# B Physics Anomalies and High Energy Collider

# Ying Li

# Yantai University



From the historic view, flavor physics had played important roles in searching for the "New Physics"

- <u>1963:</u> concept of flavour mixing [Cabibbo].
- <u>1964</u>: discovery of CP violation in  $K_{\rm L} \rightarrow \pi^+\pi^-$  [Christenson *et al.*].
- <u>1970:</u> introduction of the charm quark to suppress the flavour-changing neutral currents (FCNCs) [Glashow, Iliopoulos & Maiani].
- <u>1973:</u> quark-flavour mixing with 3 generations allows us to accommodate CP violation in the SM [Kobayashi & Maskawa].
- <u>1974</u>: estimate of the charm-quark mass with the help of the  $K^0-\bar{K}^0$  mixing frequency [Gaillard & Lee].
- <u>1980s</u>: the large top-quark mass was first suggested by the large  $B^0-\bar{B}^0$  mixing seen by ARGUS (DESY) and UA1 (CERN).



#### Main Driving Force for Flavor Studies

typically new patterns in the flavour sector

- New Physics (NP):  $\rightarrow$ 
  - supersymmetric (SUSY) scenarios;
  - left-right-symmetric models;
  - models with extra Z' bosons;
  - scenarios with extra dimensions;
  - "little Higgs" scenarios …
- Sensitivity to NP through virtual quantum effects:
- Interplay with direct NP searches at ATLAS & CMS:<sup>1</sup>
  - If NP particles are produced and detected through their decays at the LHC, flavour-physics information helps to determine/narrow the underlying NP model and to establish new sources of CP violation.
  - NP effects could in fact show up *first* in the flavour sector, also if NP particles are too heavy to be produced directly at the LHC.
  - Fortunately, theory will be confronted with LHC data soon...









# Challenging the Standard Model through Flavor Studies



Before searching for NP, we have to understand the SM picture!

• The key problem:

 $\diamond$  impact of strong interactions  $\rightarrow$ 

"hadronic" uncertainties

- The *B*-meson system is a *particularly promising* flavour probe:
  - Offers various strategies to eliminate the hadronic uncertainties and to determine the hadronic parameters from the data.
  - Simplifications through the large *b*-quark mass.
  - Tests of clean SM relations that could be spoiled by NP ...
- This feature led to the "rise of the *B* mesons":
  - K decays dominated for more than 30 years: discovery of (indirect) CP violation  $[\rightarrow \varepsilon_K]$  and direct CP violaton  $[\rightarrow \text{Re}(\varepsilon'/\varepsilon)]$ .
  - Since this decade the stage is governed by B mesons  $\rightarrow$   $\;$  our focus  $\;$



#### Where do we study Flavor Physics



李营@cepc workshop - 2016年4月9日

# PH 1984 PH UNIVERSIT

## LHCb 50/fb Summary

| Type           | Observable                                                                      | LHC Run 1     | LHCb 2018 | LHCb upgrade   | Theory       |
|----------------|---------------------------------------------------------------------------------|---------------|-----------|----------------|--------------|
| $B_s^0$ mixing | $\phi_s(B^0_s \to J/\psi \phi) \text{ (rad)}$                                   | 0.049         | 0.025     | 0.009          | $\sim 0.003$ |
|                | $\phi_s(B_s^0 \to J/\psi \ f_0(980)) \ (rad)$                                   | 0.068         | 0.035     | 0.012          | $\sim 0.01$  |
|                | $A_{ m sl}(B^0_s)~(10^{-3})$                                                    | 2.8           | 1.4       | 0.5            | 0.03         |
| Gluonic        | $\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$                        | 0.15          | 0.10      | 0.018          | 0.02         |
| penguin        | $\phi_s^{\text{eff}}(B_s^0 \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$              | 0.19          | 0.13      | 0.023          | < 0.02       |
|                | $2\beta^{\text{eff}}(B^0 \to \phi K^0_{\text{S}}) \text{ (rad)}$                | 0.30          | 0.20      | 0.036          | 0.02         |
| Right-handed   | $\phi_s^{\text{eff}}(B_s^0 \to \phi \gamma) \text{ (rad)}$                      | 0.20          | 0.13      | 0.025          | < 0.01       |
| currents       | $	au^{\mathrm{eff}}(B^0_s 	o \phi \gamma) / 	au_{B^0_s}$                        | 5%            | 3.2%      | 0.6%           | 0.2%         |
| Electroweak    | $S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$                 | 0.04          | 0.020     | 0.007          | 0.02         |
| penguin        | $q_0^2 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$                                  | 10%           | 5%        | 1.9%           | $\sim 7\%$   |
|                | $A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6{ m GeV^2/c^4})$                             | 0.09          | 0.05      | 0.017          | $\sim 0.02$  |
|                | $\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$ | 14%           | 7%        | 2.4%           | $\sim 10\%$  |
| Higgs          | $\mathcal{B}(B^0_s \to \mu^+ \mu^-) \ (10^{-9})$                                | 1.0           | 0.5       | 0.19           | 0.3          |
| penguin        | $\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$         | 220%          | 110%      | 40%            | $\sim 5\%$   |
| Unitarity      | $\gamma(B \to D^{(*)}K^{(*)})$                                                  | 7°            | 4°        | 0.9°           | negligible   |
| triangle       | $\gamma(B_s^0 \to D_s^{\mp} K^{\pm})$                                           | $17^{\circ}$  | 11°       | 2.0°           | negligible   |
| angles         | $\beta(B^0 \to J/\psi K_{\rm S}^0)$                                             | $1.7^{\circ}$ | 0.8°      | $0.31^{\circ}$ | negligible   |
| Charm          | $A_{\Gamma}(D^0 \to K^+ K^-) \ (10^{-4})$                                       | 3.4           | 2.2       | 0.4            | -            |
| CP violation   | $\Delta A_{CP} (10^{-3})$                                                       | 0.8           | 0.5       | 0.1            |              |

• Many measurements with direct BSM sensitivity improve by a factor 5 - 10





#### **Belle II 50/ab summary**

| Observables                                | Belle                                          | Bell                       | le II                   | $\mathcal{L}_s$ |
|--------------------------------------------|------------------------------------------------|----------------------------|-------------------------|-----------------|
|                                            | (2014)                                         | $5 \text{ ab}^{-1}$        | $50 \text{ ab}^{-1}$    | $[ab^{-1}]$     |
| ${\cal B}(D_s 	o \mu  u)$                  | $5.31 \times 10^{-3} (1 \pm 0.053 \pm 0.038)$  | $\pm 2.9\%$                | $\pm (0.9\%$ -1.3%)     | > 50            |
| ${\cal B}(D_s 	o 	au  u)$                  | $5.70\times10^{-3}(1\pm0.037\pm0.054)$         | $\pm (3.5\%$ -4.3%)        | $\pm (2.3\% - 3.6\%)$   | 3-5             |
| $y_{CP} \ [10^{-2}]$                       | $1.11 \pm 0.22 \pm 0.11$                       | $\pm (0.11 \text{-} 0.13)$ | $\pm (0.05 - 0.08)$     | 5-8             |
| $A_{\Gamma} [10^{-2}]$                     | $-0.03\pm 0.20\pm 0.08$                        | $\pm 0.10$                 | $\pm(0.03\text{-}0.05)$ | 7 - 9           |
| $A_{CP}^{K^+K^-}$ [10 <sup>-2</sup> ]      | $-0.32\pm 0.21\pm 0.09$                        | $\pm 0.11$                 | $\pm 0.06$              | 15              |
| $A_{CP}^{\pi^+\pi^-}$ [10 <sup>-2</sup> ]  | $0.55 \pm 0.36 \pm 0.09$                       | $\pm 0.17$                 | $\pm 0.06$              | > 50            |
| $A_{CP}^{\phi\gamma} \ [10^{-2}]$          | $\pm~5.6$                                      | $\pm 2.5$                  | $\pm 0.8$               | > 50            |
| $x^{K_S \pi^+ \pi^-} [10^{-2}]$            | $0.56 \pm 0.19 \pm {0.07 \atop 0.13}$          | $\pm 0.14$                 | $\pm 0.11$              | 3               |
| $y^{K_S \pi^+ \pi^-} [10^{-2}]$            | $0.30 \pm 0.15 \pm {0.05 \atop 0.08}$          | $\pm 0.08$                 | $\pm 0.05$              | 15              |
| $ q/p ^{K_S\pi^+\pi^-}$                    | $0.90\pm {0.16\atop 0.15}\pm {0.08\atop 0.06}$ | $\pm 0.10$                 | $\pm 0.07$              | 5-6             |
| $\phi^{K_S \pi^+ \pi^-} [^\circ]$          | $-6\pm11\pmrac{4}{5}$                         | $\pm 6$                    | $\pm 4$                 | 10              |
| $A_{CP}^{\pi^0\pi^0}$ [10 <sup>-2</sup> ]  | $-0.03 \pm 0.64 \pm 0.10$                      | $\pm 0.29$                 | $\pm 0.09$              | > 50            |
| $A_{CP}^{K_S^0 \pi^0}$ [10 <sup>-2</sup> ] | $-0.10 \pm 0.16 \pm 0.09$                      | $\pm 0.08$                 | $\pm 0.03$              | > 50            |
| $Br(D^0\to\gamma\gamma)~[10^{-6}]$         | < 1.5                                          | $\pm 30\%$                 | $\pm 25\%$              | 2               |
|                                            | $	au 	o \mu \gamma  \left[ 10^{-9}  ight]$     | < 45                       | < 14.7                  | < 4.7           |
|                                            | $	au 	o e\gamma \; [10^{-9}]$                  | < 120                      | < 39                    | < 12            |
|                                            | $	au 	o \mu \mu \mu \; [10^{-9}]$              | < 21.0                     | < 3.0                   | < 0.3           |

Clear physics cases in my opinion! Broad program, large improvements!

| 7                            |
|------------------------------|
| 李营@cepc workshop - 2016年4月9日 |

| Observables                                             | Belle                         | Bel                 | $\mathcal{L}_s$      |             |
|---------------------------------------------------------|-------------------------------|---------------------|----------------------|-------------|
|                                                         | (2014)                        | $5 \text{ ab}^{-1}$ | $50 \text{ ab}^{-1}$ | $[ab^{-1}]$ |
| $\sin 2\beta$                                           | $0.667 \pm 0.023 \pm 0.012$   | $\pm 0.012$         | $\pm 0.008$          | 6           |
| $\alpha$                                                |                               | $\pm 2^{\circ}$     | $\pm 1^{\circ}$      |             |
| $\gamma$                                                | $\pm 14^{\circ}$              | $\pm 6^{\circ}$     | $\pm 1.5^{\circ}$    |             |
| $S(B 	o \phi K^0)$                                      | $0.90\substack{+0.09\\-0.19}$ | $\pm 0.053$         | $\pm 0.018$          | >50         |
| $S(B  ightarrow \eta' K^0)$                             | $0.68 \pm 0.07 \pm 0.03$      | $\pm 0.028$         | $\pm 0.011$          | >50         |
| $S(B  ightarrow K^0_S K^0_S K^0_S)$                     | $0.30 \pm 0.32 \pm 0.08$      | $\pm 0.100$         | $\pm 0.033$          | 44          |
| $ V_{cb} $ incl.                                        | $\pm 2.4\%$                   | $\pm 1.0\%$         |                      | < 1         |
| $ V_{cb} $ excl.                                        | $\pm 3.6\%$                   | $\pm 1.8\%$         | $\pm 1.4\%$          | < 1         |
| $ V_{ub} $ incl.                                        | $\pm 6.5\%$                   | $\pm 3.4\%$         | $\pm 3.0\%$          | 2           |
| $ V_{ub} $ excl. (had. tag.)                            | $\pm 10.8\%$                  | $\pm 4.7\%$         | $\pm 2.4\%$          | 20          |
| $ V_{ub} $ excl. (untag.)                               | $\pm 9.4\%$                   | $\pm 4.2\%$         | $\pm 2.2\%$          | 3           |
| $\mathcal{B}(B 	o 	au  u) \ [10^{-6}]$                  | $96\pm26$                     | $\pm 10\%$          | $\pm 5\%$            | 46          |
| ${\cal B}(B	o \mu u) \; [10^{-6}]$                      | < 1.7                         | $5\sigma$           | $>>5\sigma$          | >50         |
| R(B  ightarrow D 	au  u)                                | $\pm 16.5\%$                  | $\pm 5.6\%$         | $\pm 3.4\%$          | 4           |
| $R(B  ightarrow D^* 	au  u)$                            | $\pm 9.0\%$                   | $\pm 3.2\%$         | $\pm 2.1\%$          | 3           |
| ${\cal B}(B 	o K^{*+}  u \overline{ u}) \; [10^{-6}]$   | < 40                          |                     | $\pm 30\%$           | >50         |
| $\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$ | < 55                          |                     | $\pm 30\%$           | >50         |
| ${\cal B}(B 	o X_s \gamma) \; [10^{-6}]$                | $\pm 13\%$                    | $\pm 7\%$           | $\pm 6\%$            | < 1         |
| $A_{CP}(B 	o X_s \gamma)$                               |                               | $\pm 0.01$          | $\pm 0.005$          | 8           |
| $S(B 	o K^0_S \pi^0 \gamma)$                            | $-0.10 \pm 0.31 \pm 0.07$     | $\pm 0.11$          | $\pm 0.035$          | > 50        |
| $S(B 	o  ho \gamma)$                                    | $-0.83 \pm 0.65 \pm 0.18$     | $\pm 0.23$          | $\pm 0.07$           | > 50        |
| $C_7/C_9~(B 	o X_s \ell \ell)$                          | ${\sim}20\%$                  | 10%                 | 5%                   |             |
| $\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$        | < 8.7                         | $\pm 0.3$           |                      |             |
| $\mathcal{B}(B_s  ightarrow 	au^+ 	au^-) \ [10^{-3}]$   |                               | < 2                 |                      | 8           |

## Flavor Physics @CepC &SppC





8

#### **Status of Flavor Anomalies**



Ligeti'talk, QCD Moriond, 2016,



**2016**, 李营@cepc workshop - 2016年4月9日

## The B $\rightarrow$ D(\*) $\tau v^{-}$ Anomaly



Z. Phys, C46, 93 (1990)

- S.L. decays involving a  $\tau^{\pm}$  have an additional helicity amplitude (for D\* $\tau\nu$ )  $\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{cb}|^2 |\mathbf{p}_{D^{(*)}}^*| q^2}{96\pi^3 m_B^2} \left(1 - \frac{m_\tau^2}{q^2}\right)^2 \left[ \left(|H_+|^2 + |H_-|^2 + |H_0|^2\right) \left(1 + \frac{m_\tau^2}{2q^2}\right) + \frac{3m_\tau^2}{2q^2} H_s \right]^2 \right]$ For  $D\tau\nu$ ,  $H_+$  and  $H_-$  do not contribute!
- A charged Higgs (2HDM type II) of spin 0 coupling to the τ will only affect H<sub>s</sub>

$$H_t^{\text{2HDM}} = H_t^{\text{SM}} \times \left( 1 - \frac{\tan^2 \beta}{m_{H^{\pm}}^2} \frac{q^2}{1 \mp m_c/m_b} \right) - \text{for } D\tau \nu + \text{for } D^*\tau \nu + \text{for } D^*\tau \nu$$

This could enhance or decrease the BF, depending on  $tan\beta/m_H$ 





xiao

# The $B \rightarrow D(*) \tau \vee$ Anomaly



A charged Higgs(2HDM type II)of spin0 coupling to the  $\tau$  will only affect  ${\rm H}_{\rm S}$ 

$$H_s^{2HDM} = H_s^{SM} \times \left(1 - \frac{\tan^2 \beta}{m_H^2} \frac{q^2}{1 \mp \frac{m_c}{m_b}}\right)$$

We estimate the effect of 2HDM, accounting for difference in signal yield and efficiency.

The data match 2HDM Type II contribution at

 $\tan\beta/m_{\rm H} = 0.44 \pm 0.02$  for R(D)

 $\tan\beta/m_{\rm H} = 0.75 \pm 0.04$  for R(D\*)

The combination of R(D) and R(D\*) excludes the Type II 2HDM in the full  $tan\beta$ m<sub>H</sub> parameter space with P >99.8%, provided M<sub>H</sub>>15 GeV !





## The B $\rightarrow$ D(\*) $\tau v^{-}$ Anomaly

• Belle & LHCb results on the anomaly seen by BaBar in  $R(X) = \frac{\Gamma(B \to X \tau \bar{\nu})}{\Gamma(B \to X(e/\mu)\bar{\nu})}$ 

|                   |                             |                             | $= \bigcirc 0.5 [ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------|-----------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | R(D)                        | $R(D^*)$                    | $ \overset{*}{\underset{\longrightarrow}{\longrightarrow}} 0.45 \qquad \qquad \overset{*}{\underset{\longrightarrow}{\longrightarrow}} \text{BaBar, PRL109,101802(2012)} \qquad \qquad \Delta \chi^2 = 1.0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| BaBar             | $0.440 \pm 0.058 \pm 0.042$ | $0.332 \pm 0.024 \pm 0.018$ | LHCb, arXiv:1506.08614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Belle             | $0.375 \pm 0.064 \pm 0.026$ | $0.293 \pm 0.038 \pm 0.015$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LHCb              |                             | $0.336 \pm 0.027 \pm 0.030$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Average           | $0.391 \pm 0.050$           | $0.322\pm0.022$             | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| my SM expectation | $0.300\pm0.010$             | $0.252\pm0.005$             | 0.25 SM prediction $P(\chi^2) = 55\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Belle II, 50/ab   | $\pm 0.010$                 | $\pm 0.005$                 | $0.2 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 $ |
|                   | 1                           |                             | = R(D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

New last week: Belle semileptonic tag,  $R(D^*) = 0.302 \pm 0.030 \pm 0.011$  [1603.06711]

Slightly reduce WA, higher significance (no HFAG update yet, correlations)

SM predictions: heavy quark symmetry + lattice QCD, only R(D) [1503.07237, 1505.03925]

- Unexpected to see such an effect in a large tree-level SM rate
- Need NP at fairly low scales: leptoquarks, W', etc., likely visible in LHC Run 2





## **Consider redundant set of operators**



李营@cepc workshop - 2016年4月9日

#### Freytsis, et.al, 1506.08896

|   |                       | Operator                                                                         | Fierz identity                                                         | Allowed Current            | $\delta \mathcal{L}_{	ext{int}}$                                                                                                                                         |
|---|-----------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M | $\mathcal{O}_{V_L}$   | $(\bar{c}\gamma_{\mu}P_{L}b)(\bar{\tau}\gamma^{\mu}P_{L} u)$                     |                                                                        | $(1,3)_0$                  | $(g_q \bar{q}_L oldsymbol{	au} \gamma^\mu q_L + g_\ell \bar{\ell}_L oldsymbol{	au} \gamma^\mu \ell_L) W'_\mu$                                                            |
| ( | $\mathcal{O}_{V_R}$   | $\left(ar{c}\gamma_{\mu}P_{R}b ight)\left(ar{	au}\gamma^{\mu}P_{L} u ight)$      |                                                                        | 9 <sup>27</sup> 070 999    |                                                                                                                                                                          |
| ( | $\mathcal{O}_{S_R}$   | $(\bar{c}P_Rb)(\bar{\tau}P_L\nu)$                                                |                                                                        | (1 2)                      | $() \overline{a} d \overline{b} \phi + ) \overline{a} u \overline{a} \overline{b} \phi^{\dagger} + ) \overline{c} \overline{c} \overline{c} \overline{c} \phi^{\dagger}$ |
| ( | $\mathcal{O}_{S_L}$   | $(\bar{c}P_Lb)(\bar{\tau}P_L\nu)$                                                |                                                                        | $/^{(1,2)_{1/2}}$          | $(\wedge_d q_L u_R \phi + \wedge_u q_L u_R \iota_{12} \phi + \wedge_\ell \iota_L e_R \phi)$                                                                              |
| ( | $\mathcal{O}_T$       | $(\bar{c}\sigma^{\mu\nu}P_Lb)(\bar{\tau}\sigma_{\mu\nu}P_L\nu)$                  |                                                                        |                            |                                                                                                                                                                          |
| ( | $\mathcal{O}'_{V_L}$  | $(\bar{\tau}\gamma_{\mu}P_{L}b)(\bar{c}\gamma^{\mu}P_{L}\nu)$ $\leftarrow$       | $\rightarrow O_{V_L} \langle$                                          | $(3,3)_{2/3}$              | $\lambdaar q_Loldsymbol{	au}\gamma_\mu\ell_Loldsymbol{U}^\mu$                                                                                                            |
| ( | $\mathcal{O}'_{V_R}$  | $(\bar{\tau}\gamma_{\mu}P_{R}b)(\bar{c}\gamma^{\mu}P_{L}\nu)$ $\leftarrow$       | $\rightarrow -2\mathcal{O}_{S_R}$                                      | $\rangle (3,1)_{2/3}$      | $(\lambda  \bar{q}_L \gamma_\mu \ell_L + \tilde{\lambda}  \bar{d}_R \gamma_\mu e_R) U^\mu$                                                                               |
| ( | $\mathcal{O}'_{S_R}$  | $(\bar{\tau}P_Rb)(\bar{c}P_L\nu)$ $\leftarrow$                                   | $\rightarrow -\frac{1}{2}\mathcal{O}_{V_R}$                            |                            |                                                                                                                                                                          |
| ( | $\mathcal{O}_{S_L}'$  | $(\bar{\tau}P_Lb)(\bar{c}P_L\nu)$ $\leftarrow$                                   | $\rightarrow -\frac{1}{2}\mathcal{O}_{S_L} - \frac{1}{8}\mathcal{O}_T$ | $(3,2)_{7/6}$              | $(\lambdaar{u}_R\ell_L+	ilde{\lambda}ar{q}_Li	au_2e_R)R$                                                                                                                 |
| ( | $\mathcal{O}_T'$      | $(\bar{\tau}\sigma^{\mu\nu}P_Lb)(\bar{c}\sigma_{\mu\nu}P_L\nu) \leftarrow$       | $\rightarrow -6\mathcal{O}_{S_L} + \frac{1}{2}\mathcal{O}_T$           | 2                          |                                                                                                                                                                          |
| ( | $\mathcal{O}_{V_L}''$ | $(\bar{\tau}\gamma_{\mu}P_{L}c^{c})(\bar{b}^{c}\gamma^{\mu}P_{L}\nu) \leftarrow$ | $\rightarrow -\mathcal{O}_{V_R}$                                       |                            |                                                                                                                                                                          |
| ( | $\mathcal{O}_{V_R}''$ | $(\bar{\tau}\gamma_{\mu}P_{R}c^{c})(\bar{b}^{c}\gamma^{\mu}P_{L}\nu) \leftarrow$ | $\rightarrow -2\mathcal{O}_{S_R}$                                      | $(\bar{3},2)_{5/3}$        | $(\lambda  \bar{d}_R^c \gamma_\mu \ell_L + \bar{\lambda}  \bar{q}_L^c \gamma_\mu e_R) V^\mu$                                                                             |
| ( | $\mathcal{O}_{S_R}''$ | $(\bar{\tau}P_Rc^c)(\bar{b}^cP_L\nu)$ $\leftarrow$                               | $\rightarrow \frac{1}{2} \mathcal{O}_{V_L} \langle$                    | $(\bar{3},3)_{1/3}$        | $\lambdaar{q}^c_L i 	au_2 oldsymbol{	au} \ell_L oldsymbol{S}$                                                                                                            |
| ( | $\mathcal{O}_{S_L}''$ | $(\bar{\tau}P_Lc^c)(\bar{b}^cP_L\nu)$ $\leftarrow$                               | $\rightarrow -\frac{1}{2}\mathcal{O}_{S_L} + \frac{1}{8}\mathcal{O}_T$ | $\rangle(\bar{3},1)_{1/3}$ | $(\lambda  ar{q}_L^c i 	au_2 \ell_L + 	ilde{\lambda}  ar{u}_R^c e_R) S$                                                                                                  |
| ( | $\mathcal{O}_T''$     | $(\bar{\tau}\sigma^{\mu\nu}P_Lc^c)(\bar{b}^c\sigma_{\mu\nu}P_L\nu) \leftarrow$   | $\rightarrow -6\mathcal{O}_{S_L} - \frac{1}{2}\mathcal{O}_T$           | ,                          |                                                                                                                                                                          |

#### **Possible Models**



#### Freytsis, et.al, 1506.08896

- Good fits for several mediators: scalar, "Higgs-like"  $(1,2)_{1/2}$ vector, "W'-like"  $(1,3)_0$ "scalar leptoquark"  $(\overline{3},1)_{1/3}$  or  $(\overline{3},3)_{1/3}$ "vector leptoquark"  $(3,1)_{2/3}$  or  $(3,3)_{2/3}$
- Which BSM scenarios can be MFV? [1506.08896] Not scalars, nor vectors, possibly viable LQ: scalar  $S(1, 1, \bar{3})$  or vector  $U_{\mu}(1, 1, 3)$

Bounds:  $b \to s \nu \bar{\nu}$ ,  $D^0 \& K^0$  mixing,  $Z \to \tau^+ \tau^-$ , LHC contact int.,  $pp \to \tau^+ \tau^-$ , etc.





## Many signals, tests, consequences



- LHCb, maybe soon: measure R(D)? use hadronic  $\tau$ ? measure  $\Lambda_b \to \Lambda_c^{(*)} \tau \nu$ ? Ratios of c/u besides  $\tau/\mu$ ? e.g.:  $\Lambda_b \to \Lambda \tau \bar{\nu}, B \to \pi \tau \bar{\nu}, B \to \rho \tau \bar{\nu}$ ?
- longer term: refine  $R(D^{(*)})$  and spectra; attempt inclusive (Belle II?)
  - Smaller theor. error in  $[d\Gamma(B \to D^{(*)}\tau\bar{\nu})/dq^2]/[d\Gamma(B \to D^{(*)}l\bar{\nu})/dq^2]$  at same  $q^2$
  - Improve bounds on  $\mathcal{B}(B \to K^{(*)} \nu \bar{\nu})$ ;  $\mathcal{B}(B_s \to \tau^+ \tau^-) \sim 10^{-3}$  possible?
  - $\mathcal{B}(D \to \pi \nu \bar{\nu}) \sim 10^{-5}$  possible, maybe BES III; enhanced  $\mathcal{B}(D \to \mu^+ \mu^-)$
- ATLAS & CMS: several extensions to current searches would be interesting
  - Searches for  $t\tau$  and  $b\tau$  resonances
  - Extensions of stop/sbottom searches to higher prod. cross sections ( $t\nu$  and  $b\nu$ )
  - Searches for states appearing on-shell in t- but not in s-channel
  - Enhanced  $h \to \tau^+ \tau^-$  rate (and  $t \to b \tau \bar{\nu}$  and/or  $t \to c \tau^+ \tau^-$ )





## **More Physics on Semi-leptonic Decays**



李营@cepc workshop - 2016年4月9日

# **The B** $\rightarrow$ K<sup>\*</sup>µ<sup>+</sup>µ<sup>-</sup> Anomaly

LHCb 1512.04442



#### •Statistical fluctuation

- •Underestimated SM uncertainties? (Khodjamirian,Jager, Martin, Camalich, Lyon, Zwicky,Descotes-Genon,Wolfgang Altmannshofer ...)
- New Physics?
- can anomaly be explained

#### model independently?

- can anomaly be explained in

concrete NP models?

2.8 $\sigma$  deviation in [4,6] GeV<sup>2</sup> bin (+3.0 $\sigma$  in [6,8] GeV<sup>2</sup> bin)

- Cross checks: different regions of phase space, also study in  $B_s$  and  $\Lambda_b$  decays?
- Connected to many other processes: can one calculate form factors (ratios) reliably at small  $q^2$ ? (semileptonic & nonleptonic decays, interpreting CP viol., etc.) (17)

#### The Bs $\rightarrow \Phi \mu^+ \mu^-$ Anomaly



branching ratio is  $3.5\sigma$  below SM prediction for  $1 \text{ GeV}^2 < q^2 < 6 \text{ GeV}^2$ 



#### The R<sub>K</sub> Anomaly



 $2.6\sigma$  hint for violation of lepton flavor universality (LFU)

$$R_{K} = rac{{\sf BR}(B o K \mu^+ \mu^-)_{[1,6]}}{{\sf BR}(B o K e^+ e^-)_{[1,6]}} = 0.745^{+0.090}_{-0.074} \pm 0.036$$



### **More Tensions**

#### A number of rare decay observables deviate from SM expectations. 1411.3161

| Decay                                               | obs.                    | $q^2$ bin   | SM pred.       | measuren       | nent                 | pull |
|-----------------------------------------------------|-------------------------|-------------|----------------|----------------|----------------------|------|
| $\overline{\bar{B}^0 \to \bar{K}^{*0} \mu^+ \mu^-}$ | $10^7 \frac{dBR}{dq^2}$ | [2, 4.3]    | $0.44\pm0.07$  | $0.29\pm0.05$  | LHCb                 | +1.8 |
| $\bar{B}^0\to \bar{K}^{*0}\mu^+\mu^-$               | $10^7 \frac{dBR}{dq^2}$ | [16, 19.25] | $0.47\pm0.06$  | $0.31\pm0.07$  | $\operatorname{CDF}$ | +1.8 |
| $\bar{B}^0\to \bar{K}^{*0}\mu^+\mu^-$               | $F_L$                   | [2, 4.3]    | $0.81\pm0.02$  | $0.26\pm0.19$  | ATLAS                | +2.9 |
| $\bar{B}^0\to \bar{K}^{*0}\mu^+\mu^-$               | $F_L$                   | [4,6]       | $0.74\pm0.04$  | $0.61\pm0.06$  | LHCb                 | +1.9 |
| $\bar{B}^0\to \bar{K}^{*0}\mu^+\mu^-$               | $S_5$                   | [4,6]       | $-0.33\pm0.03$ | $-0.15\pm0.08$ | LHCb                 | -2.2 |
| $B^- \to K^{*-} \mu^+ \mu^-$                        | $10^7 \frac{dBR}{dq^2}$ | [4,6]       | $0.54\pm0.08$  | $0.26\pm0.10$  | LHCb                 | +2.1 |
| $\bar{B}^0\to \bar{K}^0\mu^+\mu^-$                  | $10^8 \frac{dBR}{dq^2}$ | [0.1, 2]    | $2.71\pm0.50$  | $1.26\pm0.56$  | LHCb                 | +1.9 |
| $\bar{B}^0\to \bar{K}^0\mu^+\mu^-$                  | $10^8 \frac{dBR}{dq^2}$ | [16, 23]    | $0.93\pm0.12$  | $0.37\pm0.22$  | $\operatorname{CDF}$ | +2.2 |
| $B_s \to \phi \mu^+ \mu^-$                          | $10^7 \frac{dBR}{dq^2}$ | [1,6]       | $0.48\pm0.06$  | $0.23\pm0.05$  | LHCb                 | +3.1 |
| $B \to X_s e^+ e^-$                                 | $10^6 \text{ BR}$       | [14.2, 25]  | $0.21\pm0.07$  | $0.57\pm0.19$  | BaBar                | -1.8 |

#### Several global fits find significances up to 4 sigma.

Significances depend on treatment of several nonperturbative effects. Descotes-Genon, Altmannshofer, Straub Hurth, Mahmoudi, Martin Camlich, Lu, Wang,....



## What Could It Be?

|                                     | branching<br>ratios | angular<br>observables | LFU<br>ratios |
|-------------------------------------|---------------------|------------------------|---------------|
| millisecond pulsars?                | ?                   | ?                      | ?             |
| statistical fluctuations?           | $\checkmark$        | $\checkmark$           | $\checkmark$  |
| parametric<br>uncertainties?        | $\checkmark$        | X                      | ×             |
| underestimated<br>hadronic effects? | $\checkmark$        | $\checkmark$           | ×             |
| New Physics?                        | $\checkmark$        | $\checkmark$           | $\checkmark$  |



1984

## **A New Physics Scale from Rare B Decays**







SM amplitude is **CKM** suppressed



 $\sim rac{1}{\Lambda_{
m NP}^2}$ 

**Generic NP** not necessarily suppressed

► O(1) non-standard effects in rare B decays correspond to new physics in reach of a 100 TeV collider

$$\Lambda_{
m NP}\sim rac{M_W}{g^2}\sqrt{rac{16\pi^2}{|V_{ts}^*V_{tb}|}}\sim 10~{
m TeV}$$





## New Physics in $b \rightarrow s$ Decays

$$\mathcal{H}_{ ext{eff}}^{b o s} = -rac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* rac{e^2}{16\pi^2} \sum_i \left( C_i \mathcal{O}_i + C_i' \mathcal{O}_i' 
ight)$$





|                                                                       | $C_7, C_7'$ | $C_9, C'_9$ | $C_{10}, C'_{10}$ | neglecting tensor operators      |
|-----------------------------------------------------------------------|-------------|-------------|-------------------|----------------------------------|
| ${m B}  ightarrow ({m X}_{m {m S}},{m K}^*) \ \gamma$                 | *           |             |                   | (secretly dimension 8)           |
| $B  ightarrow$ (X $_{\! {\cal S}}, {\cal K}, {\cal K}^*) ~\mu^+\mu^-$ | *           | *           | *                 | neglecting scalar operators      |
| $B_{S}  ightarrow \phi \; \mu^+ \mu^-$                                | *           | *           | *                 | (strongly constrained by         |
| $B_{s}  ightarrow \mu^{+} \mu^{-}$                                    |             |             | *                 | $B_s  ightarrow \mu^+ \mu^-)$ 23 |

李营@cepc workshop - 2016年4月9日

**Models with Flavor Changing Z'Bosons** 

$$\mathcal{L} \supset \overline{f}_{i} \gamma^{\mu} \left[ \Delta_{L}^{f_{i}f_{j}} P_{L} + \Delta_{R}^{f_{i}f_{j}} P_{R} \right] f_{j} Z_{\mu}'$$



want vectorial coupling to muons:  $\Delta_L^{\mu\mu} = \Delta_R^{\mu\mu} = \frac{1}{2} \Delta_V^{\mu\mu}$ 

$$C_9^{\mathsf{NP}} = -\frac{\Delta_L^{bs} \Delta_V^{\mu\mu}}{V_{tb} V_{ts}^*} \frac{v^2}{M_{Z'}^2} \frac{4\pi^2}{e^2} \simeq -\frac{\Delta_L^{bs} \Delta_V^{\mu\mu}}{V_{tb} V_{ts}^*} \frac{(5 \text{ TeV})^2}{M_{Z'}^2}$$







#### Z'Bosons in Bs-Mixing





▶ flavor changing Z' contributes also to  $B_s$  mixing at tree level

$$\frac{M_{12}}{M_{12}^{\rm SM}} - 1 = \frac{v^2}{M_{Z'}^2} (\Delta_L^{bs})^2 \left(\frac{g_2^2}{16\pi^2} (V_{tb}V_{ts}^*)^2 S_0\right)^{-1}$$

 constraint on the Z' mass and the flavor changing coupling (allowing for 10% NP in B<sub>s</sub> mixing)

$$rac{M_{Z'}}{|\Delta_l^{bs}|} \gtrsim$$
 244 TeV  $\simeq rac{10 ext{ TeV}}{|V_{tb}V_{ts}^*|}$ 



#### Z'Bosons Constraints from Exp.



 LEP bounds on four lepton contact interactions

$$\mathcal{L} = rac{4\pi}{\Lambda_{\pm}^2} (ar{e} \gamma_{\mu} e) (ar{\ell} \gamma^{\mu} \ell)$$

 constraint on the Z' mass and the vector coupling to leptons

$$rac{M_{Z'}}{|\Delta_V^{\ell\ell}|}\gtrsim 3.5~{
m TeV}$$

(can be improved at a CepC/FCC-ee/TLEP)

# PH 1984 PS





LEP Electroweak Working Group 1302.3415





## Wolfgang, et.al, 1403.1269

#### New vector quark will be introduced





- the Z' model based on gauged  $L_{\mu} L_{\tau}$  predicts:
  - 1) opposite effects in the  $\mu^+\mu^-$  and  $\tau^+\tau^-$  final state 2) no effect in the  $e^+e^-$  final state
- $\rightarrow$  prediction for LFU observables, e.g. ratios of branching ratios:

$$R_{K} = rac{{\sf BR}(B o K \mu^{+} \mu^{-})_{[1,6]}}{{\sf BR}(B o K e^{+} e^{-})_{[1,6]}} \simeq 0.82 \pm 0.11 ~~(R_{K}^{\sf SM} \simeq 1)$$

model passed the first test (LHCb Collaboration arXiv:1406.6482)

$$R_{\rm K}=0.745^{+0.090}_{-0.074}\pm0.036$$





## **Probing the Z** '

## Wolfgang, et.al, 1403.1269

- •(g 2) of the muon tau decays
- •Z couplings to leptons
- •*Z*→4µ @LHC/CepC
- •Bs mixing (upper bound)
- Neutrino trident production (lower bound)



#### **Non-leptonic B Decay**



- Tree diagrams:  $b \xrightarrow{u, c} u, c$  $W \xrightarrow{u, c} \frac{\overline{u}, \overline{c}}{d(s)}$
- Penguin diagrams:
  - ◊ QCD penguins: ◊ Electroweak (EW) penguins:



- Classification (depends on the flavour content of the final state):
  - Only tree diagrams.
  - Tree and penguin diagrams.
  - Only penguin diagrams.

**29** 李营@cepc workshop - 2016年4月9日

## **Direct CP Violation**



• The most straightforward CP asymmetry ("direct" CP violation):<sup>3</sup>

$$\begin{aligned} \mathcal{A}_{\mathsf{CP}} &\equiv \frac{\Gamma(B \to f) - \Gamma(\overline{B} \to \overline{f})}{\Gamma(B \to f) + \Gamma(\overline{B} \to \overline{f})} = \frac{|A(B \to f)|^2 - |A(\overline{B} \to \overline{f})|^2}{|A(B \to f)|^2 + |A(\overline{B} \to \overline{f})|^2} \\ &= \frac{2|A_1||A_2|\sin(\delta_1 - \delta_2)\sin(\varphi_1 - \varphi_2)}{|A_1|^2 + 2|A_1||A_2|\cos(\delta_1 - \delta_2)\cos(\varphi_1 - \varphi_2) + |A_2|^2} \end{aligned}$$

• Provided the two amplitudes satisfy the following requirements:

i) non-trivial CP-conserving strong phase difference  $\delta_1 - \delta_2$ ;

ii) non-trivial CP-violating weak phase difference  $\varphi_1 - \varphi_2$ :

 $\Rightarrow$  CP violation originates through interference effects!

- <u>Goal</u>: extraction of  $\varphi_1 \varphi_2$  ( $\rightarrow$  UT angle) from the measured  $\mathcal{A}_{CP}$ !
- <u>Problem</u>: uncertainties related to the strong amplitudes  $|A_{1,2}|e^{i\delta_{1,2}}$  ...





- Theoretical description through effective low-energy Hamiltonians:
  - The NP particles (such as the charginos, squarks in the MSSM) are "integrated out" as the W boson and the top quark in the SM:
    - \* Initial conditions for RG evolution:  $C_k(\mu = M_W) \rightarrow C_k^{SM} + C_k^{NP}$
  - Operators, which are absent or strongly suppressed in the SM, may actually play an important rôle:
    - \* Operator basis:  $\{Q_k\} \rightarrow \{Q_k^{\text{SM}}, Q_l^{\text{NP}}\}$
- Popular NP scenario: Minimal Flavour Violation (MFV)
  - Flavour and CP violation still governed by the SM Yukawa matrices.
  - Essentially no effects in CP asymmetries, but various interesting correlations between rare decay observables, mixing parameters, etc.





## **CPV in beauty baryons' decays**

- First and second classes that are CKM suppressed.
- In the first class of  $\Lambda_b$  decays one gets  $p\pi^-$ ,  $p\pi^-\pi^0$ ,  $pK^-K^0$ ,  $\Lambda K^-$ ,  $p\pi^-\pi^+\pi^-$ ,  $p\pi^-K^+K^-$ , etc.
- In the second class one probes  $pK^-$ ,  $pK^-\pi^0$ ,  $pK_S\pi^-$ ,  $\Lambda K^+K^-$  etc.
- $\Xi_{b}^{-}$  decays lead to  $\Lambda^{0}\pi^{-}$ ,  $\Lambda^{0}\pi^{-}\pi^{0}$  etc. and  $\Lambda^{0}K^{-}$ ,  $\Lambda^{0}K^{-}\pi^{0}$ ,  $\Lambda^{0}K^{-}0\pi^{-}$  etc.
- For  $\Xi^{0}_{b}$  decays one probes  $\Sigma^{+}\pi^{-}$ ,  $\Lambda^{0}\pi^{+}\pi^{-}$ ,  $\Sigma^{+}K^{-}$ ,  $\Lambda^{0}\pi^{+}K^{-}$  etc.
- For obvious reasons we list only first class of  $\Omega^-{}_b$ , namely  $\Xi^0\pi^-$ ,  $\Omega^-K^0$





• In my view, flavor physics remains one of the most promising windows to & beyond the TeV scale.

• Various anomalies require better statistics and further measurements: potential for multiple 5-sigma effects. The higher energy colliders (CepC&SppC) will be necessary and able to deliver these measurements, with important interplay/ complementarity with Belle2/LHC

• Numerous models explaining and correlating (and in one case predicting) anomalies exist. Perhaps we are already holding clues to flavor dynamics at relatively low scale?

• Conversely if nothing is found in LHC the new colliders will significantly push up the effective scale of flavor violation (via Bs->mu mu, right- handed current probes, and other observables as theory control improves)





# Thanks

