Introduction	Calculation frame	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(bar{b})$	Summary and Outlook

Interference effects on Higgs mass measurement at CEPC

Zhang Yu-Jie¹

nophy0@gmail.com ¹School of Physics, Beihang University

Coauthor: Gang Li, Yi-Jie Li, Kui-Yong Liu, and Guang-Zhi Xu

Base on arXiv:1505.06981, 160X.XXXXX

Proposal discussions in light of the CEPC CDR preparation Dec. 14, 2015, IHEP

000000	000000	0000000	
Outline			

Introduction

- New Physics is Necessary
- New Accelerator is Necessary
- CEPC as a Higgs Factory
- 2 Calculation frame
 - Feynman Amplitude
- **3** Result of $ZH(\gamma\gamma)$
 - Input Parameters
 - Result
- 4 Result of $Z(\mu^+\mu^-)H(bar{b})$
 - Input Parameters
 - Numerical Result

Summary and Outlook

Introduction	Calculation frame	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(b\bar{b})$	Summary and Outlook

Introduction

The discovery of Higgs at LHC is not the end of particle physics but a new starting point.

Theoretical aspect

Contains only strong, weak and electromagnetic interactions, but no gravity. It is failed at the Planck scale.

Experimental aspect

The asymmetry between matter and antimatter in the universe. Dark matter, dark energy.

Aesthetics aspect

More than 26 basic parameters, miscellaneous!

Higgs is Important in NP					
New Physics is Ne	ecessary				
Introduction 000000	Calculation frame	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(bar{b})$	Summary and Outlook	

Precise test of SM

- Yukawa coupling
- 3 Higgs coupling
- 4 Higgs coupling

Vacuum

- Vacuum Structure and Stability
- Vaccum Energy and Dark Energy

Cosmology

- CP Violation: Baryogenesis, Leptogenesis
- Scalar Dark Matter from Higgs sector?

Introduction	Calculation frame	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(bar{b})$	Summary and Outlook
New Accelerator is	Necessary			

New Accelerator is Necessary

Future e^+e^- colliders

- International Linear Collider (ILC),
- Triple-Large Electron-Positron Collider (FCC-ee),
- Circular Electron Positron Collider (CEPC),
- ...

Future hadron colliders

- Future Circular Collider (FCC),
- Super Proton-Proton Collider (SPPC),
- ...

Introduction	Calculation frame	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(b\bar{b})$	Summary and Outlook
0000000				
CEPC as a Higgs F	Factory			

ΔM_H	Γ_H	$\sigma(ZH)$	$\sigma(\nu\bar{\nu}H) \times \mathrm{BR}(H \to b\bar{b})$
5.9 MeV	2.8%	0.51%	2.8%
Decay mode		$\sigma(ZH) \times BR$	BR
$H \rightarrow b\bar{b}$		0.28%	0.57%
$H \rightarrow c \bar{c}$		2.2%	2.3%
$H \rightarrow gg$		1.6%	1.7%
$H \to \tau \tau$		1.2%	1.3%
$H \to WW$		1.5%	1.6%
$H \rightarrow ZZ$		4.3%	4.3%
$H \to \gamma \gamma$		9.0%	9.0%
$H \to \mu \mu$		17%	17%
$H \to inv$		_	0.28%

Figure: Estimated precisions of Higgs boson measurements at the CEPC, From CEPC-preCDR

Introduction	Calculation frame	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(b\bar{b})$	Summary and Outlook
0000000				

Diphoton invariant mass distributions

Figure: Diphoton invariant mass distributions in $gg \rightarrow \gamma\gamma$ with a Gaussian mass resolution of width σ_{MR} = 1.7 GeV., from 1208.1533

Introduction	Calculation frame	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(b\bar{b})$	Summary and Outlook
0000000				

The interference peak related with Higgs mass and width

Figure: The peak related with Higgs mass, width, and signal-background interference in $gg \rightarrow \gamma\gamma$. Higgs mass shift as a function of the Higgs width, from 1305.3854

Introduction	Calculation frame	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(b\bar{b})$	Summary and Outlook
000000				

Signal-background interference move the peak

Figure 8: Smeared $d\sigma_S^G/dm_{\gamma\gamma}$ (black, solid) and $\sigma_{S+I}^G/dm_{\gamma\gamma}$ (red, dot-dashed) in fb/GeV as a function of $m_{\gamma\gamma}$ in GeV for $e^+e^- \to Z\gamma\gamma$ with $\hat{\sigma} = 1$ GeV for (a-c) $\sqrt{s} = 250, 350, 500$ GeV.

Figure: Signal-background interference move the peak, from 1503.07830

Introduction	Calculation frame	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(bar{b})$	Summary and Outlook

Calculation frame

Introduction 0000000	Calculation frame ●00000	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(bar{b})$	Summary and Outlook
Feynman Amplitud	2			

The typical Feynman diagrams of $ZH(\gamma\gamma)$

Figure: The typical Feynman diagrams of signal-background interference

With the narrow-width approximation, the pure signal and interference cross sections for the production can be expressed as:

$$\frac{d\sigma^{bac}}{dM_{\gamma\gamma}} = |\mathcal{A}_{e^+e^- \to Z\gamma\gamma}|^2,$$

$$\frac{d\sigma^{sig}}{dM_{\gamma\gamma}} = |\mathcal{A}_{e^+e^- \to ZH} \frac{i}{(m_{\gamma\gamma}^2 - m_H^2) + im_H\Gamma_H} \mathcal{A}_{H\to\gamma\gamma}|^2,$$

$$\frac{d\sigma^{ex}}{dM_{\gamma\gamma}} = |\mathcal{A}_{e^+e^- \to Z\gamma\gamma} + \mathcal{A}_{e^+e^- \to ZH} \frac{i}{(m_{\gamma\gamma}^2 - m_H^2) + im_H\Gamma_H} \mathcal{A}_{H\to\gamma\gamma}|^2,$$
(1)

Introduction 0000000	Calculation frame oo●ooo	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(bar{b})$	Summary and Outlook	
Feynman Amplitude					
$\mathcal{A}_{H ightarrow \gamma \gamma}$					

Higher order corrections of $A_{H \rightarrow \gamma \gamma}$

- The three- and four-loop $A_{H \to \gamma\gamma}$ has been calculated [1, 2], which contributions can be neglected.
- For the two-loop QCD and electroweak corrections are nearly completely cancelled for m_H ~ 125 GeV.

Amplitude [3]

$$A_{H\to\gamma\gamma} = \frac{i\sqrt{\sqrt{2}G_F}}{4\pi} m_{\gamma\gamma}^2 \left[F_1(4m_W^2/m_{\gamma\gamma}^2) + \sum_{f=t,b,c,\tau} N_f e_f^2 F_{1/2}(4m_f^2/m_{\gamma\gamma}^2) \right]$$
(2)

Introduction	Calculation frame	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(bar{b})$	Summary and Outlook	
Feynman Amplitude					

Higher order corrections of $e^+e^- ightarrow ZH$ and $e^+e^- ightarrow Z\gamma\gamma$

Higher order corrections of $e^+e^- ightarrow ZH$

- The electroweak radiative correction was calculated [4, 5].
- The contribution is less than 5% for a Higgs with mass of 125 GeV[6].

$e^+e^- \rightarrow Z\gamma\gamma$

• The NLO electroweak corrections is about 2.32% [7].

Ignore higher order corrections

- LO $e^+e^- \rightarrow ZH$.
- LO $e^+e^- \rightarrow Z\gamma\gamma$.
- One Loop level $H \rightarrow \gamma \gamma$.

Eourman Amplitus	0000000	000	Summary and Subok
Smoaring			

Smearing effect

- The finite experimental resolution smear the peak. [3].
- Smeared distribution

$$\frac{d\sigma}{dM_{\gamma\gamma}} = \int dM \left(\frac{d\sigma}{dM}\right) \frac{1}{\sigma_{MR}\sqrt{2\pi}} \exp\left[-\frac{(M_{\gamma\gamma} - M)^2}{2\sigma_{MR}^2}\right].$$
 (3)

The the measured mass is

$$< M_{\gamma\gamma} > = rac{\int dM_{\gamma\gamma} \ M_{\gamma\gamma} \ \left(rac{d\sigma}{dM_{\gamma\gamma}}
ight)}{\int dM_{\gamma\gamma} \left(rac{d\sigma}{dM_{\gamma\gamma}}
ight)}$$
 (4)

The the mass shift is

$$\Delta M_{\gamma\gamma} = < M_{\gamma\gamma} > -M_H \tag{5}$$

Introduction	Calculation frame	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(b\bar{b})$	Summary and Outlook

Result of $Z + H(\gamma \gamma)$

Inr	Input Parameters					
Input	It Parameters					
Intro	oduction	Calculation frame	Result of $ZH(\gamma\gamma)$ ••••••	Result of $Z(\mu^+\mu^-)H(bar{b})$	Summary and Outlook	

The running fermion masses

 $m_t = 168.2 \text{ GeV},$ $m_b = 2.78 \text{ GeV},$ $m_c = 0.72 \text{ GeV},$ $m_\tau = 1.744 \text{ GeV}.$

Parameters

 $M_H = 125.6 \text{ GeV},$ $\Gamma_H = 4.2 \text{ MeV},$ $\alpha = 1/137,$ $\sqrt{s} = 246 \text{ GeV}$

Introduction 0000000	Calculation frame	Result of $ZH(\gamma\gamma)$ o•ooooo	Result of $Z(\mu^+\mu^-)H(bar{b})$	Summary and Outlook
Input Parameters				

Smearing effect and cut

Smearing effect

- The finite experimental resolution smear the peak.
- Convolution integrals with a Gaussian function were added to the cross section to simulate the smearing effect here [3].
- The Gaussian width as $\sigma_{MR} = 0.8$, 1.0, 1.5, or 2.0 GeV

Cut

- $|\cos \theta_{\gamma}| < 0.8$, $|\cos \theta_{\gamma}| < 0.9$, or $|\cos \theta_{\gamma}| < 0.95$.
- The cut of the final photon energy is $E_{\gamma} > 20 \text{ GeV}$.

Introduction	Calculation frame	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(bar{b})$	Summary and Outlook
Result				

Background and signal process with different cut.

Figure: Comparison of background and signal process with different cut conditions for the final photons.

Introduction 0000000	Calculation frame	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(bar{b})$	Summary and Outlook
Result				

The diphoton invariant mass distribution

Figure: (a) the diphoton invariant mass distribution from the real interference and (b) the signal with and without interference from the background.

Introduction	Calculation frame	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(bar{b})$	Summary and Outlook
Result				

The diphoton invariant mass distribution

Figure: Diphoton invariant mass distributions of Higgs signal with different mass resolutions and kinematic cuts.

Introduction	Calculation frame	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(bar{b})$	Summary and Outlook
Result				

The diphoton invariant mass distribution

Figure: Diphoton invariant mass distributions of Higgs signal with different mass resolutions and kinematic cuts.

Introduction	Calculation frame	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(bar{b})$	Summary and Outlook
Result				

The Higgs mass shifts

Figure: The Higgs mass shifts due to the signal-background interference as a function of the Gaussian mass resolution width.

Introduction	Calculation frame	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(b\bar{b})$	Summary and Outlook

Result of $Z(\mu^+\mu^-) + H(b\bar{b})$

Introduction	Calculation frame	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(b\bar{b})$	Summary and Outlook

The typical Feynman diagrams of $Z(\mu^+\mu^-)H(b\bar{b})$

Figure: The typical Feynman diagrams of signal-background interference

Introduction 0000000	Calculation frame	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(b\bar{b})$ ●○○	Summary and Outlook	
Input Parameters					
Innut Par	ameters				

Mass and width

$$\begin{array}{ll} m_b = 2.9 \; {\rm GeV}, & \alpha = 1/137, \\ M_H = 125.7 \; {\rm GeV}, & \Gamma_H = 4.2 \; {\rm MeV}, \\ M_Z = 91.1876 \; {\rm GeV}, & \Gamma_Z = 2.4952 \; {\rm GeV}, \\ \sqrt{s} = 250 \; {\rm GeV}. \end{array}$$

V

Parameters

$$y_{b\bar{b}} = rac{M_{b\bar{b}}^2}{s}, \ _{\mu^+\mu^-} = rac{M_{\mu^+\mu^-}^2}{s}.$$

(6)

Introduction	Calculation frame	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(bar{b})$	Summary and Outlook
Numerical Result				

Resonance Distribution on $y_{b\bar{b}}$ and $y_{\mu^+\mu^-}$.

Figure: Resonance Distribution on $y_{b\bar{b}}$ and $y_{\mu^+\mu^-}$.

Introduction	Calculation frame	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(b\bar{b})$	Summary and Outlook
Numerical Result				

Interference Distribution on $y_{b\bar{b}}$ and $y_{\mu^+\mu^-}$.

Figure: Interference Distribution on $y_{b\bar{b}}$ and $y_{\mu^+\mu^-}$.

Introduction	Calculation frame	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(bar{b})$	Summary and Outlook

Summary and Outlook

Introduction	Calculation frame	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(bar{b})$	Summary and Outlook

Summary and Outlook

Summary

- The smearing Gaussian width σ_{MR} (which simulated the experimental mass resolution) ranging from 0.8 GeV to 2 GeV,
- The corresponding mass shifts of ZH(γγ) final state is about 20 MeV to 50 MeV.

Outlook

• NLO EW corrections @ $e^+e^- \rightarrow ZH(\gamma\gamma)$,

•
$$e^+e^- \rightarrow Z(\mu^+\mu^-)H(\gamma\gamma),$$

•
$$e^+e^-
ightarrow Z(\mu^+\mu^-)H(au^+ au^-),$$

• NLO QCD @ $e^+e^- \rightarrow Z(\mu^+\mu^-)H(b\bar{b}),$

Introduction	Calculation frame	Result of $ZH(\gamma\gamma)$	Result of $Z(\mu^+\mu^-)H(b\bar{b})$	Summary and Outlook

- Maierhofer and Marquard(2013).
- Sturm(2014).
- Martin(2012).
- Denner, Kniehl, and Kublbeck (1992).
- Denner, Kublbeck, Mertig, and Bohm (1992).
- Englert and McCullough(2013).
- Yu,Lei,Wen-Gan,Ren-You,Chong, et al.(2014).