0.32%	0.31%
	$y_{\rm cut} = 0.001$	1.8%	0.38%	0.35%	0.33%	0.30%

• HL-LHC? Four jets, very difficult!

TABLE XIV. As in Table XII, estimates for various processes in $h \to Z_D Z_D$ if $m_{Z_D} > 2m_b$ and couplings are proportional to electric charges. $\ell = e, \mu$ and all numbers represent the *sum* of processes involving *e* and μ ; *j* represents all jets except *b* quarks. An asterisk indicates that 300 fb⁻¹ was assumed; otherwise all estimates for 14 TeV assume 100 fb⁻¹.

Decay mode \mathcal{F}_i	Projected/current 2σ limit on Br(\mathcal{F}_i) 7 + 8 [14] TeV	Production mode	$\frac{\text{Br}(\mathcal{F}_i)}{\text{Br}(\text{non-SM})}$	Limit on $\frac{\sigma}{\sigma_{SM}} \cdot Br(non-SM)$ 7 + 8 [14] TeV	Comments
jjjj	> 1 [0.1*]	W	0.25	> 1 [0.4*]	Theory study [220,269], Sec. VII

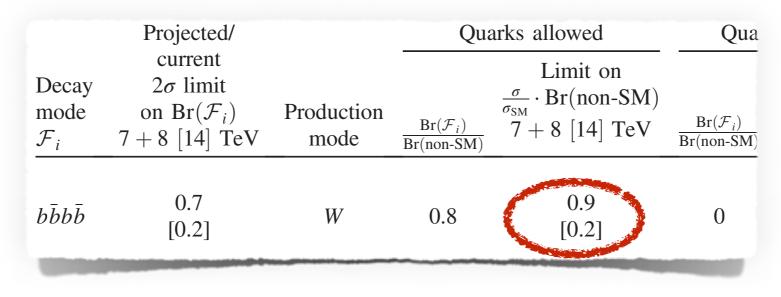


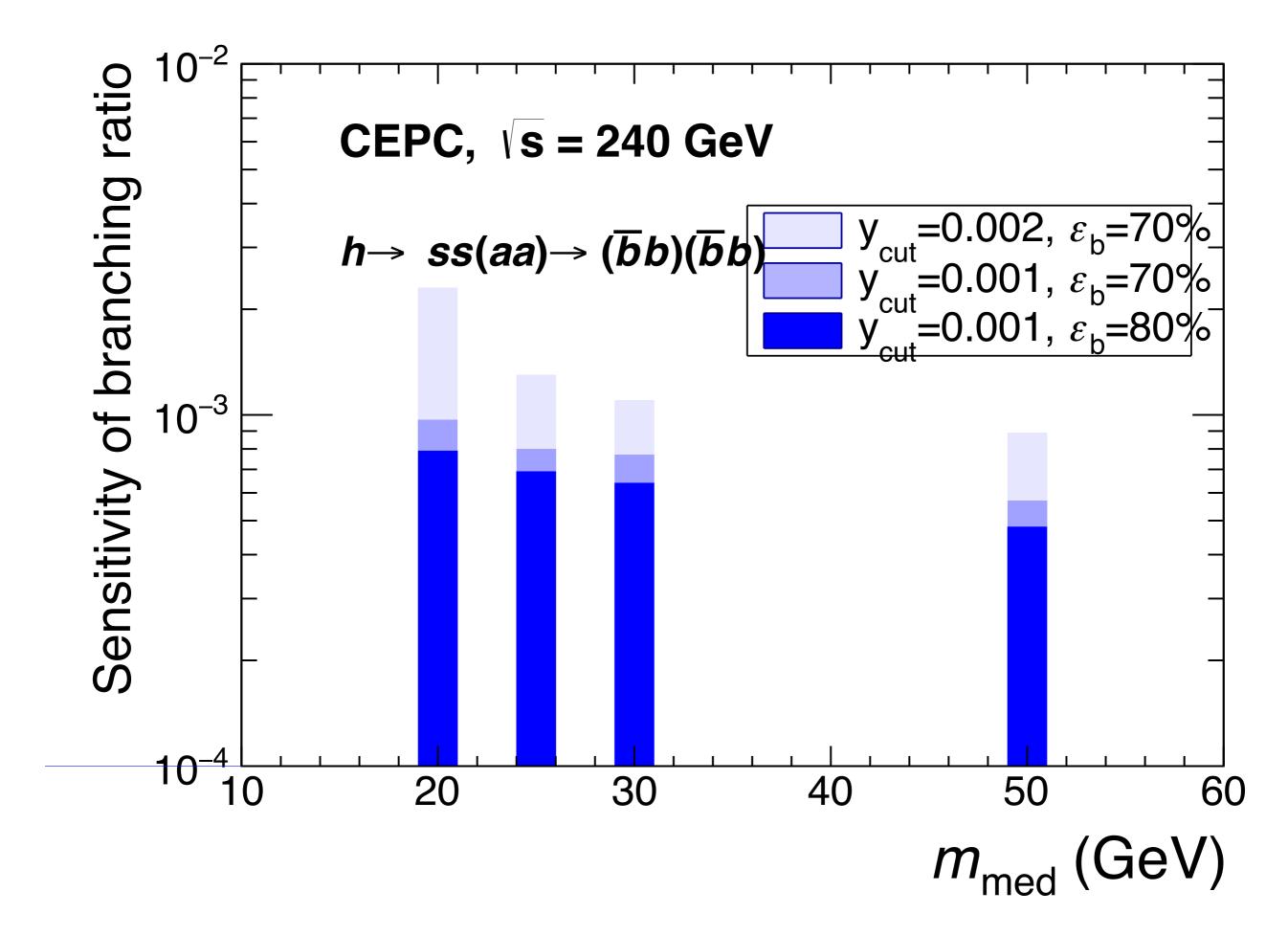
 3σ sensitivity at 5ab⁻¹ CEPC. ullet

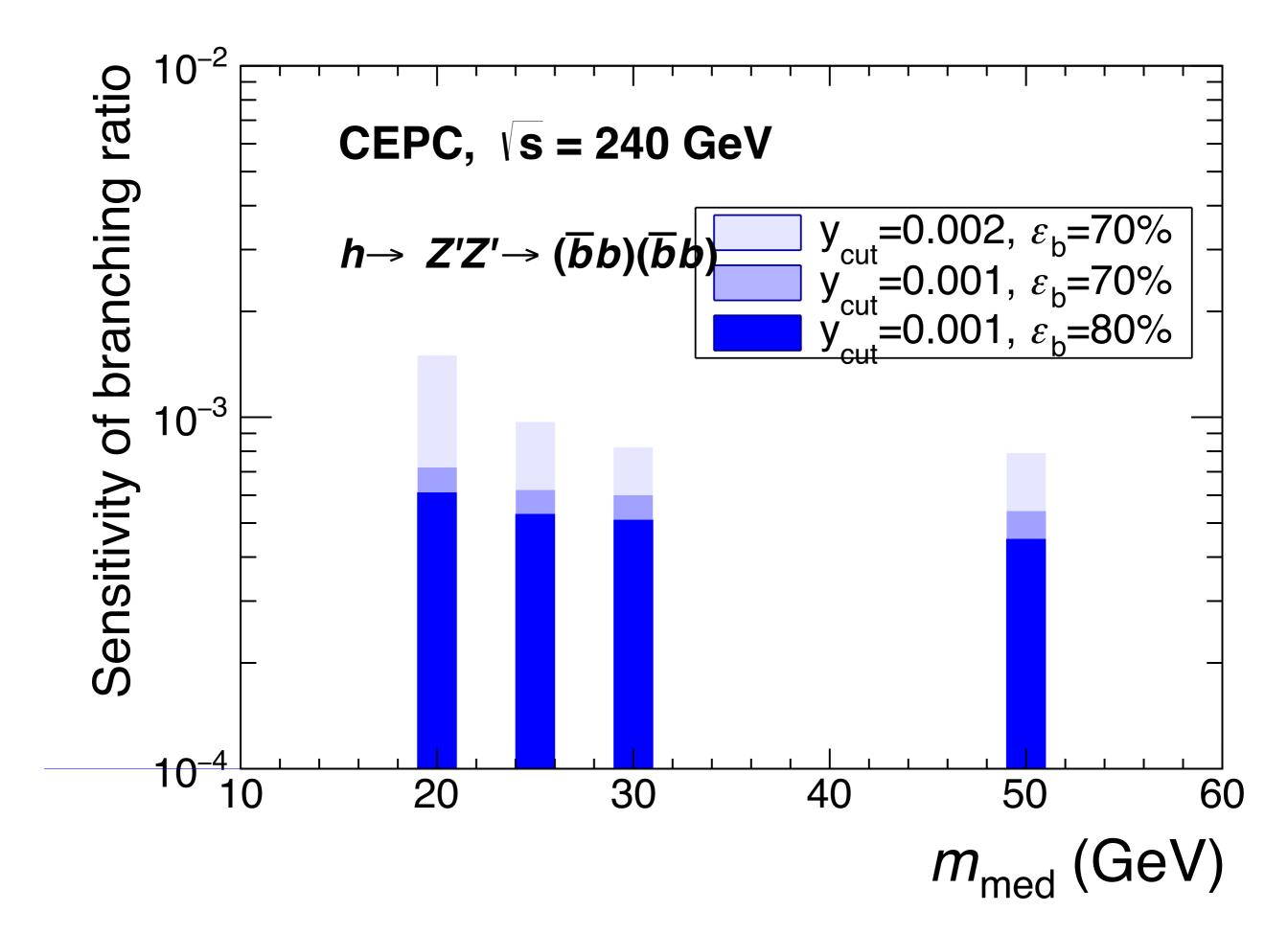
	$m_{\rm med}~({\rm GeV})$	10	20	25	30	50
$sar{f}f, aar{f}\gamma_5 f$	$y_{\rm cut} = 0.002$	> 100%	0.78%	0.53%	0.48%	0.36%
	$y_{\rm cut} = 0.001$	3.2%	0.59%	0.52%	0.47%	0.32%
$sG_{\mu\nu}G^{\mu\nu}, aG_{\mu\nu}\tilde{G}^{\mu\nu}$	$y_{\rm cut} = 0.002$	19%	0.78%	0.55%	0.48%	0.36%
	$y_{\rm cut} = 0.001$	2.5%	0.59%	0.52%	0.47%	0.32%
$V_{\mu}\bar{f}\gamma^{\mu}f, V_{\mu}\bar{f}\gamma^{\mu}P_{R}f$	$y_{\rm cut} = 0.002$	>100%	0.47%	0.36%	0.32%	0.31%
	$y_{\rm cut} = 0.001$	1.8%	0.38%	0.35%	0.33%	0.30%

HL-LHC? Four jets, very difficult! •

TABLE XIV. As in Table XII, estimates for various processes in $h \rightarrow Z_D Z_D$ if $m_{Z_D} > 2m_b$ and couplings are proportional to electric charges. $\ell = e, \mu$ and all numbers represent the sum of processes involving e and μ ; j represents all jets except b quarks. An asterisk indicates that 300 fb⁻¹ was assumed; otherwise all estimates for 14 TeV assume 100 fb⁻¹




• 3σ sensitivity of $h \rightarrow ss(aa) \rightarrow (bb)(bb), h \rightarrow Z'Z' \rightarrow (bb)(bb).$


	mass of the mediator (GeV)	20	25	30	50
$\overline{s}\overline{f}f, a\overline{f}\gamma_5 f$	$y_{\rm cut} = 0.002, \epsilon_b = 70\%$	0.23%	0.13%	0.11%	0.089%
	$y_{\rm cut} = 0.002, \epsilon_b = 80\%$	0.13%	0.072%	0.061%	0.049%
	$y_{\rm cut} = 0.001, \epsilon_b = 70\%$	0.097%	0.080%	0.077%	0.057%
	$y_{\rm cut} = 0.001, \epsilon_b = 80\%$	0.079%	0.069%	0.064%	0.048%
$V_{\mu}ar{f}\gamma^{\mu}f, V_{\mu}ar{f}\gamma^{\mu}P_Rf$	$y_{\rm cut} = 0.002, \epsilon_b = 70\%$	0.15%	0.097%	0.082%	0.079%
	$y_{\rm cut} = 0.002, \epsilon_b = 80\%$	0.084%	0.052%	0.046%	0.043%
	$y_{\rm cut} = 0.001, \epsilon_b = 70\%$	0.072%	0.062%	0.060%	0.054%
	$y_{\rm cut} = 0.001, \epsilon_b = 80\%$	0.061%	0.053%	0.051%	0.045%

• HL-LHC? Four *b*-jets, also difficult!

Summary and outlook

- CEPC is a Higgs factory. 1,000,000 Higgs events with 5ab⁻¹.
- Precisely measurement of the properties of the SM Higgs boson.
- A ideal machine for studying the exotic Higgs decay channels.
- As an example, the detail of the $h \rightarrow (jj)(jj)$ channel is shown.
- More than an order of magnitude improvement can be achieved without any advanced technology.
- More channels are in progress.

Thank you!

