CEPC Partial Double Ring

Lattice Design and DA Study

SU Feng GAO Jie WANG Dou WANG Yiwei Li Yongjun BIANTlanjinan BAT Sha DUAN Zhe

GENG Huiping ZHANG Yuan XU Gang XIAO Ming

Key Laboratory of Particle Acceleration Physics and Technology
Institute of High Energy Physics
Chinese Academy of Sciences
2016.4. 8

Out line

1. CEPC PDR Lattice Layout
2. CEPC PDR DA without FFS
3. CEPC PDR DA with FFS
4. New FODO cell : 90/90 non-interleave
5. NSGAII \& DA Optimization
6. DA Study Strategy and Next Steps
7. Summary

CEPC Partial Double Ring Layout

CEPC Bypass at IP2／4

Cell length $=47.2 \mathrm{~m}$

CEPC Partial Double Ring Layout

For CEPC 120GeV beam：
$>$ Max．deflection per separator is $66 \mu \mathrm{rad}$ ．
Using Septum Dipole after separator to acquire 15 mrad

Version 1.0
sufeng
2015．12．20

New PDR1．0．1

Separator with Thin Septum Magnet

Sigmax＝697．8um 20sigma＝14mm
20 mm

Separator： 62.5 urad
12 个
0.75 mrad

Septum Magnet：L＝3m
（ 4.25 mrad ）thicknes $=3-5 \mathrm{~mm}$ rho $=705.822 \mathrm{~m} \quad \mathrm{~B}=0.56 \mathrm{~T}$

Orbit difference between dipole separator kicker
 Dipole

 Seperator

 Seperator
 Kicker

Table name $=$ TWISS

$$
X=20.25 \mathrm{~mm}
$$

So we use Dipole instead Seperator in lattice now

SEPARATIONMATCHL

RING3_DR_IP1_2

Dipole Strength PDR1．0．1 without FFS

	Angle（mrad）	L（m）	Rho（m）	Brho（EO／ c）（T／m）	B（T）	Ek（KeV）	KeV／m
B0	3.205	19.6	6115.44	400	0.06541	626.349	31.956
BSepL	-0.0625	4.5	-72000	400	-0.00556	53.2	11.822
BSeptumL	-4.25	3	-705.822	400	-0.56667	5426.4	1808.8
BMatch1L	1.277	4.9	3837.12	400	0.1042	998.249	203.724
BMatch2L	-7.656	19.6	-2560.08	400	-0.1562	1496.2	76.337
BMatch3L	-3.621	19.6	-5412.87	400	-0.0740	707.647	36.104
B2	1.5	19.6	13066.7	400	0.03061	293.143	14.956
B3	-1.5	19.6	-13066.7	400	-0.03061	293.143	14.956
BMatch3R	3.621	19.6	5412.87	400	0.0740	707.647	36.104
BMatch2R	7.656	19.6	2560.08	400	0.1562	619.704	76.337
BMatch1R	-1.277	4.9	-3837.12	400	-0.1042	1496.2	203.724
BSeptumR	4.25	3	705.822	400	0.56667	5426.4	1808.8
BSepR	0.0625	4.5	72000	400	0.00556	53.2	11.822

Survey \＆Dynamic Aperture
 （Version 1.0 －without FFS）

Dynamic Aperture Comparation

CEPC-Single

CEPC-Single-Bypass

CEPC-PDR-Bypass

CEPC-PDR-Bypass-PDRnPi

New ARC FODO 90／90 non－interleave

ARC1．2．1－bypass－PDR1．0．1－without FFS（90／90）

NSGA－II \＆DA Optimization
 Objective

	Variable
＇npop＇：500， ＇ngen＇：100， ＇nobj＇：30， ＇nvar＇：12，	SF1．K2
	SF2．K2
	SF3．K2
	SF4．K2
	SF5．K2
	SF6．K2
	SD1．K2
200CPU	SD2．K2
T1＝40min	SD3．K2
T2＝70h	SD4．K2
	SD5．K2
	SD6．K2

cepc＿ndr＿0099．txt

```
p[nvar+0] = abs(nsls2.ring.h1['h30000'])
p[nvar+1] = abs(nsls2.ring.h1['h21000'])
p[nvar+2] = abs(nsls2.ring.h1['h10110'])
p[nvar+3] = abs(nsls2.ring.h1['h10200'])
p[nvar+4] = abs(nsls2.ring.h1['h10020'])
p[nvar+5] = abs(nsls2.ring.h1['h20001'])
p[nvar+6] = abs(nsls2.ring.h1['h10002'])
p[nvar+7] = abs(nsls2.ring.h1['h00201'])
p[nvar+8] = abs(nsls2.ring.h2['h00310'])
p[nvar+9] = abs(nsls2.ring.h2['h11200'])
p[nvar+10] = abs(nsls2.ring.h2['h10111'])
p[nvar+11] = abs(nsls2.ring.h2['h00112'])
p[nvar+12] = abs(nsls2.ring.h2['h30001'])
p[nvar+13] = abs(nsls2.ring.h2['h11110'])
p[nvar+14] = abs(nsls2.ring.h2['h22000'])
p[nvar+15] = abs(nsls2.ring.h2['ho0004'])
p[nvar+16] = abs(nsls2.ring.h2['ho0400'])
p[nvar+17] = abs(nsls2.ring.h2['h10201'])
p[nvar+18] = abs(nsls2.ring.h2['h20020'])
p[nvar+19] = abs(nsls2.ring.h2['h10021'])
p[nvar+20] = abs(nsls2.ring.h2['h10003'])
p[nvar+21] = abs(nsls2.ring.h2['h21001'])
p[nvar+22] = abs(ns1s2.ring.h2['h31000'])
p[nvar+23] = abs(nsls2.ring.h2['h40000'])
p[nvar+24] = abs(nsls2.ring.h2['h20002'])
p[nvar+25] = abs(nsls2.ring.h2['h00220'])
p[nvar+26] = abs(nsls2.ring.h2['h20200'])
p[nvar+27] = abs(nsls2.ring.h2['h20110'])
p[nvar+28] = abs(nsls2.ring.h2['h11002'])
p[nvar+29] = abs(nsls2.ring.h2['h00202'])
```


Dynamic Aperture $\mathrm{dp} / \mathrm{p}=0$

中図行紫院高徒物理研宽所

Dynamic Aperture dp／p＝0．01

Dynamic Aperture dp／p＝－0．01

pylatt
$X: 0.53 \mathrm{~mm}$
${ }^{-1} \mathrm{Y}: 0.012 \mathrm{~mm}$

SAD

Orbit ARC1．2．1－PDR1．0．1－FFSa．1．1

${ }_{I R}$ Hangdou－test20160328 IR

$\delta_{\mathrm{E}} \mathrm{p}_{\mathrm{oc}} \mathrm{c}=0.00000$
Table name $=$ TWISS
$0.0625 * 12=0.75 \mathrm{mrad}$
$+4.25 \mathrm{mrad}+5.6 \mathrm{mrad}$
｜

Ring3＿DR＿IP1
CEPC Partial Double Ring Lattice（ARC1．2．1－nodis）

$\delta_{I} / p_{o c}=0.00000$
Table name $=$ TWISS
$=10.6 \mathrm{mrad}$

DA with FFS (without optimization)

For details:
Energy spread > 3 sigma E, DA is 0 .

DA Study Strategy and Next Steps

1．Nonlinear driving term：

$h_{a b c d e}, a+b+c+d+e=3, \quad 1^{\text {st }}$ order nonlinear driving term
$a+b+c+d+e=4, \quad 2^{\text {nd }}$ order nonlinear driving term
$1^{\text {st }}$ order chromaticity：h11001，h00111
$2^{\text {nd }}$ order chromaticity：h11002，h00112
Tune with amplitude：h11110，h22000，h00220

Which term is more important and has strong contribute to dynamic aperture and need more constraints ？（now $0<h 11002$ and h00112 real part＜4000）

2．Population \＆Generation ？

If each generation has enough population，it will easy to choose the so called well solution for our objective．And the next generation will keep half population from the parent generation and produce half new population．This two parts make up the new generation．Now use 500 population and 100 generation．Is it larger enough to find good solution？Maybe need larger population and generation，like 4000 population and 50 generation．

DA Study Strategy and Next Steps

3．Tune footprint，Tune space，Working point choice：
Now the working point is $(0.08,0.22)$ ，the second order chromaticity is about －3300 and－3900，it will quickly to the resonance line．We need to plot FMA analyses the tune footprint，choose a space to fit in．We should consider whether the work point is good．Maybe the injection work point can be another choose for large enough DA，and after injection，we rump the work point to $(0.08,0.22)$ for the high luminosity requirement．

4．Energy acceptance：

2\％energy acceptance from Touschek lifetime．The dynamic aperture for 2\％ energy spread is very small．Is it the limit from FODO structure？The energy spread for FODO lattice need to be study．

DA Study Strategy and Next Steps

5. Error tolerance:

The error tolerance for the magnets in the lattice needs to be considered. This will influence the DA obviously. We need a good DA include the error.

6. Thin lens \& thick lens:

Now the calculation is treating the elements as thin lens. If the real elements have real length, it need to integrate the whole length. How will the difference be?

7. 907260 degree FODO cell compare and choose:

We need to compare the FODO cell with different phase advance to choose the better design for DA.
8. How to divided the sextupoles groups?

How many group should the sextupoles to be divided? This needs to try.

9. Converge of sext:

At the end of optimization and calculation, the strength of sextupoles will be converging to a set of invariable values. This can be an aspect to judge whether the solution is good enough.

CEPC Double Ring Scheme Layout

Double Ring Scheme

Table name $=$ TWISS

Summary

- The first version of CEPC Partial Double Ring Lattice was designed (Version 1.0). The whole length of CEPC PDR is 3281.27 m , full crossing angle is 26 mrad , maximum distance between two ring is 14.913 m .
- The Dynamic Aperture need to be optimized. Now the DA of CEPC with PDR and Bypass(at IP2/4) and without FFS is better than before, but the DA with FFS is not good enough.
- We may divide the sextupoles into more families to optimize the DA.
- The linear lattice of PDR may also be optimized.

Acknowledge

- Gang Xu, Qing Qin, Yuan Zhang, Yuemei Peng, Qingjin Xu, Yukai Chen, Xiaohao Cui, Zhe Duan, Yudong Liu,
- Thanks for your kind help and beneficial discussion!

Thank You ！

Reference

［1］CEPC－SPPC Preliminary Conceptual Design Report，The CEPC－SPPC Study Group， IHEP－CEPC－DR－2015－01．
［2］LHC Design Report，Vol．1，CERN－2004－003．
［3］J．Gao，IHEP－AC－Note－2013－012．
［4］Xiao Ming et al，CEPC＿bunch＿train＿2015－8－28
［5］Oridy，FCC－ee＿150917
［6］P．Raimondi，Status on SuperB effort，La Thuile，March 11， 2006
［7］W．Kalbreier，et al，＂Layout，design and construction of the electrostatic separation system of the LEP e＋e－collider＂，CERN，Geneva，Switzerland．
［8］R．Martin，et al，＂Status of the FCC－ee interaction region design＂，HF2014
Workshop，Beijing，China，9－12 October， 2014

