Physic & Detector: Summary

CEPC Detector (preCDR) a reminder

ILD-like detector with additional considerations (*incomplete list*):

- Shorter L* $(1.5/2.5m) \rightarrow \text{constraints}$ on space for the Si/TPC tracker
- No power-pulsing → lower granularity of vertex detector and calorimeter
- Limited CM (up to 250 GeV) \rightarrow calorimeters of reduced size
- Lower radiation background → vertex detector closer to IP

ο.

Similar performance requirements to ILC detectors

- Momentum: $\sigma_{1/p} < 5 \times 10^{-5} \text{ GeV}^{-1}$ $\leftarrow_3 \text{recoiled Higgs mass}$
- Impact parameter: $\sigma_{r\phi} = 5 \oplus 10/(p \cdot \sin^2 \theta) \mu m \leftarrow \text{flavor tagging, BR}$
- Jet energy: $\frac{\sigma_E}{E} \approx 3 4\% \qquad \leftarrow W/Z$ di-jet mass separation

IR Layout -- Single Ring Q. Xiu

- L* = 1.5m
- To meet requirements from both accelerator and detector
- Suppress the beam backgrounds as more as possible

CEPC-SppC研讨会

CEPC-Partial Double Ring

CEPC-Double Ring

[®] Physical Requirement to Background Level

- Vertex Detector Requirement: Occupancy not exceeding 1%
 - VTX Pixel Density: $5 \times 10^5 \ cm^{-2}$ (Pixel pitch: $\sim 14 \ \mu m$)
 - Safe factor: 5
- The tolerable hit density in partial double ring will be much lower than that of single ring.

Parameters	Single Ring	PDR-H Low Power	PDR-H High Power	PDR Z Pole
Number of Bunches	50	57	144	1100
Bunch Spacing (μs)	3.6	0.187	0.074	0.0097
Hit Density in VTX (Hits $\cdot cm^{-2} \cdot BX^{-1}$)	< 200	< 20	< 10	< 1

Influences on the Detector

Q. Xiu

- length of anti-solenoid is 0.7m
 - The FTD detector need be more compact
 - Dead area to TPC (Reduce Length of TPC ?)
 - Very tight space for LumiCal
 - More backscattered backgrounds to VTX and FTD

CEPC is beautiful

Arbor @ single particle M. Run

TMVA based method from ILC Study: http://indico.ihep.ac.cn/event/5592/contribution/16/material/slides/0.pdf

CEPC Detector (preCDR) a reminder

ILD-like detector with additional considerations (*incomplete list*):

- Shorter L* $(1.5/2.5m) \rightarrow \text{constraints}$ on space for the Si/TPC tracker
- No power-pulsing → lower granularity of vertex detector and calorimeter
- Limited CM (up to 250 GeV) \rightarrow calorimeters of reduced size
- Lower radiation background → vertex detector closer to IP

ο.

Similar performance requirements to ILC detectors

- Momentum: $\sigma_{1/p} < 5 \times 10^{-5} \text{ GeV}^{-1}$ $\leftarrow_3 \text{recoiled Higgs mass}$
- Impact parameter: $\sigma_{r\phi} = 5 \oplus 10/(p \cdot \sin^2 \theta) \mu m \leftarrow \text{flavor tagging, BR}$
- Jet energy: $\frac{\sigma_E}{E} \approx 3 4\% \qquad \leftarrow W/Z$ di-jet mass separation

Anti-solenoid Design

 Solenoid field of detector will cause the beam coupling between horizontal and vertical direction, which will degrade the luminosity

- The coupling should be cancelled before beam enter the quadrupoles (Compensating solenoid)
- The longitudinal field inside the quadrupole should be 0 (Screening solenoid)

Can the Anti-Solenoid be Shorter?

- Stronger magnets (Larger Size)
 - 8T @ 4.2K:
 - Known Maximum: 11.7T
 - Lower temperature, higher cost, worse maintainability
- Reduce the detector field
- Anyway, the IR will be more crowded

Anti-Solenoid Detector Solenoid	7.5T	8T
3.5T	0.7m	0.66m
ЗТ	0.6m	0.56m

Flux of Synchrotron Radiation

Number of photons hit the beam pipe in each 10 cm

- Beam pipe radius 16mm (Uniform)
- Photons from the bending magnets will be dominant
- Quadrupoles can not be neglected due to the back scattering effects

Methods to Suppress Background Level

- Synchrotron Radiation
 - Shielding the synchrotron photons with collimators
 - Let the synchrotron photons pass through the IR by well designed beam orbit.
- Lost Beam Particles
 - Add collimators along the storage ring.

Detector requirements

B=3.5T

- momentum resolution
- impact parameter resolution

Vertex detector specifications:

- σ_{SP} near the IP: $\leq 3 \mu m$
 - \rightarrow small pixels 16×16µm² or below, digital readout
- material budget: ≤ 0.15%X ₀/layer
 - \rightarrow low power circuits, air cooling
- pixel occupancy: ≤ 1 %
- radiation tolerance: Ionising dose ≤100 krad/ year

Non-ionising fluences $\leq 10^{11} n_{ea} / (cm^2 year)$

• first layer located at a radius: ~1.6 cm

Silicon tracker specifications:

- σ_{sp} : $\leq 7 \, \mu m \rightarrow small pitch (50 \, \mu m)$
- material budget: ≤ 0.65%X ₀/layer

Efficient tagging of heavy quarks

$$\sigma_{1/p_T} = 2 \times 10^{-5} \oplus 1 \times 10^{-3} / (p_T \sin \theta)$$

$$\sigma_{r\phi} = 5 \mu m \oplus \frac{10}{p (GeV) \sin^{3/2} \theta} \mu m$$

1st CMOS prototype

由高能所创新经费支持

- Goals: sensor optimization and radiation hardness study
- Floorplan overview:
 - Two independent matrices: Matrix-1 with 33 \times 33 μm^2 pixels (except one sector SFA20 with 16 \times 16 μm^2 pixels), Matrix-2 with 16 \times 16 μm^2 pixels.
 - Matrix-1: 20 sectors, each sector includes 48 rows and 16 columns
 - Matrix-2: 16 sectors, each sector includes 96 rows and 16 columns

1st SOI prototype

- Compact Pixel for Vertex (CPV1)
 - Designed in line with the technology roadmap
 - 16*16 μm with in-pixel-discrimination
 - Based on the measurement of full depletion*
 - Pixel array: 64*32 (digital) + 64*32 (analog)
 - Double-SOI process for shielding and radiation

Enhancement

- Submitted June, 2015
- * Y. LIU, Y. LU, X. JU, Q. OUYANG, Chinese Physics C, Vol.40, No. 1 (2016)

CPV1 chip Layout

Y. Lu, J. DONG

由自然科学基金支持

Detector layout

- **Time Projection Chamber detector**
 - Detector module (Critical technical challenges)
 - **Drift chamber**
 - **Electronics readout**
 - Working gas supply
 - Alignment and calibration system
 - Inner radius
 - **D** Pad size
 - □ Number of tracker
 - **B** Field
 - Support structure
 - **Drift cathode**

Overview of the TPC detector

Critical challenge: Ion Back Flow

- High performance requirements by the TPC relies strongly on the quality of the electric field in the drift volume!
 - Ions drift back into the gas volume in CEPC TPC
 - Many such the discs in the chamber with ions

 Ions could reduce the momentum resolution along the drift length

16/4 High X-ray dose to reduce the Double GEMs Gain @ IHEP

Hybrid structure module option

Measurement method: X-ray and particles track in the module

IBF preliminary result

□ Test with X-tube@21kV~25kV using the Hybrid module

- Charge sensitive preamplifier ORTEC 142IH
- Amplifier ORTEC 572 A
- **MCA of ORTEC ASPEC 927**
- Mesh Readout
- **Gas: Ar-iC4H10(95-5)**
- 16/4⁽¹⁾ Gain: ~6000

CEPC-SppC 研讨会

CEPC Detector – Calorimeters

Funding: IHEP IF

T. Hu et. al.

Tests of SiPM at IHEP

pulse height spectrum. Excellent photon counting

The cross-talk of the new SiPMs is 10% to the old 016

CEPC Detector – Calorimeters

Tests of Scintillator strip at IHEP

Scintillator strip irradiated with B collimated (1mm) from Sr-90

HCAL: GRPC Study

Large GRPC R&D

✓ Negligible dead zone (tiny ceramic spacers)

- \checkmark Large size: 1 × 1 m²
- ✓ Cost effective
- ✓ Efficient gas distribution system
- Homogenous resistive coating

• Peaky Npe near MPPC

- Larger Npe than ILD probably due to different scintillator material and reflector.
- Significant reduction of Npe with long strip.

WELL-THGEM Beam Test at IHEP in Oct., 2015

- 7 THGEMs ware installed, and 5 of them were used, and flushed with Ar/iso-butane = 97:3.
- 1 threshold, binary readout
- 900 MeV proton beam was used
- 5cm x 5cm sensitive region

Large-area GEM @ USTC

GEM assembly using a novel self-stretching technique

• Large-area GEM (0.5x1m²) is one of main detector R&D focuses at USTC recently. Technology has been developed and matured to produce high-quality GEM

detectors as large as ~1m² that are also

applicable to CEPC DHCAL.

- ➔ Resolution uniformity ~11%
- ➔ Gain uniformity ~16%
- → Can reach gain of 10⁴ at 4000V

APV25 GEM readout

INFN APV25 chip

CEPC Detector – Detctor Magnet

Funding: IHEP IF

L. Zhao et. al.

Key technology:

- Optimization of Magnetic filed
- Superconductor •
- Inner winding and impregnating •
- Coil cryogenic system ٠
- Power lines with HTS •
- Manufacturing and assembling of huge scale yoke ٠

Number of strands: 20 Strand diameter: 1.0mm Materiel: Copper Complete time:2015.5

Test results:

Number of strands : 17 Strand diameter : 0.727mm Strand diameter : 0.727mm Materiel :Nb/Ti Complete time:2015.7

Number of strands: 24 Materiel :Nb/Ti Complete time:2015.8

Number of strands : 18 Strand diameter : 1.2mm Materiel :Nb/Ti Complete time:2016.2

1.RRR value declined by about 1/3 after the stranding process. 2. The decrease of the critical current is less than 5%.

Copper cable +Aluminum alloy

insert process

TPC Radius & ECAL resolution

 H_{N}^{0} H_{N}^{0} 0.95 0.95 0.95 0.95 1400 1600 R_{TPC} [mm]

 $\delta m_H = 36.286 \times (1 + 0.092 \times e^{-1.820 \cdot R_{\rm TPC}}) \text{MeV}.$

$$\frac{\delta \sigma_{ZH}}{\sigma_{ZH}} = 0.485 \times (1 + e^{-0.094 \cdot R_{\rm TPC}})$$

 $\delta(Br \times \sigma)/Br \times \sigma \text{ vs } \delta E/E$ $\delta(Br \times \sigma)/Br \times \sigma \text{ vs } \delta E/E$ $\delta(Br \times \sigma)/Br \times \sigma \text{ vs } \delta E/E$ $\delta(Br \times \sigma)/Br \times \sigma \text{ vs } \delta E/E$

H->di photon branching ratio measurement

Calorimeter: Saturation & Leakage

Calo optimization effort: UCAS(陈石), IHEP(成栋,赵航,树正,学正, etc)

Photon Energy Spectrum at 1, 3, 5, 10, 30, 50, 100, 250 GeV, Cell Size = 10 mm, W thickness = 1.4 mm

20

40

60

L 1sigma value = 0.87x - 0.24yy + 0.97y - 0.43z + 0.82x = log10(energy) y = log10(cell size) z = log10(angle)

Eg, Saturate at 175 GeV photon, 20mm cell size: 2500 MIP

80 100 120 Electron Energy (GeV)

$CEPC_o_v2$

Parameter	CEPC_o_v2	CEPC_v1
LStar_zbegin	1150	1146.9
VXD_inner_radius	12	15
VXD_radius_r1	12	15
VXD_radius_r3	35	37
TPC_outer_radius	1500	1808
Hcal_nlayers	40	48
Ecal_cells_size	10	4.9
Field_nominal_value	3	3.5
Yoke Layers	2	3

Parameter put by hand, motivated by: Saving the cost. Closer VTX inner layer, better flavor tagging?

Reconstruction: be aware of TPC boundary & B-Field Strength Implemented by Xuyin (NanKai U)

$CEPC_v1 \rightarrow CEPC_o_v2$

W.R.T CEPC v1, Reduce:

Total cost ~ 25%; ECAL power/FEE: 75%; HCAL thickness/channels ~ 20%; B-Field to 17% $(3.5 \rightarrow 3)$; VTX inner radius: 25%;

Qualitatively: everything goes into the expected direction

Quantitatively: ???

Reconstruction: Adapted, lots of effects needed for **OPTIMIZATION**, especially the PFA

Performance	adapted	optimized*	Manpower/ people*mo nth
Tracking: D0, Z0	20% ↑ @ E < 20 GeV (VTX); 5% ↓ @ E > 20 GeV (B-Field);		4
Theta, Phi	worse	-	
Omega	worse	-	
PFA:Clustering	Slightly worse	same	-
Matching	~10% ↓	~5% ↓	6
Separation	~10% ↓	~2% ↓	2
PID	3-5% ↓ @ E > 10 GeV; 10% ↓ @ E < 10 GeV;	~1%↓	4
JER	20% ↓	~10%↓	4
Flavor Tagging	Improved up to 5%↑	?	3

Given the current status, 23 people*month is needed to fully optimize the performance. For the next geometry, the needed manpower will be half 47

The prospect of CEPC electroweak physics in pre-CDR study

Table 4.1 The expected precision in a selected set of EW precision measurements and the comparison with the precision from LEP experiments. The current precisions for $\sin^2 \theta_W^{\text{eff}}$ and R_b include the measurement at the SLC.

Observable	LEP precision	CEPC precision	CEPC runs	$\int \mathcal{L}$ needed in CEPC
m_Z	2 MeV	0.5 MeV	Z lineshape	$> 150 {\rm ~fb}^{-1}$
m_W	33 MeV	3 MeV	ZH (WW) thresholds	$> 100 {\rm ~fb^{-1}}$
A^b_{FB}	1.7%	0.15%	Z pole	$> 150 {\rm ~fb^{-1}}$
$\sin^2 \theta_W^{\text{eff}}$	0.07%	0.01%	Z pole	$> 150 {\rm ~fb^{-1}}$
R_b	0.3%	0.08%	Z pole	$> 100 {\rm ~fb^{-1}}$
N_{ν} (direct)	1.7%	0.2%	ZH threshold	$> 100 {\rm ~fb}^{-1}$
N_{ν} (indirect)	0.27%	0.1%	Z lineshape	$> 150 {\rm ~fb^{-1}}$
R_{μ}	0.2%	0.05%	Z pole	$> 100 {\rm ~fb}^{-1}$
R_{τ}	0.2%	0.05%	Z pole	$> 100 \ \mathrm{fb^{-1}}$

Towards CDR

- Milestones
 - theory working group
 - detector working group
 - advisory committee
 - 1st draft: summer 2017
- International collaboration
 - develop 2nd detector concept