0 E (N) E404

Higgs Analysis at CEPC

Manqi, Yaquan, Qiang, and Gang for CPEC physics and simulation group

受到高能所创新项目的支持也是国内外同行的共同努力

CEPC-SppC Workshop, IHEP

At CEPC

- Higgs Run: 10 years, 1 M Higgs boson in 1 B physics events
- Z Pole Runs: 10 Billion Z bosons (1 year)
- Perfect understanding of the nature of Higgs boson, precision EW measurements, and probe for NP...

Higgs program at CEPC

- Absolute Higgs measurements
- Benchmark measurements
 - sigma(ZH) determination
 - Higgs width measurement: Yuqian's talk
 - H->bb, cc, gg: see Baiyu's talk
 - Higgs exotic
 - Invisible
 - Hadronic state
 - Leptonic final state
- Next step:
 - Data driven method for sys. control? MC/theoretical uncertainties, ...
 - Differential distributions

Higgs analysis: Status at PreCDR

$\sigma(ZH)^*Br(H->bb, cc, gg)$

- Strategy: Event selection + Template fit on the b-likeness Vs c-likeness plane
- 4 independent channels: Signal & Key background processed with Full Simulation

		Analyzer	bb	CC	gg	
	mumuH	Zhenxing, etc	0.96%	13.5%	11.6%	
			0.96%	11.0%	8.73%	
	eeH					
	tautauH					
	vvH	Lianghao, Yulei, Dikai	0.38%	3.5%	2.4%	Notes submitted
	qqH	Baiyu, Boyang, etc	0.27%	4.4%	3.0%	Notes submitted
	Comb. opti		0.21%	2.5%	1.7%	
20	Result at PreCDR		0.28%	2.2%	1.6%	

$\sigma(ZH)^*Br(H->bb, cc, gg)$

- Key points
 - uuH: different template fit technologies to be compared and understood
 - qqH:
 - Complex analysis:
 - Jet clustering algorithm,
 - Hard gluon emission & jet correlation
 - Matching
 - Systematic control
 - eeH & tautauH: to be covered
 - All channels: distinguish between H->gg and H->WW/ZZ->4 jets still challenging!

vvH

Cut Definition	Sig.	99	qqnn	qqln	nnh
Generated	16260	25M	183K	3681K	
FSClasser output	16768	25M	183K	3681K	7485
$N_{\text{PFO}(E>0.4\text{GeV})} > 20$	16748	23M	163K	3439K	4889
$110 < E_{\rm total} < 150$	14689	10M	126K	705K	3311
$P_{T} > 19$	13687	34K	116K	627K	3101
Isolation lepton veto	13429	33775	115K	327K	2537
$100 < M_{\rm inv} < 135$	12827	9506	10420	162K	2269
$70 < M_{\rm rec} < 125$	12166	7521	10045	110K	2260
$0.15 < y_{12} < 1$	12093	7405	9702	101K	2211
$y_{23} < 0.06$	10902	6644	8456	69313	1220
$y_{34} < 0.008$	10377	6504	7878	58532	519
$0.98 < \cos(\theta_{\text{included}}^{(2\text{jets})}) < -0.4$	10284	5766	5454	34823	485
BDT > 0.04	8705	381	465	267	230
Significance	84.92				
Efficiency	53.5%				

Fitting result over truth for cc, bb, gg respectively

H -> WW* && H->ZZ*

- Various Final States! Combinations of leptons, missing E/P, jets...
- Processed with Full Simulation:
 - Final states with at most 2 jets
 - Lepton ID&Isolation and total E/P resolutions: key ingredients for these analysis
- WW*
 - Dedicated Isolation lepton finding algorithm has been developed & tuned
- ZZ*
 - Tau related background could be largely suppressed once tau finder is more mature

H -> WW* && H->ZZ*

- Various Final States! Any combination of leptons, missing E/P, jets...
- Key measurement for achieving Higgs width
- Processed with Full Simulation:
 - Final states with leptons
 - Lepton ID & Detector coverage: intrinsic requirements
 - Isolation condition for letpons: compromise between Signal Efficiency & Bkgrd rejection rate
 - Libo, responsible for general isolation framework design & H->WW analysis
 - Yuqian will talk on ZZ* analysis

$H \rightarrow WW^*$

CEPC-SppC Workshop, IHEP

$H \rightarrow WW^* \rightarrow |v|v$

CEPC-SppC Workshop, IHEP

Table 5: Cut chain of semi leptonic decay of $H \rightarrow WW^* \rightarrow \mu\nu qq$

H->di photon

- Feng, JianHuan(UChicago), Binsong & Dan
- Fast Sim result (9%) is under validation with Full simulation.
- Expected accuracy parameterized as Photon Energy resolution (at Fast Sim level)
- Dedicated algorithms developed:
 - Converted Photon recovery: save back ~ 10-15% of statistics
- Photon Energy Estimator: adjusted to CEPC_v1 geometry
 2016/04/07-08
 Photon ID
 CEPC-SppC Workshop, IHEP

H->di muon

- Cui Zhenwei (Wang Binlong)
- Test bed for event selection tuning
 - Cut based;
 - MVA-BDT based;
- Carefully designed BDT seems could largely improve the analysis result.
 Checking details

pre-section		217.7	10356245		
124.2 <hmass<125.5< td=""><td>163.2</td><td colspan="2">30050</td><td></td></hmass<125.5<>		163.2	30050		
	90.7 <recoilmass<92.5< td=""><td>105.6</td><td>419</td><td></td><td></td></recoilmass<92.5<>	105.6	419		
-55 <pzsum<52< td=""><td>93.3</td><td colspan="2">290</td><td></td></pzsum<52<>		93.3	290		
	29.2 <ptsum<62< td=""><td>88.5</td><td colspan="2">269</td><td></td></ptsum<62<>	88.5	269		
	-0.29 <cosup<1< td=""><td>55.2</td><td>69</td><td></td><td></td></cosup<1<>	55.2	69		
-1 <cosum<0.20< td=""><td>47.5</td><td>48</td><td></td><td></td></cosum<0.20<>		47.5	48		
0 <arguu<178 46.5<="" td=""><td>46.5</td><td colspan="2">42</td><td></td></arguu<178>		46.5	42		
	pre-sec	214.2	2853	46	
	32.3<(InvMass-Re	98.4	700	8	
21	5.95< (InvMass+R	79.1	158	3	
	-0.88<(cosup+c	78.9	157	7	
	-1.92<(cosup-co	48.9	40		
	-62.1 <pzsu< td=""><td>47.9</td><td colspan="2">37</td></pzsu<>	47.9	37		
	10.0 <ptsur< td=""><td>47.6</td><td>37</td><td></td></ptsur<>	47.6	37		
	0 <ptuu<< td=""><td>46.5</td><td>34</td><td></td></ptuu<<>	46.5	34		

2016/04/07-08

H->di-tau

- Yu Dan
- Test bed for PFA: a straight forward tau finder use #Track & #Photon & MVA information has been developed & Tested on inclusive Higgs sample
 - Eff: 98.5%
 - Purity: 74% (remaining is mainly $H \rightarrow WW/ZZ \rightarrow lepton/tau$ events)
- Goal:
 - Develop tau finder in Jet environment;
 - Tag tau decay modes;
 - Explore differential measurements with Tau decay final states

H->di tau

- Without other SM background, relative accuracy
 - µµH channel: 2.6%
 - vvH channel: 1%
- Common background samples will soon be provided... 2016/04/07-08 CEPC-SppC Workshop, IHEP

Higgs exotic

- Higgs \rightarrow invisible via recoil mass spectrum
 - Di lepton channel: Zhenxing, Moxin (IHEP) & Jaiwei, Kevin (Hongkong)
 - Di jet channel: Moxin
- Higgs \rightarrow leptonic exotic mode
 - $H \rightarrow ee$: Wanglei @ PKU
- Higgs \rightarrow hadronic mode
 - $H \rightarrow$ Flavor changing quark pairs: samples ready, no analysis effort
 - $H \rightarrow tc, tu$
 - $H \rightarrow bs$, bd
 - $H \rightarrow$ semi invisible: Jiawei, Kevin (Hongkong) & Zhenxing

Higgs invisible decay uuH, eeH, qqH

ZZ line shape used to control background

Higgs leptonic decay

The limit results is 0.1665‰ at 95% confidence level

leptonic decay channel	BR upper limit at 95%	collaboration	Journal
h->ee	0.19%	CMS	Phys. Lett. B 744, 184
h->μμ	0.15%	CMS	Phys. Lett. B 744, 184
	0.16%	ATLAS	Phys. Lett. B 738, 68
h->eµ	0.036%	CMS	CMS-PAS-HIG-14-040
h->eτ	0.69%	CMS	CMS-PAS-HIG-14-040
	1.04%	ATLAS	unpublished
h->μτ	1.51%	CMS	Phys. Lett. B 749, 337
	1.43%	ATLAS	unpublished

- $H \rightarrow ee$: SM Branching ratio ~ o(10⁻⁹) •
- Uplimit at CEPC: one order of magnitude • better than current LHC result
- To explore: $H \rightarrow e\mu$, $\mu\tau$.

2016/04/07-08

http://indico.iheoenc.com/event//5592/pontribution/12/material/slides/0.pdf 23

H->Exotic, hadronic

Benchmark Points

Scan over the parameter space for sensitivity:

1. Fix $m_{\tilde{\chi}_1^0} = 0$ GeV and make exclusion contours on the m_{h^0} and $m_{\tilde{\chi}_2^0}$ plane with the range:

 $10 \text{ GeV} < m_{10} < 60 \text{ GeV} (15,25,35,45,55 \text{ GeV})$ $10 \text{ GeV} < m_{20} < 125 \text{ GeV} (20,40,60,80,100,120 \text{ GeV})$

2. Fix $m_{10} = 30 \text{ GeV}$ and make exclusion contours on the m_{20} and $m_{\tilde{\chi}_{2}^{0}}$ plane, with the range: 0 GeV < $m_{\tilde{\chi}_1^0}$ < 60 GeV (5,15,25,35,45,55 GeV) 10 GeV < $m_{\tilde{\chi}_1^0}$ < 125 GeV (20,40,60,80,100,120 GeV)

Suggested by prof. Liu

- Typical process at NMSSM & 2HDM...
- Joint efforts of Hongkong Cluster & IHEP: Main analyzers, Jiawei, Kevin & Zhenxing •
 - Initialized at PreCDR, one parameter point explored with Fast Sim (Kevin)
 - Full Simulation exploration during IAS meeting (Zhenxing visited Hongkong)

Continue by Jiawei & Kevin (Jiawei stayed at IHEP for 3 weeks) 2016/04/07-08 **CEPC-SppC** Workshop, IHEP

H->Exotic, hadronic

Para: M(LSP) = 0; M(h0) = 15 GeV; M(NLSP) = 20 GeV

- 95% CL. Uplimt set to be 5E-4; will be significantly improved by including di-electron/tau channel...
- ISR effect not included in the Signal sample. sigma(ZH) refered to SM Xsec of 200 fb. Effect on uplimit setting could be ignored

2016/04/07-08

Todo: a full Scampover proposed parameter space

Core: absolute measurements of Higgs

	PreCDR	Now
σ(ZH)	0.51%	0.50%
σ(ZH)*Br(H→bb)	0.28%	0.21%
σ(ZH)*Br(H→cc)	2.1%	2.5%
σ(ZH)*Br(H→gg)	1.6%	1.7%
σ(ZH)*Br(H→WW)	1.5%	1.2%
σ(ZH)*Br(H→ZZ)	4.3%	4%
σ(ZH)*Br(H→ττ)	1.2%	1.0%
σ(ZH)*Br(H→γγ)	9.0%	9.0%
σ(ZH)*Br(H→μμ)	17%	17%
σ(vvH)*Br(H→Zγ)	-	-
σ(vvH)*Br(H→bb)	2.8%	2.8%
Higgs Mass/MeV	5.9	5.0
σ(ZH)*Br(H→inv)		
Br(H→ee)		
Br(H→bbχχ, 4b)	<10 ⁻³	95%. CL = 3e-4

2016/04/07-08

It's time to consider systematics

- All possible resources of systematic uncertainties should be investigated and evaluated
- Beam energy:
 - O(MeV)@240GeV
 - O(0.1MeV)@91GeV
- Integrated luminosity O(10-3)
- Jet correlation/hard gluon emission

ISR and Born cross section

Detector optimization

- Understand the motivation and carefully modify/edit the geometry accordingly
- Validate the detector geometry
- Tune/optimize the reconstruction & Understand the detector performance
 - Single particle level: reconstruction/PID efficiency
 - Overlap particle level: separation performance, essential for PFA
 - Multi-particle object: Tau & Jets
 - Tech. oriented, Time consuming & need strong experts (see Manqi's talk)
- Iteration of the benchmark physics analyses

Summary

- Profound understanding of detector performance with PFA. Details in Manqi's talk
- Lots of analyses covered by full simulation, more to be covered
- Systematics under consideration
 - Beam energy/Luminosity/MC(theoretical inputs) ...
 - Jet clustering algorithm
 - Tracking, PID and jet flavor tagging
 - Data driven method for the syst. Control is under discussion
- Plan for CDR:
 - Serval detector geometries and performance curves
 - Reasonable experimental strategy

Backup

Non Higgs Topic

- EM measurements:
 - TGC (韩爽)
 - Wmass + Width
 - Neutrino generation
 - A_{FB}
- New Physics (李强)
- Systematic controls (朱凯, 白羽, 李刚)
- Reconstruction oriented
- Detector optimization
 - Calorimeter (赵航,陈石)

CEPC Higgs Analysis: Status at Aug 2015

	di-muon	di-electron	di-neutrino	di-jets	di-taus
σ(ZH)			-		
Мн					
σ(ZH)*Br(H→bb)					
σ(ZH)*Br(H→cc)					
σ(ZH)*Br(H→gg)					
σ(ZH)*Br(H→WW)					
σ(ZH)*Br(H→ZZ)					
σ(ZH)*Br(H→тт)					
σ(ZH)*Br(H→γγ)					
σ(ZH)*Br(H→μμ)					
σ(vvH)*Br(H→bb)	-	-		-	
Br(H→invisible)			-		
Br(H→exotic)					

Signal with CEPC Full Simulation, Bkgrd with Fast Simulation

2016/04/07-08

CEPC Fast Simulation CEPC-SppC Workshop THEP Extrapolated from ILC/FCC-ee results

Newly formed Working groups

H -> WW* && H->ZZ*

vvH

Channel	bb	cc	gg	Oth Higgs
Truth	7419.1	326.6	971.0	329.9
Mean	7419.0	325.0	969.4	330.0
RMS (fitTo)	88.1	28.4	38.8	-
RMS (ToyMC)	87.1	30.1	39.6	-
Relative error	1.23%	9.3%	4.2%	-
1/sqrt(Truth)	1.16%	5.5%	3.2%	-