April 8, 2016

CEPC-SppC Symposium @ IHEP, China

Phenomenology of the Georgil
MACHACEK MODEL AT FUTURE ELECTRON-POSITRON COLLIDERS

Cheng-Wei Chiang National Central University Academia Sinica
National Center for Theoretical Sciences

Based on:
CWC, S Kanemura and KYagyu, PRD 93 (2016) 055002 (arXiv: I 5 I 0.06297 [hep-ph])

WHATTHE MODEL LOOKS LIKE

general features

- Higgs triplet models have the following features:
- type-II seesaw for Majorana neutrino mass, generated by the VEV of the new triplet scalar field;
- existence of a doubly-charged Higgs boson, leading to like-sign LNV and possibly even LFV processes at tree level;
InW a link between neutrino and LHC physics
- SM-like Higgs possibly having stronger/weaker couplings with weak bosons;
- existence of a $\mathrm{H}_{5} \pm \mathrm{W} \mp \mathrm{Z}$ vertex at tree level through mixing and proportional to v_{Δ} (only loop-induced in models such as 2HDM);
- Georgi-Machacek model with custodial symmetry allowing a larger triplet VEV v_{Δ}.

CUSTODIAL SU(2) CLASSIFICATION

VERIFYING THE MODEL

- To verify the model, it is crucial to find the entire H_{5} family:
(i) there are three charged states;
(ii) they are almost degenerate in mass;
(iii) they are CP-even;
(iv) they have correct couplings with SM particles;

Neutral Higas Couplings

- Normalize all couplings to those for SM Higgs boson (V = W,Z; F = quarks):

$$
\kappa_{F}=\frac{g_{\varphi F F}}{g_{h F F}^{\mathrm{SM}}}, \kappa_{V}=\frac{g_{\varphi V V}}{g_{h V V}^{\mathrm{SM}}}
$$

group factor that makes it possible for the entire factor

Higgs	κ_{F}	\qquad	
h	$\frac{\cos \alpha}{\sin \beta}$	$\left.\sin \beta \cos \alpha-\sqrt{\frac{8}{3}}\right) \operatorname{os} \beta \sin \alpha$	required)
H_{1}^{0}	$\frac{\sin \alpha}{\sin \beta}$	$\sin \beta \sin \alpha+\sqrt{\frac{8}{3}} \cos \beta \cos \alpha$	
H_{3}^{0}	$i \eta_{f} \cot \beta$	0	gauge-phobic
H_{5}^{0}	0	$\kappa_{W}=-\frac{\cos \beta}{\sqrt{3}} \text { and } \kappa_{Z}=\frac{2 \cos \beta}{\sqrt{3}}$	quark-phobic

$\eta_{f}=+1$ for up-type quarks and -1 for/down-type quarks and charged leptons.
independent of α;
proportional to v_{Δ}

$$
\tan \theta_{H}=\frac{2 \sqrt{2} v_{\Delta}}{v_{\phi}} \text { or } \tan \beta=\frac{v_{\phi}}{2 \sqrt{2} v_{\Delta}}
$$

DECAY PATTERN

CWC, Yagyu JHEP 2012

$$
\begin{aligned}
& \Delta m<0\left(m_{H_{5}}>m_{H_{3}}\right) \\
& H_{5}^{++} \rightarrow H_{3}^{+} W^{+}, H_{5}^{+} \rightarrow H_{3}^{+} Z / H_{3}^{0} W^{+}, H_{5}^{0} \rightarrow H_{3}^{ \pm} W^{\mp} / H_{3}^{0} Z \\
& H_{3}^{+} \rightarrow H_{1}^{0} W^{+}, H_{3}^{0} \rightarrow H_{1}^{0} Z
\end{aligned}
$$

CURRENT CONSTRAINTS

AND STUDIES FROM/FOR LHC

SIGNATURE FOR SMALLVA

- In the case of small v_{Δ}, both $\mathrm{H}^{ \pm \pm}$and $\mathrm{H}^{ \pm}$decay primarily into leptonic final states, same as the simplest Higgs triplet model in phenomenology.

PRODUCTION FOR LARGE VA

- For large $\mathrm{v}_{\Delta}, \mathrm{H}^{ \pm \pm}$couples primarily to weak bosons.
- VBF as dominant production processes for sufficiently large v_{Δ} and sufficiently large $\mathrm{M}_{\mathrm{H} \pm \pm}$.

CWC, Kuo, and Yamada JHEP 2015

- Upper curves for ++ and lower curves for --.

an experimentally less explored scenario, and unique for GM

TRANSVERSE MASS DISTRIBUTIONS

$\mathrm{Chw}^{\prime}=1.3$ with $\left(\theta_{\mathrm{H}}, \alpha\right)=\left(40^{\circ}, 55^{\circ}\right)$ and
$M_{H 5}=M_{H 3}=M_{H I}=300 \mathrm{GeV}$ inm no mass hierarchy

singly-charged
(1000

easier to determine $\mathrm{H}_{5}{ }^{ \pm \pm}$mass than the other two

CONSTRAINT FROM $\mathrm{H}_{5}{ }^{ \pm \pm}$

- ATLAS data of same-sign di-boson (light leptonic decays) events (20.3/fb, $8-\mathrm{TeV}$) can be used to put constraints on the $v_{\Delta}-\mathrm{m}_{\mathrm{H}}$ plane:
limit from 8-TeV LHC of 20.3 /fb

most severe bound on v_{Δ}

$$
\text { at } \mathrm{m}_{\mathrm{H} 5}=200 \mathrm{GeV}
$$

events from 5-plet Higgses are rejected by kinematic cuts
5σ reach at $14-\mathrm{TeV}$ LHC

more improvement in high mass region

- Results are independent of a_{12}

CONSTRAINTS FROM HIGGS DATA

- Consider the tree-dominated Higgs decays into ZZ, WW, $b b$, and $\tau \tau$ in a chi-square fit.
- Exclude y to avoid uncertainties in the loop.
- Solid: 1σ contour; dashed: 2σ contour.

CWC, Kuo, and Yamada JHEP 2015

HOW LEPTON COLLIDERS CAN HELP -
 FOCUSING ON 5-PLETS

GM@LEPTONCOLLIDER

- Although in the case of a large triplet VEV the exotic Higgs bosons have diminishing Yukawa couplings with charged leptons, the 5-plet Higgs bosons can still be produced via productions in association with weak gauge bosons that serve as promising detection channels at lepton colliders, such as ILC, Compact LC, CEPC, or the electron-positron branch of the Future Circular Collider.

```
ILC
    ECFA/DESY LC Physics Working Group Collab. 200 I
    Linear Collider American Working Group Collab. 200 I
    Linear Collider ACFA Working Group Collab. 200 I
    Moortgat-Pick et al., 20I5
Compact Linear Collider
    CLIC Physics Working Group Collab. }200
CEPC
    CEPC-SPPC Study Group Collab. 20I5
```


GM@LEPTONCOLLIDER

- It is possible to probe this sector using the uniquely featured tree-level vertex of $\mathrm{H}_{5} \pm \mathrm{W} \mp \mathrm{Z}$ at high-energy $\mathrm{e}^{+} \mathrm{e}^{-}$ colliders.
- Make use of the excellent energy resolution for jet systems to help tagging dijets from W and Z bosons.

REMARKS ABOUT H_{3} 's

- An important feature of H_{3} 's is that they have no tree-level $\mathrm{H}_{3} \mathrm{VV}$ couplings. But $\mathrm{H}_{3} \mathrm{f}^{-f}$ couplings are allowed.
- Instead, they have Yukawa couplings that are proportional to $\tan \theta_{\mathrm{H}}$ or v_{Δ} through mixing with the Higgs doublet nne their decay patterns are the same as those of the extra Higgs bosons in the Type-I 2HDM Gunion, Haber, Kane, Dawson 2000
- Their possible production mechanisms at ILC are pair production $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{H}_{3}{ }^{+} \mathrm{H}_{3}{ }^{-}$and the fermion associated

- Dedicated studies of the production and decays of H_{3} 's at LHC has been done before.

H_{5} INTERACTIONS

- There are three types of interactions which induce the decays of the 5-plet Higgs bosons at the tree level:
(i) scalar-gauge-gauge interactions,
(ii) scalar-scalar-gauge interactions, and
(iii) scalar-scalar-scalar interactions.
- When the mass of the 5-plet Higgs bosons is smaller than the total mass of the 2-body final-state bosons, one or both of the boson must be off shell.
- In our analysis, we consider up to 3 bodies in final states.

H Interactions

- Scalar-gauge-gauge interactions lead to
proportional to v_{Δ}
- Scalar-scalar-gauge interactions lead to
proportional to
weak gauge coupling
- Scalar-scalar-scalar interactions lead to
involving triple Higgs couplings

$$
\begin{aligned}
H_{5}^{ \pm \pm} & \rightarrow W^{ \pm} W^{ \pm} \\
H_{5}^{ \pm} & \rightarrow W^{ \pm} Z \\
H_{5}^{0} & \rightarrow W^{+} W^{-} / Z Z
\end{aligned}
$$

$$
\begin{aligned}
H_{5}^{ \pm \pm} & \rightarrow W^{ \pm} H_{3}^{ \pm} \\
H_{5}^{ \pm} & \rightarrow W^{ \pm} H_{3}^{0} / Z H_{3}^{ \pm} \\
H_{5}^{0} & \rightarrow W^{ \pm} H_{3}^{\mp} / Z H_{3}^{0}
\end{aligned}
$$

$$
\begin{aligned}
H_{5}^{ \pm \pm} & \rightarrow H_{3}^{ \pm} H_{3}^{ \pm} \\
H_{5}^{ \pm} & \rightarrow H_{3}^{ \pm} H_{3}^{0} / H_{3}^{0} H_{3}^{ \pm} \\
H_{5}^{0} & \rightarrow H_{3}^{ \pm} H_{3}^{ \pm} / H_{3}^{0} H_{3}^{0}
\end{aligned}
$$

$B R ' S$ OF H_{5}

- Fix $\mathrm{m}_{\mathrm{H} 5}=300 \mathrm{GeV}, \mathrm{v}_{\Delta}=10 \mathrm{GeV}$ and $\mathrm{M}_{2}{ }^{2}=0$.
- Choice of $\mathrm{M}_{1}{ }^{2}$ results in more changes in $\mathrm{\gamma} Y$ and $\mathrm{Z} \gamma$, through the triple Higgs couplings in H_{5} loops.
${ }^{*} \mathrm{M}_{1}{ }^{2}$ and $\mathrm{M}_{2}{ }^{2}$ are two parameters related to $\Phi \Phi \Delta$ and Δ^{3} trilinear terms in Higgs potential.

WIDTHS OF H_{5} 's

- Total widths of H_{5} 's as functions of $\mathrm{m}_{\mathrm{H} 5}=\mathrm{m}_{\mathrm{H} 3}$, so that only the diboson decays of H_{5} 's are allowed.
- There is almost no difference among the H_{5} widths, another evidence of custodial symmetry.
- They increase with $\mathrm{m}_{\mathrm{H} 5}$ and v_{Δ}.

PRODUCTION OF H_{5} 'S AT ILC

- Three types of production modes at ILC: Gunion,Vega,Wudka 1990
- Pair production (PP) processes

$$
\begin{aligned}
& e^{+} e^{-} \rightarrow Z^{*} / \gamma^{*} \rightarrow H_{5}^{++} H_{5}^{--} \\
& e^{+} e^{-} \rightarrow Z^{*} / \gamma^{*} \rightarrow H_{5}^{+} H_{5}^{-}
\end{aligned}
$$

independent of v_{Δ} dominant for small v_{Δ} kinematically limited to $\sqrt{ } \mathrm{s} / 2$

- Vector boson associated (VBA) processes

depending on $v \Delta$ dominant for large v_{Δ} and $m_{H 5}$ up to $\sqrt{ } s-M_{w, Z}$ or $\sqrt{ } s-2 M_{w, z}$ involving $\mathrm{H}_{5}{ }^{ \pm} \mathrm{W}^{\mp} \mathrm{Z}$ vertex
- Vector boson fusion (VBF) processes

depending on v_{Δ}
dominant for large v_{Δ} and $m_{H 5}$
up to $\sim \sqrt{ }$ s
involving $\mathrm{H}_{5}{ }^{ \pm} \mathrm{W} \mp \mathrm{Z}$ vertex

CROSS SECTIONS @ILC

cross sections of lower two types of processes for other values of v_{Δ} can be obtained readily by scaling

VBA Cross Sections@ Ilc

- Production rates for the neutral and singly-charged H_{5} are higher than the doubly-charged one, and are $\gtrsim \mathrm{O}(1 \mathrm{fb})$ for a wide mass range.
same-sign diboson production constraint from LHC Run-I

larger cross sections
5σ reach of same-sign diboson excess at $14-\mathrm{TeV}$
LHC with luminosities of $300 \mathrm{fb}^{-1}$ and $3000 \mathrm{fb}^{-1}$

VBA Cross sections @ Ilc

mind different horizontal ranges above and below

VBFCROSS SECTIONS @ ILC

mind different horizontal ranges above and below

$$
\sqrt{S}={\underset{26}{ }} \quad \mathrm{eV}
$$

SIGNALS AND BACKGROUNDS

- Cross sections of 3- and 4-gauge final states in the SM:

\sqrt{s}	$Z Z Z$	$W^{+} W^{-} Z$	$W^{+} W^{-} W^{+} W^{-}$	$W^{+} W^{-} Z Z$	$Z Z Z Z$
500 GeV	1.1 fb	39 fb	0.13 fb	0.036 fb	$6.8 \times 10^{-4} \mathrm{fb}$
1 TeV	0.86 fb	57 fb	0.79 fb	0.46 fb	$3.0 \times 10^{-3} \mathrm{fb}$

- Although W+W-Z has larger background, it also receives more contributions in GM model via the VBA diagrams.

- They can be used to study properties associated with singly-charged and neutral H_{5} bosons.
- Assume $\mathrm{m}_{\mathrm{H} 5}-\mathrm{m}_{\mathrm{H}}<50 \mathrm{GeV}$, then BR's $\left(\mathrm{H}_{5} \rightarrow \mathrm{VV}\right) \sim 100 \%$, because $\mathrm{H}_{5} \rightarrow \mathrm{~V}^{(*)} \mathrm{H}_{3}$ and $\mathrm{H}_{5} \rightarrow \mathrm{H}_{3} \mathrm{H}_{3}$ are forbidden.

INVARIANT MASS DISTRIBUTIONS

- Invariant mass distributions for subsystems of the $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}+\mathrm{W}-\mathrm{Z}$ process, including ISR with scale set at $\sqrt{ } \mathrm{s}$.
- Narrow peaks are due to $\mathrm{H}_{5}{ }^{ \pm}$and $\mathrm{H}_{5}{ }^{0}$, respectively.
- Precise measurement of the $\mathrm{H}_{5} \pm \mathrm{W} \mp \mathrm{Z}$ vertex is possible.

Peaks at same location in both plots serve as a test of custodial symmetry.

INVARIANT MASS DISTRIBUTIONS

- Invariant mass distributions for subsystems of the $\mathrm{e}^{+} \mathrm{e}^{-\rightarrow} \mathrm{W}+\mathrm{W}-\mathrm{Z}$ process, including ISR with scale set at $\sqrt{ }$ s.
- Narrow peaks are due to $\mathrm{H}_{5}{ }^{ \pm}$and $\mathrm{H}_{5}{ }^{0}$, respectively.
- Precise measurement of the $\mathrm{H}_{5} \pm \mathrm{W} \mp \mathrm{Z}$ vertex is possible.

$$
\sqrt{s}=1 \mathrm{TeV} \text { and } v_{\Delta}=50 \mathrm{GeV}
$$

$$
m_{H_{5}}=600 \mathrm{GeV} \text { (black) and } 700 \mathrm{GeV} \text { (red) }
$$

For $\mathrm{m}_{\boldsymbol{н} 5}=700 \mathrm{GeV}$, it is difficult to find a peak because the signal cross section is suppressed, while the widths become larger for larger $\mathrm{m}_{\mathrm{H} 5}$.

SUMMARY

- Concentrate on the study of how one can test the GM model at the ILC with proposed colliding energies of 0.5 and 1 TeV .
- Show decay BR's of the three charged states of H_{5} as functions of $\mathrm{m}_{\mathrm{H} 5}$ - m_{H}.
- With a cleaner collider environment, it is easier to determine singly-charged and neutral H_{5} mass with high precision at the ILC than the LHC, using the VBA production processes with the $\mathrm{W}+\mathrm{W}-\mathrm{Z}$ channel.
- A synergy with LHC for the mass of doubly-charged H_{5} helps verify the model, including its custodial nature.

Thank You!

