Progress of MDI

Sha Bai, Hongbo Zhu, Qinglei Xiu, Teng Yue, Yiwei Wang, Kai Zhu, Yingshun Zhu, Yin Xu, Dou Wang, Weichao Yao, Zhongjian Ma

CEPC-SPPC Symposium 2016-4-8

Outline

- Tasks of MDI
 - IR lattice and layout design
 - Final Focusing magnets
 - Luminosity Measurement
 - Beam Induced Background Estimation
 - Detector shielding and radiation protection
 - Mechanics and integration
- Regular group meetings
 - Indico: <u>http://indico.ihep.ac.cn/category/323/</u>
 - Twiki: <u>cepc.ihep.ac.cn/~cepc/cepc_twiki/index.php/Machine_Detector_Interface</u>
- Will compare the difference between single ring and partial double ring.

IR Layout -- Single Ring

- L* = 1.5m
- To meet requirements from both accelerator and detector
- Suppress the beam backgrounds as more as possible

IR Layout -- Partial Double Ring

Final Focusing Magnetic -- Single Ring

2D flux lines

Magnetic flux density distribution

Magnet	Length	Field Gradient(T/m)	Coil Inner Radius (mm)	Coil Outer Radius (mm)
QD	1.25	304 → ~200	20	37
QF	0.72	309 → ~110	20	37

• Coils in Rutherford type Nb₃Sn cables clamped by stainless steel collar

• The field gradient will be decreased to match the feasibility in technology

Final Focusing Magnetic – Partial Double Ring

Magnet	Length	Field Gradient(T/m)	Coil Inner Radius (mm)	Coil Outer Radius (mm)
QD	1.25	~200	12.5	18.5
QF	0.72	~110	20	37

- 2 isolated QD are required to make sure e+ e- pass through the center of the quadrupoles separately.
- The thickness of the coil is tightly limited by the radius of beam pipe and the distance between two beam pipes.
- Cross talk of field between two quadrupoles need be further studied.

Anti-solenoid Design

- Cancel the influence of the detector solenoid on the beam
- $\int B_z ds = 0$
 - The coupling should be cancelled before beam enter the quadrupoles (Compensating solenoid)
 - The longitudinal field inside the quadrupole should be 0 (Screening solenoid)
- How to reduce the length of the solenoid
 - Stronger magnets
 - 8T @ 4.2K
 - Known Record: 11.7T, need lower temperature
 - Reduce the detector field

- Because the tight space in the IR region, the Lumical might be built inside the compensating solenoid (very strong magnetic field)
- In the partial double ring scheme, the effective region of the detector might be suppressed by the other beam pipe.
- The detector parameters should be optimized according to the simulation.
 - Have checked the whole process of luminosity measurement
 - Accomplished a very preliminary selection program and a naive input/output check.

6

Source of Beam Backgrounds at CEPC

- Synchrotron Radiation
 - Bending Magnetic
 - Quadrupoles
- Lost Particles
 - Radiative Bhabha
 - Beamstrahlung
 - Beam-Gas Scattering
- Beamstrahlung
 - Pair production
 - Hadronic background

- Have established a framework for background simulation on the IHEP computing platform.
 - Generator:
 - Guinea-Pig++: Beamstrahlung
 - BBBrem: Radiative Bhabha
 - Self developed codes: Beam-gas scattering and other backgrounds
 - Accelerator Simulation:
 - SAD (Strategic Accelerator Design): Beam particle tracking
 - BDSIM: Also used as generator for synchrotron radiation
 - Detector Simulation:
 - Geant4 (Mokka)
 - Fluka
- Interfaces between all the software have been implemented.
- Developed a toolkit to use these software conveniently

Physical Requirement to Background Level

- Vertex Detector Requirement: Occupancy not exceeding 1%
 - VTX Pixel Density: $5 \times 10^5 \ cm^{-2}$ (Pixel pitch: $\sim 14 \ \mu m$)
 - Safe factor: 5
- The tolerable hit density in partial double ring will be much lower than that of single ring.

Parameters	Single Ring	PDR-H Low Power	PDR-H High Power	PDR Z Pole
Number of Bunches	50	57	144	1100
Bunch Spacing (μs)	3.6	0.187	0.074	0.0097
Hit Density in VTX (Hits $\cdot cm^{-2} \cdot BX^{-1}$)	< 200	< 20	< 10	< 1

Hit Density Without Shielding

- Synchrotron radiation is the most important issue because of the huge photon flux
- The beamstrahlung in the partial double ring might be more serious than that in single ring due to the modification of beam pipe.
- Shielding and protection are essential to reach the physical requirements

Methods to Suppress Background Level

- Synchrotron Radiation
 - Shielding the synchrotron photons with collimators
 - Let the synchrotron photons pass through the IR by well designed beam orbit.
- Lost Beam Particles
 - Add collimators along the storage ring.

Preliminary Design of Collimators

- Shape and Material
 - Trapezium
 - Tungsten
- Position and Aperture d_c
 - Stop efficiency \rightarrow Upper limit
 - TMCI (Transverse mode coupling instability) → Lower limit

 $b|_{b(s)}$

- Vertical injection \rightarrow Lower limit

• Upper Limit:
$$d_c \leq \frac{r_{IR}}{\sqrt{\beta_{IR, \max}}} \sqrt{\beta_c}$$

• TMCI:
$$d_c \geq \left(\frac{0.215 \text{ AIZ}_0 c}{C_1 f_s E e}\right)^{\frac{2}{3}} \left(\frac{\alpha}{\sigma_z}\right)^{\frac{1}{3}} \beta_c^{\frac{2}{3}} \quad \bullet \text{ Injection: } d_c \geq \sqrt{a\beta_c}$$

- The hit density due to lost particles at VTX are significantly suppressed by collimators
- Shielding of other backgrounds are under studying

- Single Ring
 - Lots of progresses have been made in: IR design, final focusing magnets, luminosity calorimeter, background estimation and detector shielding
 - The beam pipe design, mechanics and integration have not been covered yet.
- Partial Double Ring
 - Most topics are in the starting stage.
 - The space for beam pipe and QD0 at L* is tighter than single ring.
 - The pressure of suppressing background level in detector is higher than single ring.

Thank You