Z AND W PHYSICS AT CEPC

Zhijun Liang IHEP

The prospect of CEPC electroweak physics in pre-CDR study

Table 4.1 The expected precision in a selected set of EW precision measurements and the comparison with the precision from LEP experiments. The current precisions for $\sin^2 \theta_W^{\text{eff}}$ and R_b include the measurements at the SLC.

Observable	LEP precision	CEPC precision	CEPC runs	$\int \mathcal{L}$ needed in CEPC
m_Z	2 MeV	0.5 MeV	Z lineshape	$> 150 {\rm ~fb}^{-1}$
m_W	33 MeV	3 MeV	ZH (WW) thresholds	$> 100 {\rm ~fb^{-1}}$
A^b_{FB}	1.7%	0.15%	Z pole	$> 150 {\rm ~fb}^{-1}$
$\sin^2 \theta_W^{\text{eff}}$	0.07%	0.01%	Z pole	$> 150 {\rm ~fb}^{-1}$
R_b	0.3%	0.08%	Z pole	$> 100 {\rm ~fb}^{-1}$
N_{ν} (direct)	1.7%	0.2%	ZH threshold	$> 100 {\rm ~fb}^{-1}$
N_{ν} (indirect)	0.27%	0.1%	Z lineshape	$> 150 {\rm ~fb^{-1}}$
R_{μ}	0.2%	0.05%	Z pole	$> 100 {\rm ~fb}^{-1}$
R_{τ}	0.2%	0.05%	Z pole	$> 100 {\rm ~fb^{-1}}$

Status of CEPC electroweak analysis

• Observable	Pre-CDR status	Current status
A _{FB (b)}	Extrapolation from LEP	Full simulation analysis on going
$Sin^2\theta_W$	Extrapolation from LEP	Full simulation analysis on going
R ^b	Extrapolation from LEP	Full simulation sample ready Need manpower
R ^{mu}	Extrapolation from LEP	Need full simulation samples
R ^{tau}	Extrapolation from LEP	Need a robust tau finder
Alpha_QCD	Not covered	a new full simulation analysis
W boson mass	Extrapolation	Full simulation sample ready Need manpower

From pre-CDR study to CDR study

- Pre-CDR:
 - Extrapolation from LEP, no full simulation study
- CDR :
 - Must have full simulation study for a few key measurements.
 - A_{FB} , $Sin^2\theta_W$ and W boson mass.
 - Good to have Fast simulation or full simulation
 - Alpha_QCD
 - Z boson mass
 - Z Branching ratio : R^{mu} , R^{b ,}
 - Performance study in Z-pole full simulation
 - What can we learn of object calibration in Z-pole running
 - TPC performance and tracking performance in Z-pole running

Forward-backward asymmetry A_{FB (b)}

- Forward-backward asymmetry A_{FB (b)}
 - Pre-CDR : focus Z->bb inclusive semi-leptonic decay with jet charge method.
 - Current study with full simulation MC samples: focus on Z->bb fully leptonic decay.
 - Advantage : Lepton charge is measured more precise compared to jet charge.
 - Dis-Advantage: Lower branching ratio compared to semi-leptonic decay.
 - Manpower : Zhijun Liang, Gang Li, Manqi Ruan

Backward-forward asymmetry measured from b jet

- LEP measurement : 0.1000+-0.0017 (Z peak)
- Pre-CDR study
 - focused on inclusive b jet measurement, semi-leptonic decay (Extrapolation from LEP)
 - Method : jet charge method using Inclusive b jet (~0.15%)
 - Expected Stat error (0.04%) (>100 times of LEP stat)
 - Expected Systematics (0.12%) :
 - B-tag efficiency (0.1%)
 - charge correlations due to B tag/ jet charge (0.05%)
 - Jet charge systematics (have not considered)
- Toward CDR
 - Plan to focus more on fully semi-leptonic decay mode with full simulation study
 - Method : Soft lepton from b/c decay
 - Expected Systematics (0.07%) :
 - Sample statistics in light/heavy flavor jet sample (0.74%)
 - Expected Systematics (0.18%) :
 - Branching rate of b/c decay into lepton (0.15%)
 - Lepton scale systematics and lepton Identification (0.1%)

 $A^{b\bar{b}}_{\bar{n}\bar{n}}(0)$

Weak mixing angle

LEP/SLD measurement : 0.23153 ± 0.00016

- 0.1% precision.
- Stat error in off –peak runs dominated.

CEPC Pre-CDR expected precision (0.01%):

- off-Z peak runs is key issue.
- Need at least 10 fb⁻¹ for off-peak runs
- Toward CDR:
- Need to re-optimize off-peak runs statistics
- Try to reduce number of off-peak runs
 - Try 2 off-peak runs instead of 7 runs
- Optimize the off-peak runs energy •
- plan to use Gfitter for electroweak combined fit
- collaborate with Gfitter experts Matthias Schott
- Manpower: •
- Joao Guimaraes da Costa, Zhijun Liang •

 $sin^2 \theta_{eff}^{iep}$

lept

Sqrt(s) GeV	LEP lumi (fb-1)	Proposed CEPC lumi
88.2	0.05fb-1	10 fb-1
89.2	~0.4fb-1	10 fb-1
90.2	0.05fb-1	10 fb-1
91.2	~4 fb -1	1000fb-1
92.2	0.05fb-1	10 fb-1
93.2	~0.4fb-1	10 fb-1
94.2	0.05fb-1	10 fb-1

• SLD/LEP measurement 0.21594 ±0.00066

From PreCDR toward CDR

- Expect ~10% higher B tagging efficiency than pre-CDR performance
 - In 95% B jet purity working
 - Reduce charm mistag and light jet mistag and hemi corrections systematics
- Stat error (0.04%)
- Syst error (0.07%)
 - Charm mistag : from 0.05% (pre-CDR) to 0.02% (CDR)
 - Light jet mistag : from 0.05% %(pre-CDR) to 0.02% (CDR)
 - Gluon radiation (g->bb , g->cc) (0.05%)

Number of neutrino generation (N_v)

- LEP measurement :
 - Indirect measurement (Z line shape method): 2.984+-0.008
 - Direct measurement (neutrino counting method): 2.92+-0.05
 - Stat error (1.7%), Syst error (1.4%)
- CEPC measurement :
 - Stat error (0.1%), Syst error (0.15%)

$$e^+e^- \rightarrow \nu \bar{\nu} \gamma$$
.

- expected better granularity in calorimeter can help photon identification
- Should focus on direct measurement
 - Need to consider photon trigger in early stage
 - Photon Trigger performance is key for this measurement
 - Toward CDR
 - Understand photon performance with full simulation

Systematics source	LEP	CEPC
Photon Trigger efficiency	0.5%	0.1%
Photon Identification efficiency	0.5%	0.1%
Calorimeter energy scale	0.5%	<0.05%

Branching ratio (R^{mu})

- LEP result: 0.2% total error
 - Stat : 0.15%
 - Syst : 0.1%
- CEPC: 0.05% total error expected
 - Better EM calorimeter is the key
 - Stat: 0.01%
 - Syst: 0.05%
 - Toward CDR
 - Understand photon energy scale and radiative events modelling systematics with full simulation.

Systematics source	LEP	CEPC
Radiative events (Ζ->μμγ)	0.05%	0.05%
Photon energy scale	0.05%	0.01%
Muon Momentum scale	0.009%	0.003%
Muon Momentum resolution	0.005%	0.003%

Z mass measurement

- LEP measurement : 91.1876±0.0021 GeV
- CEPC possible goal: 0.5 MeV
 - Stat uncertainty : 0.2MeV
 - Syst uncertainty: ~0.5 MeV
 - beam energy uncertainty
 - lepton momentum scale uncertainty
- Z mass threshold scan is needed to achieve high precision.
 - Precision in direct measurement in ZH runs is much lower
 - Z threshold scan is very important for lepton energy scale calibration
 - Towards CDR :
 - understand letpon momentum resolution with full simulation
 - Understand Tracking performance with TPC detector in high occupancy
 - Optimize the statistics of off-peaks runs for threshold scan.

W mass measurement : motivation

- CEPC have very good potential in electroweak precision physics.
- Precision measurement is important
 - Precision electroweak measurement constrain new physics beyond the standard model.
 - Eg: Radiative corrections of the W or Z boson is sensitive to new physics

W mass measurement(1)

- Current PDG precision : 80.385±0.015 GeV
 - Possible goal for CEPC : ~2 MeV
- Two methods: Threshold scan, direct measure
 - 1.Threshold scans of W+W- cross section (\sqrt{s} =160GeV)
 - Disadvantage:
 - Higher cost
 - Require dedicated runs 100fb⁻¹ on WW threshold (~160GeV)
 - Low statistics: low cross section below threshold
 - high requirement on beam momentum uncertainty
 - LEP (~50ppm)
 - Require CEPC to be less than 10ppm
 - Advantage:

.

- Very robust method, can achieve high precision (2MeV precision).
- Towards CDR : need to answer these questions for WW threshold scan.
- Whether we need WW threshold scan runs ?
 - Improvement of W mass precision
- How many runs we need and the run energy
- How much statistics for each WW threshold scan runs ?

Method 2: direct measurement in ZH runs (√s=240GeV)

- Decays model : WW-> lvqq , WW->lvlv
 - Advantage :
 - No additional cost :measured in ZH runs
 - Higher statistics: 10 times larger than WW threshold region
 - Lower requirement on beam energy uncertainty.
 - Disadvantage :
 - Larger uncertainty due to initial/final state photon radiation modeling
 - Towards CDR: need to understand detecor systematics with full simulation

	LEP	CEPC (100fb ⁻¹)	CEPC (100fb ⁻¹)
	lvqq	lvqq	lvlv
Statistical error	30 MeV	1.5 MeV	~3MeV
Beam energy	17 MeV	0.5 MeV	0.5MeV
Detector resolution	14MeV	3~4 MeV	2~4 MeV
Hadronisation	19MeV	2~3 MeV	-
QED	20MeV	1MeV	2~3 MeV

Summary of W and Z physics

- Toward CDR :
 - Must have full simulation study for a few key measurements.
 - A_{FB} , $Sin^2\theta_W$ and W boson mass.
 - Good to have Fast simulation or full simulation
 - Alpha_QCD
 - Z boson mass
 - Z Branching ratio : R^{mu} , R^{b ,}
 - Performance study in Z-pole full simulation
 - What can we learn of object calibration in Z-pole running
 - TPC performance and tracking performance in Z-pole running

Backward-forward asymmetry measured from b jet

- LEP measurement : 0.1000+-0.0017 (Z peak)
 - Stat error: ~1.2% (4 experiments)
 - Systematics: ~1.4% (combination of three methods)
 - Method 1: Soft lepton from b/c decay (~2%)
 - Branching rate of b/c decay into lepton (1.5%)
 - B-tag and jet charge (1.1%)
 - Lepton pT and lepton Identification (0.9%)
 - Method 2: jet charge method using Inclusive b jet (~1.2%)
 - B-tag efficiency (0.4%)
 - charge correlations due to B tag/ jet charge (0.1%)
 - Sample statistics in light/heavy flavor jet sample (0.74%)
 - Method 3: D meson method (>8%, less important method)
- CEPC
 - Should focus on inclusive b jet measurement
 - Expected Stat error (0.1%) (>100 times of LEP stat)
 - Expected Systematics (0.12%) :
 - B-tag efficiency (0.1%)
 - charge correlations due to B tag/ jet charge (0.05%)

Status of CEPC electroweak analysis

• Observable	Pre-CDR status	Current status
A _{FB (b)}	Extrapolation from LEP	Full simulation analysis on going
$Sin^2\theta_W$	Extrapolation from LEP	Full simulation analysis on going
R ^b	Extrapolation from LEP	Full simulation sample ready Need manpower
R ^{mu}	Extrapolation from LEP	Need full simulation samples
R ^{tau}	Extrapolation from LEP	Need a robust tau finder
Alpha_QCD	Not covered	a new full simulation analysis
W boson mass	Extrapolation	Full simulation sample ready Need manpower

Manpower and activity update

- Forward-backward asymmetry A_{FB (b)}
 - Pre-CDR : focus Z->bb inclusive semi-leptonic decay with jet charge method.
 - Current study with full simulation MC samples: focus on Z->bb fully leptonic decay.
 - Advantage : Lepton charge is measured more precise compared to jet charge.
 - Dis-Advantage: Lower branching ratio compared to semi-leptonic decay.
 - Manpower : Zhijun Liang, Gang Li, Manqi Ruan

Manpower and activity update (2)

- Electroweak mixing angle: $Sin^2\theta_W$
 - Pre-CDR : Extrapolation from LEP, using Zfitter for electroweak combined fit.
 - Current plan: plan to use Gfitter for electroweak combined fit collaborate with experts Matthias Schott.
 - Manpower: Joao Guimaraes da Costa, Zhijun Liang
- Alpha_QCD
 - collaborate with ATLAS Alpha_QCD measurement team
 - Manpower: Joao Guimaraes da Costa, Javier Llorente Merino

Backward-forward asymmetry measured from b jet

- LEP measurement : 0.1000+-0.0017 (Z peak)
 - Stat error: ~1.2% (4 experiments)
 - Systematics: ~1.4% (combination of three methods)
 - Method 1: Soft lepton from b/c decay (~2%)
 - Branching rate of b/c decay into lepton (1.5%)
 - B-tag and jet charge (1.1%)
 - Lepton pT and lepton Identification (0.9%)
 - Method 2: jet charge method using Inclusive b jet (~1.2%)
 - B-tag efficiency (0.4%)
 - charge correlations due to B tag/ jet charge (0.1%)
 - Sample statistics in light/heavy flavor jet sample (0.74%)
 - Method 3: D meson method (>8%, less important method)
- CEPC
 - Should focus on inclusive b jet measurement
 - Expected Stat error (0.1%) (>100 times of LEP stat)
 - Expected Systematics (0.12%) :
 - B-tag efficiency (0.1%)
 - charge correlations due to B tag/ jet charge (0.05%)

20

Proposal for Z Mass scan

The statistics in Off-peak runs was the bottleneck
Propose 10 fb-1 integrated luminosity for off-peak runs in CEPC
7 mass scan runs

Sqrt(s) GeV	LEP lumi (fb-1)	Proposed CEPC lumi	
88.2	0.05fb-1	10 fb-1	
89.2	~0.4fb-1	10 fb-1	
90.2	0.05fb-1	to the 10 fb-1	
91.2	~4 fb -1	1000fb-1	0.4
92.2	0.05fb-1	10 fb-1	0.2 0.2
93.2	~0.4fb-1	10 fb-1	integrated luminosity of each off-peak run (rb)
94.2	0.05fb-1	10 fb-1	

22

- Expect 10~15% higher B tagging efficiency than LEP ex
 - In 95% B jet purity working
 - Reduce charm mistag and light jet mistag and hemi corrections systematics
- Stat error (0.04%)
- Syst error (0.07%)
 - Charm mistag (0.05%)
 - Light jet mistag (0.05%)
 - Gluon radiation (g->bb , g->cc) (0.1%)