

CEPC-SPPC WORKSHOP H->bb/cc/gg Branch Ratio Measurement in CEPC

Yu Bai (from Southeast University, Nanjing) On Behalf of CEPC Physics-Software Working Group April 8, 2016

Outline

- Introduction
- H->bb/cc/gg br. measurement in µµ+jj channels
- H->bb/cc/gg br. measurement in vv+jj channels
- H->bb/cc/gg br. measurements in multi-jets channel
- Summary

Introduction: Physics Overview

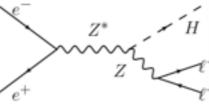
- Higgs decay branch ratio measurements with high precision are crucial to understand the electroweak mechanism, and are one of the most significant goal in the future collider experiment in frontier.
 - Reason of fermions mass
 - Is there only one higgs boson?
 - Higgs width
- CEPC is suitable for precise measurement of Higgs decay branch ratio
 - Much lower background (than hadron collider)
 - Utility of recoil mass, free of higgs decay channel
 - Excellent energy/momentum resolution
 - High luminosity

Introduction: Signal Process

· ZH->µµ+jj

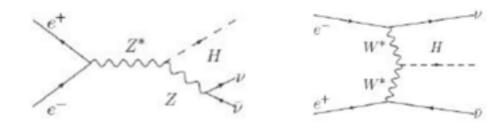
- ZH production with Z decay to muon pair, H decay to bb/cc quark or gluon pair
- Very clean signal in muon pair invariant mass and recoil mass

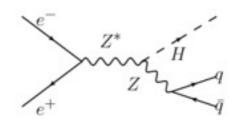
· ZH->vv+jj


- Via ZH(~86%) or WW fusion(~14%)
- Clean background

ZH->Multi-jet

- Both Z and Higgs decay hadronically
- Much larger cross section than semileptonic channel

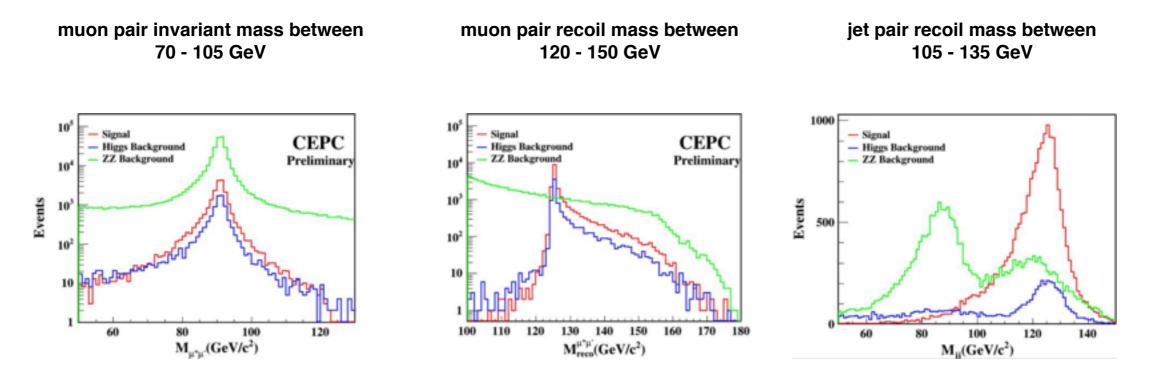

Integral luminosity of 5000 fb⁻¹ is assumed in these study, corresponding to that of a few years of CEPC running


ZH->μμ+jj

ZH->vv+jj

ZH->multi-jets

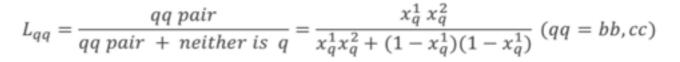
- ´-

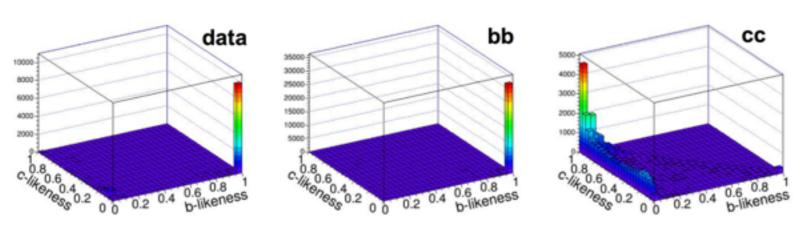

√s = 250 GeV

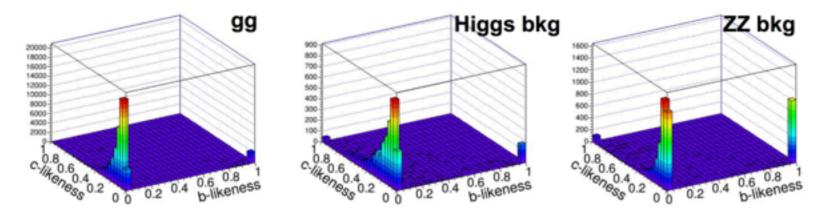
ZH->II+jj Channel

Final states, 2 muons + 2 jets.

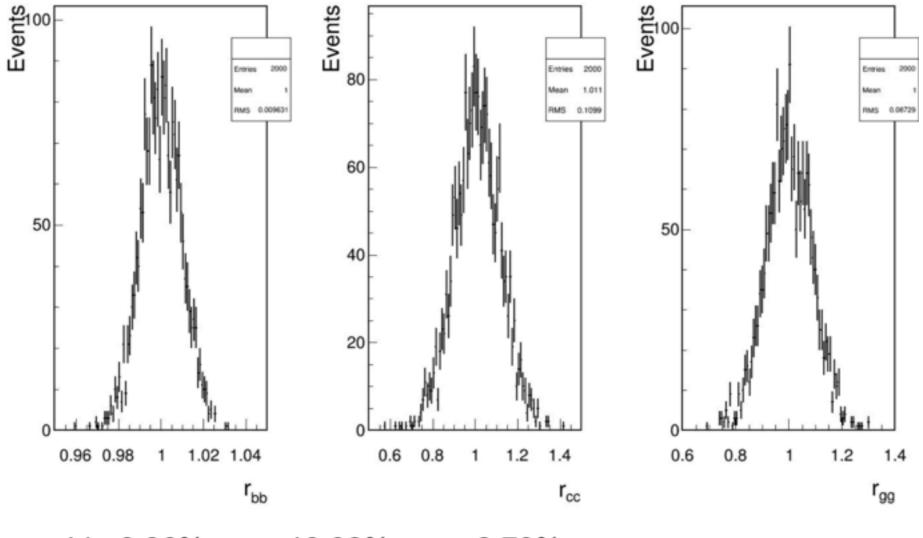
Using invariant mass of muon pair, jet pair, and the recoil mass of muon pair


Recoil mass study see: http://indico.ihep.ac.cn/event/5592/contribution/7/material/slides/0.pdf


Template Fit in II+jj Channel


Templates and data

Fit target


Category	Signal	ZH	ZZ
Pre-selection	21300	9486	381678
$120GeV < M_{recoil}^{\mu^+\mu^-} < 150GeV$	20582	8678	35305
$70GeV < M_{\mu^+\mu^-} < 105GeV$	20121	8340	26525
$105 GeV < M_{jj} < 135 GeV$	16479	3336	7732

Full Simulated Higgs and ZZ events

Template Fit in II+jj Channel: Toy MC Check

bb: 0.96% cc: 10.99% gg: 8.73%

Fit works stable

vv+jj Channel, Datasets and Event Pre-selection

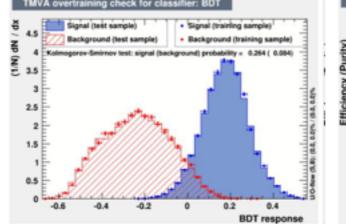
Datsets:

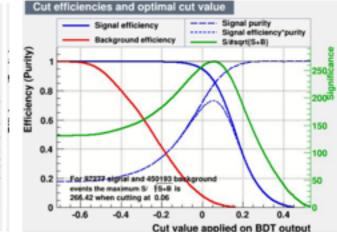
Name	Statistics	weight	Note
vvH	5000fb ⁻¹	1	Full simulation
$(qq, e^+e^-, \mu^+\mu^-)H$	5000fb ⁻¹	1	Full simulation
$\tau^- \tau^+ H$	0	0	Not available
2fermions/4fermions	500fb ⁻¹	10	Fast simulation

Generator: Whizard, Simulation arbor Major SM background are with qqln, qqnn and qq events

Event Pre-selection:

- Number of particles(PFO) >=20
- Visible Energy between 110 and 150 Ge
- Isolated electron and isolated muon veto
- y_{12} between 0.15 and 1.0, y_{23} <0.06, y_{34} <0.008
- $\cos \theta$ between -0.98 and -0.4,
- BDT Cut

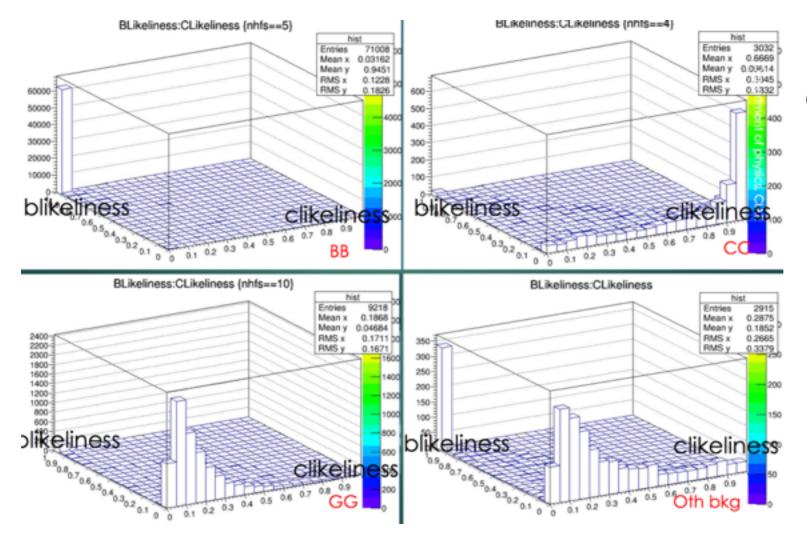

Event yields after Cut flow


Cut Definition	Sig.	99	qqnn	qqln	nnh
Generated	16260	25M	183K	3681K	
FSClasser output	16768	25M	183K	3681K	7485
$N_{\text{PFO}(E>0.4\text{GeV})} > 20$	16748	23M	163K	3439K	4889
$110 < E_{total} < 150$	14689	10M	126K	705K	3311
$P_T > 19$	13687	34K	116K	627K	3101
Isolation lepton veto	13429	33775	115K	327K	2537
$100 < M_{inv} < 135$	12827	9506	10420	162K	2269
$70 < M_{\rm rec} < 125$	12166	7521	10045	110K	2260
$0.15 < y_{12} < 1$	12093	7405	9702	101K	2211
$y_{23} < 0.06$	10902	6644	8456	69313	1220
$y_{34} < 0.008$	10377	6504	7878	58532	519
$-0.98 < \cos(\theta_{\text{included}}^{(2\text{jets})}) < -0.4$	10284	5766	5454	34823	485
BDT > 0.04	8705	381	465	267	230
Significance	84.92				
Efficiency	53.5%				

Very high signal/background ratio

BDT in vv+jj Channel

- Input variables: N_{PFO}, P_{T,total}, M_{inv}, M_{reco}, y₁₂, y₂₃, y₃₄, θ_{2jets}. (E_{total} was not included to reduce the overfitting.)
- ▶ Optimization: maximize the statistics significance (= S/√S + B).

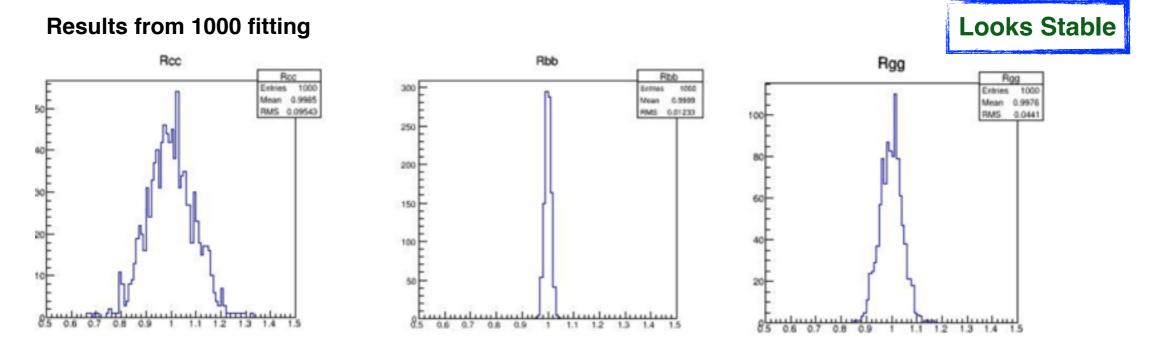


Number	bb	cc	gg	Oth higgs	SM
before	125725	5853	17377	Didn't cal.	Didn't cal.
Efficiency	59.0%	55.8%	55.9%	Didn't cal.	Didn't cal.
Left	74191	3266	9710	3299	1556*10

Overall signal efficiency 58.5%. 266 statistic significance.

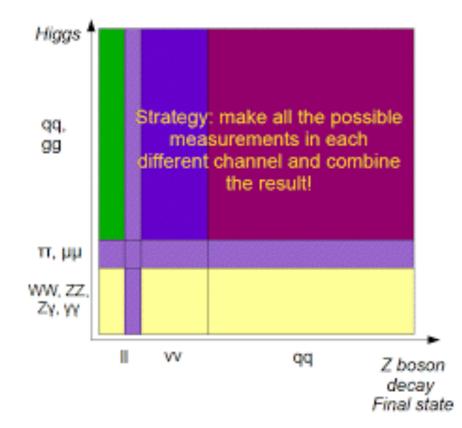
BDT in vv+jj Channel Template Fit

Template and data



Only Higgs background are included

Fix the vvH background in the fitting


BDT in vv+jj Channel Template Fit : Result and ToyMC

Channel	bb	cc	99	Oth Higgs
Truth	7419.1	326.6 und	971.0	329.9
Mean	7419.0	326.6 325.0 28.4 nt bias found nificant bias found 9.3%	969.4	330.0
RMS (fitTo)	88.1	28.4 nt Dru	38.8	-
RMS (ToyMC)	87.1 Gig	n1301	39.6	-
Relative error	1.23% NO 3	9.3%	4.2%	-
1/sqrt(Truth)	1.16%	5.5%	3.2%	-

Multi-jets Channel

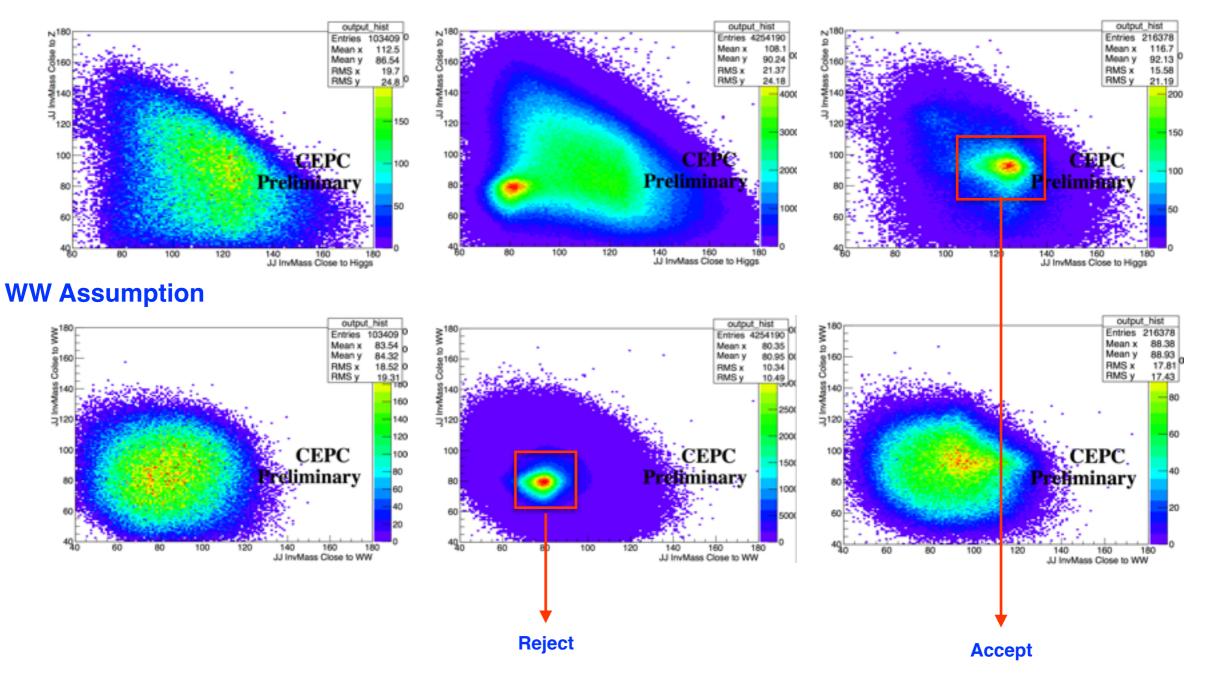
Majority decay FS in HZ production Large Statistics

Datasets:

- Main background: Irreducible background from WW/ZZ and quark pair process
- Full simulation of Higgs production and hadronic channel in WW/ZZ, fast simulation for the others
- Quark pair sample are filtered due to its huge cross section and low rate to passing the event selection
 - Veto events without gluon radiation or gluon splitting
 - Veto events without radiation return
 - Efficiency ~10%, contain over 90% of event survive selection

Event Selection and Cut flow

		Signal	Other aaH	ffH	qq(filtered)	II	qqqq	llqq	lvqq/vvqq	pure leptonic
Orig	ginal	71	7k	354k	246.9M(unfiltered	271.7	~40M		36.8M	
Final s	tate 4J	71	6k	343k	22.6M	20.5M	40.8M	3.16M	37.1M	2.11M
Jet Qua	lification	358.5k	89.0k	8.5k	4.65M	0	18.47M	4.0k	11.6k	0
Missing E	< 58 GeV	354.2k	83.3k	2.95k	4.44M	0	16.94M	3.54k	3.57k	0
y34 >	0.204	214.6k	58.8k	1.50k	530k	0	12.22M	662	269	0
	nt Mass dow	21.4k	3.5k	28.2k	23.6k	-	92.8k	-	-	-


Jet paring and Invariant Mass:

Energy > 25 GeV, |ŋ|<2.1 At least 10 PFOs.

- HZ paring: find the jet pair mass closet to Higgs Mass
- WW paring: the sum of the square of difference between jet pair mass and W mass get minimized
- ZZ paring: find the jet pair mass closet to Z mass

Invariant Mass of Jet Pair

HZ Assumption

Flavor tagging in Multi-jet Channel

- We also tried template fit for multi-jet channel
- The bb/cc fraction are fitted relatively better than gg branch ratio. May due to the resemblance between background from higgs process and H->gg+qq events — H->gg can be fixed(similar to vv+jj channel)
- We are also trying other method

Summary

- We enumerate in various type of final states to measure higgs->bb/cc/gg branch ratio
- ZH->II+jj is a clean channel and looks very promising
 - As a very clean channel, we can consider sys. issues: like recoil mass study, sys. from flavor tagging etc.
- Background in vvjj channel is clean and the results from fit looks quite stable.
- ZH->multijets is ongoing. Results from full simulated irreducible background shows
- There are some limits in using template fit now, need to solve
- More and more full simulated sample come out. Can be used in analysis.