CEPC-SppC研讨会, 2016.4.8-9, 北京

Status of Silicon

Yunpeng Lu (IHEP) On behalf of Vertex detector sub-group 2016-4-8

Outline

- Introduction to the Vertex and Strip
 - Unprecedented challenges in Vertex
- R&D thread #1: Fine pitch and Low power
 - First set of specifications
 - R&D on CMOS
 - R&D on SOI
- R&D thread #2: Towards ~1µs time resolution
 - Second set of specifications
- Summary

Detector concept Baseline design for the pre-CDR

Vertex detector:

- 3 layers of double-sided pixels
- σ_{sp} =2.8µm, inner most layer
- readout time <20µs

	R (mm)	z (mm)	$ \cos \theta $	$\sigma_{ m SP}~(\mu{ m m})$	Readout time (µs)
Layer 1	16	62.5	0.97	2.8	20
Layer 2	18	62.5	0.96	2.8	20
Layer 3	37	125.0	0.96	4	20
Layer 4	39	125.0	0.95	4	20
Layer 5	58	125.0	0.91	4	20
Layer 6	60	125.0	0.90	4	20

VXD Geometry

Detector concept (Cont.)

Si-tracker:

2016-4-8

- Silicon Internal Tracker (SIT) 2 inner layers strip detectors
- Forward Tracking Detector (FTD) 5 disks (2 with pixels and 3 with Si strip sensor), comparing to 7 disks on ILD, due to smaller L*
- Silicon External Tracker (SET) 1 outer layer Si strip detector
- End-cap Tracking Detector (ETD) 1 end-cap Si strip detector on each side

Detector requirements

B=3.5T

- momentum resolution
- impact parameter resolution
 - **Vertex detector specifications:**
 - σ_{SP} near the IP: $\leq 3 \mu m$
 - \rightarrow small pixels 16×16 μm^2 or below, digital readout
 - material budget: ≤ 0.15%X ₀/layer
 - \rightarrow low power circuits, air cooling
 - pixel occupancy: ≤ 1 %
 - radiation tolerance: Ionising dose ≤100 krad/ year

Non-ionising fluences $\leq 10^{11} n_{eq} / (cm^2 year)$

• first layer located at a radius: ~1.6 cm

Silicon tracker specifications:

- σ_{SP} : $\leq 7 \, \mu m \rightarrow$ small pitch (50 μm)
- material budget: ≤ 0.65%X ₀/layer

Efficient tagging of heavy quarks

$$\sigma_{1/p_T} = 2 \times 10^{-5} \oplus 1 \times 10^{-3} / (p_T \sin \theta)$$
$$\sigma_{r\phi} = 5 \mu m \oplus \frac{10}{p (GeV) \sin^{3/2} \theta} \mu m$$

Critical R&D

- Pixel sensors with low power consumption and high readout speed
 - Starting design with HR-CMOS process
 - Exploring possibility with SOI process, especially for smaller pixel size
- Light weight mechanical design and cooling
 - 0.05%(0.1%) material budget without(with) cabling
 - Air cooling technology with acceptable vibration due to air flow
- Pixel sensor thinning to 50µm
- Slim edge silicon microstrip sensor
- Low noise, low power consumption front-end electronics for silicon microstrip

Unprecedented challenges in vertex— Single point resolution

(Source of the plots: Y. Voutsinas, 2012)

Unprecedented challenges in vertex— Low power consumption

- Power pulsing, an ingredient missing for CEPC
 - Instantaneous power ~600W@ILC
 - Average power ~20W@ILC by applying power cycling
- The maximum heat load of 150W imposed by air cooling
 - CEPC has to cut down the power by a factor of 4

Unprecedented challenges in vertex— Fast readout speed

- Readout intervals of ~1µs will be required if the Local Doublering Scheme is to increase the hit density dramatically.
 - One magnitude lower than the-state-of-art design
 - Background estimates are still in early stage

- Baseline design in pre-CDR
- Colliding every 3.6µs, continuously

- to reduce beam and AC power
- to increase the flexibility and luminosity
- 196ns bunch spacing
- Duty cycle: 9.4µs / 181µs

R&D thread #1: Fine pitch and low power

- Strategies:
 - Fine pitch to achieve $<3\mu$ m SP resolution for the inner most layer
 - Low power compatible with air cooling
 - Relaxed requirement on readout speed (flexible)
- Specifications:
 - $-16 \,\mu m$ pitch
 - 50 mW/cm²
 - 10-100 μs readout speed

1st CMOS prototype

由高能所创新经费支持

- Goals: sensor optimization and radiation hardness study
- Floorplan overview:
 - Two independent matrices: Matrix-1 with 33 × 33 μm² pixels (except one sector SFA20 with 16 × 16 μm² pixels), Matrix-2 with 16 × 16 μm² pixels.
 - Matrix-1: 20 sectors, each sector includes 48 rows and 16 columns
 - Matrix-2: 16 sectors, each sector includes 96 rows and 16 columns

1st CMOS prototype: Deep P-well shielding

Y. ZHANG, M. FU, L. ZHANG, H. ZHU

To look at the effectiveness of deep P-well shielding

1st CMOS prototype: Cluster size

Y. ZHANG, M. FU, L. ZHANG, H. ZHU

- Pixel cluster with four different epitaxial layers
 - 18μm/1KΩ, 20μm/2KΩ, 25μm/2KΩ, 30μm/8KΩ

Total charge increases with the thickness and resistivity of the epi-layer, so does the charge sharing \rightarrow the 20 µm thick epitaxial layer could allow optimal charge collection

1st CMOS prototype: Radiation damage

Y. ZHANG, M. FU, L. ZHANG, H. ZHU

- Charge collection efficiency decreased by radiation fluence
 - Signals remain ~80% and ~60% respectively at CEPC annual fluence
 Seed pixel 5 × 5 cluster

- Seed pixel: higher resistivity → better radiation tolerance
- Pixel cluster:
 - 25 μ m thick epi-layer worse than 20 μ m (same resistivity) \rightarrow charge sharing and radiation-causedtraps in a thicker epi-layer may degrade the performance
 - 30 μ m thick one similar to the 20 μ m \rightarrow advantage of high resistivity can be partly neutralized by thicker epi-layer

1st CMOS prototype: Biased diode

- Bias voltage up to 10 V
 - To measure seed/cluster signal versus V_{bias}
 - To measure the cluster multiplicity
- Optimization of Cc, V_cal, SF and noise
- Layout
 - 16 μm*16 μm
 - Direct PAD for V_diode

Pixel Layout

- 16 × 16 μm²;
- with transistors under

MIM capacitor

Y. Zhou, Y. LU, C. HU

- 250 × 65 μm²
- Without ESD
 - Both sizes & power lines match with other PADs provided by foundry

Choice of technology roadmap

C. Hu, Q. OUYANG, Y. Lu, Y. Zhou, M. Dong

- For the long run, a technology roadmap is essential.
- In-Pixel-Discrimination is selected.
 - Signal digitized in pixel, enabled by the new generation of process
 - Reduction of power consumption
 - Pixel size needs to be minimized, however

Name Architecture Discriminator, read		d-out	Pitch (r $\phi \times z$) (μm^2)	Integ. time (μs)	Power (mW/cm²)		
MISTRAL(IPHC)	RAL(IPHC) end-of-column, rolling shutter		22 × 33 (66)	30	200 (100)		
ASTRAL(IPHC)	in-pixel, rolling shutter		24 × 31(IB) 36 × 31 (OB)	20		85 60	
ALPIDE (CERN, INFN, CCNU, YONSEI)	in-pixel, in-matrix sparsification		28 x 28	4		< 50	

Chips designed for ALICE-ITS upgrade

* CCNU has contributed to the design and test of ALPIDE chips

A preliminary plan to shrink the pixel size

Y. Zhou, Y. LU, C. HU

- Target on 20*20 μm² with in-pixel-discrimination
 - Depleted diode to improve S/N
 - To reduce the number of transistors and improve layout
 - Preparing design for the 2nd CMOS prototype (presumably end of 2016)

1st SOI prototype

- Compact Pixel for Vertex (CPV1)
 - Designed in line with the technology roadmap
 - 16*16 µm with in-pixel-discrimination
 - Based on the measurement of full depletion*
 - Pixel array: 64*32 (digital) + 64*32 (analog)
 - Double-SOI process for shielding and radiation

Enhancement

- Submitted June, 2015
- * Y. LIU, Y. LU, X. JU, Q. OUYANG, Chinese Physics C, Vol.40, No. 1 (2016)

Y. Lu, J. DONG

(b) 模拟像素

反相器

(a) 数字像素

电荷注え

CPV1 test setup

- Chip delivered in Feb. 2016
- Mounted in a Pin Grid Array package (176 pins)
- Sub-board PCB prepared
- Fit in the SEABAS* DAQ system
- FPGA firmware and PC software partly ready, modified from the existing system for other chips

Bare chip

*A DAQ system developed by KEK, mainly for pixel chip readout

Preliminary results of CPV1

- Gain of amplifier measured on analog pixels
 - Measured 10.2 agrees with the design value 10
- Transfer curve measured on digital pixels
 - Transition region ~5mV, equivalent to 120e⁻
 - A decent ENC noise ~ 17e⁻
- Radiative source test is in preparation

R&D thread #2: towards ~1 us time resolution

- Strategies:
 - Relaxed requirement on SP resolution
 - Low power compatible with air cooling
 - Enhanced readout speed by a factor of 10
- Specifications:
 - 20-30 um pitch to achieve σ ~5um
 - 50 mW/cm²
 - ~1us readout intervals
- Technology roadmap
 - Continuous signal discrimination (and low power)
 - Asynchronous encoding of hit position

Summary

- Pixel sensor was identified as the core of R&D activities in the past half year.
- To address the challenges from the inner layers of Vertex, 2 threads of RD efforts are proceeding in parallel.
 - 16um pitch, 50mW/cm², 10-100us
 - 20-30um pitch, 50mW/cm², ~1us
- Two chips consist of 16 um pixel array have been submitted
 - TowerJazz 180nm CMOS process and HR wafer will be characterized shortly in terms of sensor optimization and radiation hardness.
 - First prototype chip using Lapis 200nm SOI process has shown encouraging results.
- More test results is to come in the second half of 2016.

Backup slides

A study on the depletion and cluster size

- SOI offers a good chance to look into depletion 260um -
 - Pixel size 19*19um²
 - Analog readout
 - Central window of 5*9um²
- 1064nm focused to 3.2um, simulating MIPs
 - Pass through the central window of seed pixel

Layout of 2 pixels with only metal shown

Measurement results

- 70% of charge collected by the seed pixel
 - V_{bias} = 20V, expect to deplete 80um
 - Unable to scan across the border of pixel
- Signal increases with V_{bias}
 - Fully depleted around 190V
 - Seed / cluster ratio decreases with V_{bias}

Y. LIU, Y. LU, Q. OUYANG

Single pulse response

