### **Circular Electron Positron Collider**

CEPC

## SRF Cavity Design for CEPC PDR Scheme

Hongjuan Zheng, Jie Gao, Jiyuan Zhai, Zhenchao Liu, Na Wang 2016.04.08

CEPC-SPPC Symposium, April 8-9, 2016. IHEP, Beijing.





### Cavity design

- Cell number
- Cavity type
- HOM power analysis for multiple timestructure
- Multi-bunch instability caused by RF cavity

### Summary

### **CEPC PDR scheme**



6

## Beam parameters (wangdou20160219)

|                                                                    | Pre-CDR    | H-high lumi. |              | H-low power |              | Z          |
|--------------------------------------------------------------------|------------|--------------|--------------|-------------|--------------|------------|
| Number of IPs                                                      | 2          | 2            |              | 2           |              | 2          |
| Energy (GeV)                                                       | 120        | 120          |              | 120         |              | 45.5       |
| Circumference (km)                                                 | 54         | 54           |              | 54          |              | 54         |
| SR loss/turn (GeV)                                                 | 3.1        | 2.96         |              | 2.96        |              | 0.062      |
| Half crossing angle (mrad)                                         | 0          | 14.5         | 15           | 11.5        | 15           | 15         |
| Piwinski angle                                                     | 0          | 2            | 2.5          | 2           | 2.6          | 8.5        |
| $N_{e}$ /bunch (10 <sup>11</sup> )                                 | 3.79       | 3.79         | 2.85         | 2.81        | 2.67         | 0.46       |
| Bunch number                                                       | 50         | 50           | 50           | 40          | 44           | 1100       |
| Beam current (mA)                                                  | 16.6       | 16.9         | 16.9         | 10.1        | 10.5         | 45.4       |
| SR power /beam (MW)                                                | 51.7       | 50           | 50           | 30          | 31.2         | 2.8        |
| Bending radius (km)                                                | 6.1        | 6.2          | 6.2          | 6.2         | 6.2          | 6.1        |
| Momentum compaction (10 <sup>-5</sup> )                            | 3.4        | 3.0          | 2.5          | 2.6         | 2.2          | 3.5        |
| $\beta x/y(m)$                                                     | 0.8/0.0012 | 0.306/0.0012 | 0.25/0.00136 | 0.22/0.001  | 0.268        | 0.08/0.001 |
|                                                                    |            |              |              |             | /0.00124     |            |
| Emittance x/y (nm)                                                 | 6.12/0.018 | 3.34/0.01    | 2.45/0.0074  | 2.67/0.008  | 2.06 /0.0062 | 0.62/0.002 |
| Transverse $\sigma_{IP}$ (um)                                      | 69.97/0.15 | 32/0.11      | 24.8/0.1     | 24.3/0.09   | 23.5/0.088   | 7/0.046    |
| $\xi_x/\text{IP}$                                                  | 0.118      | 0.04         | 0.03         | 0.04        | 0.032        | 0.005      |
| $\xi_y/\text{IP}$                                                  | 0.083      | 0.11         | 0.11         | 0.11        | 0.11         | 0.084      |
| $V_{RF}(\text{GV})$                                                | 6.87       | 3.7          | 3.62         | 3.6         | 3.53         | 0.12       |
| $f_{RF}$ (MHz)                                                     | 650        | 650          | 650          | 650         | 650          | 650        |
| <i>Nature</i> $\sigma_{z}$ (mm)                                    | 2.14       | 3.3          | 3.1          | 3.2         | 3.0          | 3.9        |
| Total $\sigma_{z}$ (mm)                                            | 2.65       | 4.4          | 4.1          | 4.2         | 4.0          | 4.0        |
| HOM power/cavity (kw)                                              | 3.6        | 3.3          | 2.2          | 1.5         | 1.3          | 0.99       |
| Energy spread (%)                                                  | 0.13       | 0.13         | 0.13         | 0.13        | 0.13         | 0.05       |
| Energy acceptance (%)                                              | 2          | 2            | 2            | 2           | 2            |            |
| Energy acceptance by RF (%)                                        | 6          | 2.2          | 2.2          | 2.2         | 2.1          | 1.1        |
| $n_{\gamma}$                                                       | 0.23       | 0.49         | 0.47         | 0.47        | 0.47         | 0.27       |
| Life time due to                                                   | 47         | 53           | 36           | 41          | 32           |            |
| beamstrahlung_cal (minute)                                         |            |              |              |             |              |            |
| <i>F</i> (hour glass)                                              | 0.68       | 0.73         | 0.82         | 0.69        | 0.81         | 0.95       |
| $L_{max}$ /IP (10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ) | 2.04       | 2.97         | 2.96         | 2.03        | 2.01         | 3.61       |





5 cell cavity was designed for Pre-CDR scheme. Is it suitable for PDR scheme?

### Selection basis:

- Accelerating gradient
- HOMs
- HOM power
- HOM power coupler
- Impedance
- Cryogenic
- Transient beam loading
- Cost

• .....

## **Comparison of different schemes**

|                                 | High<br>crossing and | -lumi<br>ıle=30mrad | Low power<br>crossing angle=30mrad |                    |
|---------------------------------|----------------------|---------------------|------------------------------------|--------------------|
| Cell no.                        | 5                    | 2                   | 5                                  | 2                  |
| Q <sub>0</sub>                  | 4×10 <sup>10</sup>   | 2×10 <sup>10</sup>  | 4×10 <sup>10</sup>                 | 2×10 <sup>10</sup> |
| <i>R</i> /Q (Ω)                 | 514                  | 212.7               | 514                                | 212.7              |
| k <sub>HOM</sub> /cavity (V/pC) | 1.4                  | 0.55                | 1.47                               | 0.59               |
| Ave. RF power/cavity (kW)       | 263.29               | 261.56              | 163.83                             | 163.04             |
| HOM power/cavity (kW)           | 2.87                 | 1.14                | 1.33                               | 0.54               |
| Cavity voltage (MV)             | 9.6                  | 9.6                 | 9.2                                | 9.2                |
| Gradient (MV/m)                 | 8.4                  | 20.9                | 8.0                                | 19.9               |
| Detuning frequency (kHz)        | -2.97                | -1.23               | -1.76                              | -0.73              |
| Cavity bandwidth (kHz)          | 7.9                  | 3.3                 | 5.4                                | 2.2                |
| Cavity effective length (m)     | 1.153                | 0.461               | 1.153                              | 0.461              |
| Stored energy/cavity (J)        | 44.2                 | 106.9               | 40.3                               | 97.3               |
| Cavity wall loss/cavity (W)     | 4.5                  | 21.8                | 4.1                                | 19.9               |



 $R_{\rm tube} = 78 \, \rm mm$ 

*R*<sub>tube</sub>=112.2 mm



|                                                |        | <i>R</i> <sub>tube</sub> =78 mm | <i>R</i> <sub>tube</sub> =112.2 mm |
|------------------------------------------------|--------|---------------------------------|------------------------------------|
| Cut off frequency                              | MHz    | TM01: 1471<br>TE11: 1126        | TM01: 1022<br>TE11: 783            |
| R/ Q                                           | Ω      | 212.7                           | 206.3                              |
| $k_{\rm HOM}$ ( $\sigma$ =4 mm)                | (V/pC) | 0.593                           | 1.346                              |
| Average HOM power<br>(low power 30mrad scheme) | kW     | 0.54                            | 1.226                              |
| Pulsed HOM power                               | kW     | 9.11                            | 20.68                              |



### HOM power for multiple time-structure

### Beam parameters:

• H-Low power & crossing angle=30 mrad scheme

### Time structure:

- Cavity location: IP1 & IP3
- Cavity location: IP2 & IP4



Macro-pulse period:  $T_{\rm m}$ = 180 µs Pulse length:  $T_{\rm mb}$ =21.4 µs Macro-pulse gap length :  $T_{\rm G}$ =  $T_{\rm m}$ - $T_{\rm mb}$ =158.4 µs Time spacing between bunches:  $T_{\rm b}$ =243.1 ns

## Induced voltage & HOM power



#### Induced voltage in $T_{\rm m}$

Induced power in  $T_{\rm m}$ 

*f*=1.164 GHz, near TM011 mode !

Time averaged HOM power-1



#### Bandwidth: 0.55 MHz

## **Time averaged HOM power-2**



Bandwidth: 2 GHz



Macro-pulse gap length :  $T_G = T_m - T_{mb} = 79.37 \ \mu s$ Time spacing between bunches:  $T_b = 243.1 \ ns$ 

## Induced voltage & HOM power



### Induced voltage in $T_{\rm m}$

Induced power in  $T_{\rm m}$ 

*f*=1.164 GHz, near TM011 mode !

Time averaged HOM power-1



Bandwidth: 4 MHz

Bandwidth: 0.5 MHz

# Time averaged HOM power-2



Bandwidth: 2 GHz

### Crude estimates of Multi bunch instability caused by RF cavity

In the resonant condition, the threshold shunt impedances are

$$R_{L}^{thresh} = \frac{2(E_{0} / e)v_{s}}{N_{c}f_{L}I_{0}\alpha_{p}\tau_{z}} = \frac{2(U_{0} / e)v_{s}}{N_{c}f_{L}I_{0}\alpha_{p}T_{0}}$$
$$R_{T}^{thresh} = \frac{2(E_{0} / e)}{N_{c}f_{rev}I_{0}\beta_{x,y}\tau_{x,y}} = \frac{U_{0} / e}{N_{c}f_{rev}I_{0}\beta_{x,y}\tau_{0}}$$

 Byrd, J. and J. Corlett. Study of Coupled-bunch Collective Effects in the ALS. in Particle Accelerator Conference, Proceedings of the 1993. IEEE
 Emery, L. Coupled-bunch instability study of multi-cell deflecting mode cavities for the Advanced Photon Source. in Particle Accelerator Conference, 2007. PAC. IEEE.

## Longitudinal impedance threshold



### **Transverse impedance threshold**





| monopole | f (MHz)  | <i>R</i> /Q (Ω)<br>(2 cell)           | <i>R</i> /Q*(Ω)<br>(1 cell)              | Q <sub>e</sub><br>(H-low power) | Q <sub>e</sub><br>(Z-2 cell) | Q <sub>e</sub><br>(Z-1 cell) |
|----------|----------|---------------------------------------|------------------------------------------|---------------------------------|------------------------------|------------------------------|
| TM011    | 1165.536 | 63.4                                  | 33.63                                    | 4.74×10 <sup>4</sup>            | 1.02×10 <sup>3</sup>         | 1.95×10 <sup>3</sup>         |
| TM020    | 1384.302 | 1.128                                 | 0.095                                    | 2.24×10 <sup>6</sup>            | 4.83×10 <sup>4</sup>         | 5.85×10 <sup>5</sup>         |
| dipole   | f (MHz)  | <i>R</i> / <i>Q</i> (Ω/m)<br>(2 cell) | <i>R</i> / <i>Q</i> ** (Ω/m)<br>(1 cell) | Q <sub>e</sub><br>(H-low power) | Q <sub>e</sub><br>(Z-2 cell) | Q <sub>e</sub><br>(Z-1 cell) |
| TE111    | 844.666  | 276.62                                | 131.03                                   | 5.86×10 <sup>3</sup>            | 4.13×10 <sup>2</sup>         | 8.72×10 <sup>2</sup>         |
| TM110    | 907.469  | 414.84                                | 353.04                                   | 3.91×10 <sup>3</sup>            | 2.75×10 <sup>2</sup>         | 3.23×10 <sup>2</sup>         |
| TM111    | 1279.043 |                                       | 219.98                                   |                                 |                              | 5.19×10 <sup>2</sup>         |
| TE121    | 1468.139 | 12.61                                 | 0.749                                    | 1.29×10 <sup>5</sup>            | 9.06×10 <sup>3</sup>         | 1.52×10 <sup>5</sup>         |

\*  $k_{\text{//mode}} = 2\pi f \cdot (R/Q) / 4 [V/pC]$ \*\*  $k_{\perp \text{mode}} = 2\pi f \cdot (R/Q) / 4 [V/(pC \cdot m)]$ 

- Higgs: low power & 30 mrad crossing angle, 384 2-cell cavity
- Z: 32 2-cell or 1-cell cavity





- 2 cell cavity is chosen for PDR-Higgs design.
- Multi-bunch instability caused by the RF cavity need to be further studied.
- HOM coupler considerations.

### Multi-bunch instability for bunch train scheme

### CESR[1]

- Using a tracking code 'Oscil' to study the longitudinal dynamics of multi-bunch beams.
- APS[2]
  - Using a code 'clinchor' .

[1]. Fromowitz, D. Simulation of longitudinal multibunch instabilities in CESR. in Particle Accelerator Conference, Proceedings of the 1999. IEEE.

[2]. Emery, L. Coupled-bunch instability study of multi-cell deflecting mode cavities for the Advanced Photon Source. in Particle Accelerator Conference, 2007. PAC. IEEE.







24 singlets: 24 equidistant bunches

Hybrid
Single bunch of 16 mA
+ a 56bunch train .
56 bunch train: 8
groups of 7
consecutive bunches
spaced by 24 buckets.

Histogram of possible longitudinal growth rate from four 3 cell cavities.

We found that the growth rates were generally greater for the hybrid mode pattern, probably because of so much charge within 500 ns out of the 3.68- $\mu$ s revolution time.