SEY test for SPPC

YONG WANG, JIE WANG, Zhang Bo, National Synchrotron Radiation Laboratory University of Science and Technology of China

8/4/2016

OUTLINE

- Introduction
- Test principle
- Secondary electron yield test equipment with high precision
- SEY test results
- Comparison with foreign labs
 - **Future plans**

INTRODUCTION

Suppression of second electron emission

- clearing electrode
- coating with low SEY material, amorphous carbon coating, etc.
- weak solenoid field (10-20 G) along the vacuum chamber to keep e-cloud separated from beam path;
- SEY test and surface impedance measurement under low temperature and high magnet field;
- grooves on the wall of vacuum chamber to enhance electron loss near wall of the vacuum chamber

SEY test is an important means of characterization.

TEST PRINCIPLE 1

• A secondary electron emission measurement system with 50eV~5000eV low energy electron gun has been designed and used to measure the SEY of different materials.

 $\odot \sigma = 1 - I_t / I_p$

✓ *I*_p, is measured by applying a +150 V bias voltage that recaptures all secondary electrons. The total current *I*_t is measured by applying - 40 V bias voltage that repels all low energy secondary electrons. So the secondary emission current is given by *I*_{SEY} = *I*_t − *I*_p.

Fig.1 The schematic diagram of SEY test.

TEST PRINCIPLE 2

$$\delta_{\text{SEY}} = \frac{\boldsymbol{I}_{f}}{\boldsymbol{I}_{p}} = \frac{\boldsymbol{I}_{f}}{(\boldsymbol{I}_{f} + \boldsymbol{I}_{s})}$$

The SEY is the ratio of the current of secondary electrons, I_{SEY} , to the current of incident electrons, I_p . Sample-to-ground current I_s measured at the sample and faraday cup-to-ground current I_f are measured by Keithley 2400 Source Meter.

Schematic diagram of secondary electron test equipment.

- A secondary electron emission measurement system with 50eV~5000eV low energy electron gun has been designed and used to measure the SEY of different materials.
- The SEY of stainless steel and oxygen free copper (OFC) were obtained. The maximum SEY of stainless steel and OFC are 1.78 and 1.943.
- Compared with the results of other research institutions.
- The SEY test-stand is mainly composed of vacuum chamber, electron gun, Turbo molecular pump, ion pump, sample holder, data collection system and power system.

。 电子枪

选用EGL-2022B (KIMBALL) 电子枪以满足实验要求,其束流能量为50eV~5000eV,发射电流为1nA~100 µ A,标准工作距离为20mm,束斑半径为1mm~5mm,发射电子密度为10⁻⁵~10⁻⁴C•mm⁻²,有恒流和脉冲两种工作方式。电子枪设计为竖直放置于样品正上方,使电子束垂直入射到样品表面。

 采用IS40C1(PREVAC)离子枪对样品表面进行处理。离子枪位于电子枪左方 45°位置,工作距离为80mm。此外,该离子枪还可以进行绝缘样品测试时 的离子中和,同样可以提高绝缘材料二次电子产额测试精度。

◎ 样品架

。 控制及数据采集系统

 采用Keithley 240皮安表测量二次电子电流,该电流计的误差为0.012%, 在误差范围内可以精确测得二次电子发射电流和入射电流大小。采用NI数据采集卡模块PCI-6713和PCIe-6341,分别通过专用电缆SH68-68-EPM和SHC68-68-EPM将电子枪控制电源与计算机连接,可以实时记录并精确控制电子枪束流参数。

◎ 测试系统

⊙ A secondary electron emission measurement system with 50eV~5000eV low energy electron gun has been designed and used to measure the SEY of different materials.

• The SEY of stainless steel and oxygen free copper (OFC) were obtained. The maximum SEY of stainless steel and OFC are 1.78 and 1.943.

COMPARED WITH THE RESULTS OF OTHER RESEARCH INSTITUTIONS

A. Stanford Linear Accelerator Center

Sample	mechanically mirror-polished (0.25 mm diamond)						
	and degreased OFE copper						
Method	$\delta = 1 - I_t / I_p$						
Test	cleaned for UHV operation and unbaked with a						
conditions	pressure of 1 nTorr						
Test results	1.5						
Reference	R.E. Kirby, F.K. King, Nuclear Instruments and						
	Methods in Physics Research A 469 (2001) 1–12						

B. STFC

B

	Sample	OFE copper				
	Method	$\delta = I_f / (I_f + I_s)$				
	Test	A negative bias voltage (-18 V) with respect to the				
	conditions	Faraday cup, which is held at ground, is applied t				
		the sample; Electrons dose per unit: $1*10^{-6}$ C·mm ⁻				
		², 1*10⁻² C·mm⁻²				
	Test	1.85~1.25,				
	results					
~	Reference	Reza Val izadeh et al., APPLIED PHYSICS LETTERS				
		105, 231605 (2014)				

C. CERN

Sample	OFE copper				
Method	$\delta = I_f / (I_f + I_s)$				
Test	bias voltage: +45, -18V				
conditions					
Test	1.8~1.05, when the electrons dose				
results	per unit is $5.48*10^{-6}$ C \cdot mm ⁻² ,				
	SEY _{max} =1.75				
Reference	CHRISTINA YIN VALLGREN, 2011				

● 与以上三个实验室的测试数据相比,从加偏压的角度看,我们的参数与 CREN的偏压参数最为接近;

Research institutions	Bais voltage of Faraday cup	Bais voltage of sample holder/V	SEY _{max} of OFC	Electrons dose/ C·mm ⁻²
CERN	+45	-18	1.75	5.48*10 ⁻⁶
NSRL	+50	-18	1.96	5*10 ⁻⁸

FUTURE PLANS

Study of Wall impedance

- •Wall impedance is increased when operating temperature is 40-60K
- Beam instability is caused by increase of wall impedance
- Coating silver/Cu film could be considered to decrease the wall impedance.(coating super conductor film, is it possible?)
- SEY test at low temperature (4K~60K)

