A Roadmap to Reconstruct Higgs Potentials @ colliders

Qi-Shu Yan (UCAS, Beijing)

CEPC-SPPC Symposium
IHEP/CAS, April8-9, 2016, Beijing

Outline

- Introduction
- Higgs Potentials of a few Models
- Higgs Potentials at future colliders
- Prospects

Based on:
Q.Li, Z. Li, QY, X.R. Zhao, PRD92(2015)1,014015, arXiv:1503.07611 C.Y. Chen, QY, X.R. Zhao, Z.J. Zhao, Y.M. Zhong, PRD93 (2016)1, 013007, arXiv:1510.04013
X.R. Zhao, Q. Li, Z. Li, QY, in preparation

Introduction

Why Higgs Potential?

- 1) It determines the EWSB mechanisms, mass generation of Higgs bosons, Higgs self-couplings
- 2) It relate to the EW phase transition in the early universe and might leave a finger print in the primordial gravitational wave
- 3) It could relate to the EW baryogensis scenario, spontaneous CP breaking, spontaneous parity breaking
- 4) It directly connects with new physics (new particles, dark matter,)

Can it make difference?

A big question: the shape of Higgs potential is crucial for the strong first order electroweak phase transition, which is needed in the EW Baryogenesis scenarios.

CEPC Pre-CDR report
M. Trodden, Rev.Mod.Phys.71(1999)1463
D.E. Morrissey, M.J. Musolf, NJP14(2012)125003
N.Arkani-Hamed, T.Han, M.Mangano, L.T.Wang, 1511.06495

Fig. 11. Bubble nucleation during a first-order EWPT.
The bubble wall needs the little bump in potential shape
J.M. Cline, hep-ph/0609145
D.E. Morrissey, M.J. Musolf, NJP14(2012)125003

2. Higgs Potentials of a few models

(1) riggs Potential ion the Sun

$$
V(H)=-m_{\mu}^{2} x^{+} H+\frac{\lambda}{4}\left(1^{+}+4\right)^{2}
$$

$$
\begin{aligned}
& \langle H\rangle=\binom{0}{v / 2} \\
& H=\binom{G^{-}}{\frac{\nu+h+i G^{0}}{\sqrt{2}}}
\end{aligned}
$$

$$
\begin{gathered}
V(h)=\frac{1}{2} m_{h}^{2} h^{2}+\frac{\lambda}{4} v h^{3}+\frac{\lambda}{16} h^{4} \\
m_{h}^{2}=\frac{\lambda}{4} v^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \text { *1) }\left(D_{\mu} H^{+}\left(\text {OH }^{\prime \prime}\right) \rightarrow \frac{1}{2} \partial h \partial h\right. \\
& +(v+h)^{2}\left[\frac{g^{2}}{4} w+w+\frac{q^{2}}{8} z z\right] \\
& { }^{*} \mathcal{L}_{\text {Ymana }}=Y_{\text {teh }} \bar{t} t h+Y_{\text {Ibh }} \overline{b b} h \\
& +Y_{\text {¿̃̌ }} \text { ごてh }+\cdots
\end{aligned}
$$

Effective thoories:

$$
\begin{aligned}
& \mathcal{L}_{Y}^{\text {eft }}=Y_{t} \bar{t}\left(a+b i r_{5}\right) t h+ \\
& g_{\text {thh }} \frac{1}{v} \bar{t} t h^{2}+\cdots \\
& \mathcal{L}_{V}^{e+\#}=d_{1} v h\left[\frac{g^{2}}{2} \omega+w+\frac{g_{z}^{2}}{4} z \cdot z\right] \\
& +d_{2} h^{2}\left[\frac{g^{2}}{4} w{ }^{t} w+\frac{g^{2}}{8} z z\right] \\
& +\frac{h}{v}\left(g_{h g g} G_{p v}^{2}+g_{h z z} z_{n v}^{2}+g_{\omega v} A_{\mu v}^{2}\right. \\
& +\tilde{g}_{h g g} 6 \tilde{G}_{\omega \nu}+\tilde{g}_{h z z} z \tilde{z}_{\nu \omega}+\tilde{g}_{h \nu} A \tilde{A}_{\mu \nu}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+g_{n z A} z^{\prime \prime} A_{k v}+\tilde{g}_{n 3 A} Z \AA\right) \\
& +\frac{h^{2}}{v^{2}}\left(g_{h n G G} G_{h \nu}^{2}+\cdots\right) \\
& \mathcal{L}_{-1 s}^{\text {e\#t }}=-\lambda_{1} \lambda_{s u s}^{3} h^{3}-\lambda_{4} \lambda_{s u}^{4} h^{4} \\
& +\frac{5}{v} \operatorname{ah} \operatorname{\partial h} h+\frac{\lambda 5}{v} h^{5}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \mathcal{L}_{S}=-\frac{1}{2} m_{S}^{2} S^{2}-\frac{1}{4} \lambda_{S} S^{4}-\frac{1}{4} \lambda_{h S S} H^{\dagger} H S^{2} \\
& \Delta \mathcal{L}_{V}=\frac{1}{2} m_{V}^{2} V_{\mu} V^{\mu}+\frac{1}{4} \lambda_{V}\left(V_{\mu} V^{\mu}\right)^{2}+\frac{1}{4} \lambda_{h V V} H^{\dagger} H V_{\mu} V^{\mu} \\
& \Delta \mathcal{L}_{f}=-\frac{1}{2} m_{f} \bar{f} f-\frac{1}{4} \frac{\lambda_{h f f}}{\Lambda} H^{\dagger} H \bar{f} f
\end{aligned}
$$

J. Baglio, A. Djouadi, J. Quevillon, 1511.07853
(2) Hings potential in the Singlet + SA

$$
\begin{aligned}
& V=V(H)+V(s)+V_{x}(s, H)+V_{p h} \\
& V(H)=-m_{\mu}^{2} \mu^{+} H+\frac{\lambda}{4}\left(\mu^{+} H\right)^{2} \\
& V(s)=-m_{s}^{2} s^{t} s+\frac{\lambda_{s}}{4}\left(s^{+} s\right)^{2} \\
& V(s H)= \lambda_{x}\left(s^{+} s\right)\left(y^{+} \psi\right) \\
& V_{p h}= 2\left(\mu^{2}+\lambda_{1} s^{t} s+\lambda_{2} H^{+} H\right) \cdot R_{R} s^{2} \\
&+2 \lambda_{3} R R\left(s^{4}\right) \\
& \mathcal{L}= M \bar{D}_{R} D_{R}+\left(f_{j} s+f_{j}^{\prime} s^{*}\right) \bar{D}_{R} d_{k}^{j}+h . c .
\end{aligned}
$$

$$
\begin{aligned}
& \langle H\rangle=\binom{0}{\frac{v}{\sqrt{2}}} \quad\langle s\rangle=\frac{v_{s}}{\sqrt{2}} e_{\Uparrow}^{i 2} \\
& V_{\text {ph }}=a \cos 2 \alpha+b \cos 4 \alpha \\
& \text { Spmaneaus op violation! } \\
& \left.H=\left(\frac{v+h+i f^{0}}{\sqrt{2}}\right), S=\left[\left(v_{R}+C_{R}\right)+\left(v_{1}+S_{i}\right)\right] / \sqrt{2}\right] \\
& \mathcal{L}_{2}=\left(\begin{array}{lll}
h & S_{R} & S_{1}
\end{array}\right) M\left(\begin{array}{l}
h \\
S_{R} \\
S_{i}
\end{array}\right) \\
& M=\left(\begin{array}{ccc}
\frac{\lambda}{2} \nu^{2} & \left(2 \lambda_{2}+\lambda_{k}\right) v v_{R} & s_{i} \\
\left(-2 \lambda_{2}+\lambda_{2}\right) V V_{1} \\
\cdots & \frac{1}{2}\left(8 \lambda_{1}+8 \lambda_{2}+t_{3}\right) k^{2} & \frac{1}{2}\left(-2 \psi_{2}+\lambda_{3}\right) v_{2} V_{2} \\
\cdots & \cdots & \frac{1}{2}\left(-8 \lambda_{1}+\lambda_{1}+\lambda_{2} v_{2}^{2}\right.
\end{array}\right)
\end{aligned}
$$

Tiplefquatic Higge Coupligs in the model:

$$
\begin{aligned}
& \mathcal{L}=C_{k j} S_{e} S_{k j}+C_{k \ell j m} S_{k} S_{e} f_{m} S_{m} \\
& C_{l k j}=\frac{T_{1 e} m_{k}^{2} T_{k k} T_{j}}{2 \nu}+\frac{T_{2 l} m_{k}^{2} T_{2 k} T_{2 i}}{2 V_{k}}+\frac{T_{y} m_{l}^{2} F_{k} T_{3 j}}{2 v_{2}} \\
& C_{k \ell j m}=\frac{1}{8} Z_{i}\left[\frac{m_{i}^{2}}{v^{2}} T_{i j} T_{i} T_{k} T_{k} T_{c} T_{j} T_{m}+\frac{m_{1}^{2}}{V_{R}^{2}} T_{2 i} \sigma_{i} T_{k} T_{k l}\right. \\
& T_{2 j} T_{2 m}+\frac{m_{1}^{2}}{V_{k^{2}}} T_{3} T_{i} T_{k k} T_{a} T_{j j} T_{m m}+ \\
& \frac{m_{1}^{2}}{V V_{k}} T_{i j} T_{i}\left(T_{k} T_{k} F_{j} T_{2 m}+T_{i j} T_{m} T_{2 k} F_{k}\right)+ \\
& \frac{m_{i}^{2}}{V_{I}} T_{i i} T_{i}\left(T_{k} T_{k} T_{j j} T_{m}+T_{i j} T_{m} T_{k} T_{c}\right)+ \\
& \left.\frac{m_{1}^{2}}{V_{2} T_{R}} T_{2 i} T_{i j}\left(T_{2 k} T_{2} T_{3 j} T_{2 m}+T_{2 j} T_{2 r} T_{k} T_{l}\right)\right]
\end{aligned}
$$

$$
\binom{\left(\begin{array}{c}
m_{1}^{2}, m_{3}^{2}, \mu^{2} \\
\lambda \\
\lambda, \lambda_{s}, \lambda_{x} \\
\lambda_{1}, \lambda_{2} \lambda_{3}
\end{array}\right)}{9} \rightarrow\left(\begin{array}{c}
m_{1}^{2}, m_{2}^{2}, m_{3}^{2} \\
\frac{2}{2}, \nu, \nu \\
\nu, v_{R}, v_{I}
\end{array}\right) \rightarrow I
$$

A simple roadmap for this model:

1) To discover extra neutral Higgs bosons
2) To measure three mixing angles
3) 2 must be extracted from T/Q coupling measurement
(3) Higgs potential of the 2 HDM

$$
\begin{aligned}
& V=m_{11}^{2} \mu_{1}^{+} x_{1}+m_{22}^{2} \mu_{2}^{+} y_{2}-\left(m_{12}^{2} \nu_{1}^{+} H_{2}+h . c .\right) \\
& +\frac{\lambda_{1}}{2}\left(H_{1}+y_{1}\right)^{2}+\frac{\lambda_{2}}{2}\left(r_{2}^{2} y_{2}\right)^{2}+\lambda_{5}\left(H_{1} H_{1}\right)\left(\psi_{2}^{+}+h_{2}\right) \\
& +a_{4}\left(H_{1}^{+} \mu_{2}\right)\left(H_{2}^{+} H_{1}\right) \\
& +\left[\frac{x_{5}}{2}\left(H_{1}^{+} H_{2}\right)\left(H_{1}^{+} H_{2}\right)+\lambda_{6}\left(H_{r}^{+}\right)_{2}\left(H_{1}^{+}+H_{1}\right)\right. \\
& \left.+\lambda_{7}\left(H_{1}^{+} H_{2}\right)\left(H_{2}^{+} H_{2}\right)+h . c .\right]
\end{aligned}
$$

Triple/acoatic Coplaifs in 2HDM

$$
\begin{aligned}
C & =v \mu+H-C_{i} S_{i} \\
& +C_{i j k} S_{i} S_{j} S_{k} \\
& +\frac{\lambda_{2}}{2} \mu+\mu-H^{+} H^{-} \\
& +C_{k l} H^{+}+S_{k} S_{l} \\
& +C_{k l j m} S_{k} S_{l} S_{j} S_{m}
\end{aligned}
$$

$$
\begin{aligned}
& C_{j}=T_{1 j} \lambda_{3}+T_{2 j} k_{2} \lambda_{1}-T_{3 j} I_{m \lambda_{1}} \\
& C_{j k l}=\frac{\nu}{2} C_{G}\left(\varepsilon_{k l}-T_{k} T_{k l}\right) \\
& +\frac{1}{v}\left(m_{+}^{2}-\frac{m_{j}}{2}\right) T_{j j} T_{k} T_{k} \\
& +\frac{1}{v}\left(m_{k}^{2}-m_{l}^{2}\right) T_{1 j} \delta_{k l} \\
& C_{k l}=\frac{\lambda_{2}}{2} \delta_{k l}-\frac{\lambda_{2} t_{3}}{2} T_{1 k} T_{k}+C_{l} T_{k}
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\frac{\lambda_{s}}{4} T_{k} T_{k}+\frac{C_{k}}{2} T_{l}+\frac{m_{i}^{2}-m_{t}^{2}}{2 v^{2}} T_{k} T_{l \prime}\right] \cdot(\\
& \left.\delta_{j m}-T_{j} T_{1 m}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
m_{11}^{2}, m_{22}^{2}, \frac{m_{12}^{2}}{\lambda_{2}} \\
\lambda_{1} \lambda_{2} \lambda_{3} \\
\lambda_{5}, \lambda_{6}, \lambda_{7}
\end{array}\right) \rightarrow\left(\begin{array}{c}
m_{1}^{2}, m_{1}^{2}, m_{2}^{2} m_{3}^{2} \\
v, \alpha_{1}, \beta_{2}, \gamma \\
\lambda_{2}, \lambda_{3}, R_{21}, \\
I m \lambda_{7}
\end{array}\right) \\
& \text { 14-3 } \\
& 11 \\
& U(2) \uparrow \\
& 3 \text { must be exposed } \\
& \text { from } T / Q \text { cooling } \\
& \text { measurements }
\end{aligned}
$$

1) To discover 3 extra neutral $\mathrm{HB}, 2$ charged HB
2) To measure three mixing angles
3) 3 must be extracted from T/Q couplings
(4) n-Higgs Doublet model:

$$
\begin{aligned}
\mathcal{L}= & m_{i j}^{2} \phi_{i}^{+} \phi_{i}+\left[m_{i j}^{2} \phi_{i}^{+} \phi_{j}+h . c .\right] \\
& +a_{i j}\left(\phi_{i}^{+} \phi_{i}\right)\left(\phi_{j}^{+} \phi_{j}\right) \\
& +b_{i j}\left(\phi_{i}^{+} \phi_{j}\right)\left(\phi_{j}^{+} \phi_{i}\right) \\
& +\left[C_{i j k}^{1} \phi_{i}^{+} \phi_{j} \phi_{k}^{+} \phi_{k}+C_{i j}^{2} \phi_{i}^{+} \phi_{j} \phi_{i}^{+} \phi_{j}\right. \\
& \left.+d_{i j k l} \phi_{i}^{+} \phi_{j} \phi_{k}^{+} \phi_{k}+h . c .\right]
\end{aligned}
$$

$$
\frac{n^{4}}{2}+\frac{3 n^{2}}{2}-2 n+1
$$

No. of $\subset P$ phases: $\frac{1}{4} n^{2}\left(n^{2}-1\right)-(n-1)$
No. of chased Hies besoms:
$n-1$, $T_{\text {matrix }} \in S O(n-1)$
No of Mental Riggs bosons:
$2 n-1$, $T_{\text {matrix }} \in S O(2 n-1)$
No. of parameters must be probed Via triple/quartic Couplings:

$$
\begin{aligned}
& N_{t / 9}=\frac{n^{4}}{2}-n^{2}-\frac{n}{2}+1 \\
& n=3, \quad N_{4 / 2}=31 \\
& n=4, \quad N_{4 / 2}=111
\end{aligned}
$$

(5) Higgs portential of the lefe-tight model

$$
\begin{aligned}
& V=V\left(\Delta_{L}, \Delta_{k}\right)+V\left(\phi_{1}, \phi_{2}\right)+V(\Delta, \phi) \\
& V\left(\Delta_{L}, \Delta_{R}\right)=-\mu^{2} \operatorname{Tr}\left(\Delta_{\left.L^{+} \Delta_{L}+\Delta_{R}^{+} \Delta_{k}\right)}\right. \\
& +P_{1}\left[T_{r}\left(\Delta_{L}^{+} \Delta_{L}\right)^{2}+T_{r}\left(\Delta_{R}^{+} \Delta_{k}\right)^{2}\right] \\
& +\rho_{2}\left[\operatorname{Tr}\left(\Delta \Delta_{2}^{+} \Delta_{L} \Delta t \Delta_{L}\right)+\operatorname{Tr}\left(\Delta_{k} \psi_{k} \Delta_{N} \Delta_{k}\right)\right] \\
& +p_{3}\left[\operatorname{Tr}\left(\alpha_{L}^{+} \alpha_{2}\right) \operatorname{Tr}\left(\Delta_{k}^{+} \Delta_{k}\right)\right] \\
& +P_{4}\left[\operatorname{Tr}\left(\Delta_{L}^{+} \Delta\right) T\left(\Delta_{\Delta} \Delta_{L}\right)+\right. \\
& \left.T_{r}\left(\Delta_{R}^{+} \Delta_{k}\right) T_{r}\left(\Delta_{R} \Delta_{R}\right)\right] \\
& \Delta_{L R}=\left(\begin{array}{ll}
\delta^{+} / \sqrt{2} & \delta^{++} \\
\delta^{+} & -\delta /{ }^{2} / \sqrt{2}
\end{array}\right)_{L R R} \quad \underline{\text { tree paraneng }}
\end{aligned}
$$

$$
\begin{align*}
& V\left(\phi_{i} \phi_{2}\right)=-\mu_{i j}^{2} \operatorname{Tr}\left(\phi_{i}^{+} \phi_{j}\right) \\
& +\lambda i j k c T_{T}\left(\phi_{i}^{+} \phi_{j}\right) T_{k}\left(\phi_{k}^{+} \phi_{l}\right) \\
& +\lambda_{i j \mu t}^{\prime} \operatorname{Tr}\left(\phi_{i}^{+} \phi_{j} \phi_{k}^{+} \phi_{c}\right) \tag{14}\\
& \phi_{1}=\left(\begin{array}{ll}
\varphi_{1}^{0} & \varphi_{1}^{+} \\
\varphi_{2}^{-} & \varphi_{2}^{0}
\end{array}\right) \quad \phi_{2}=\tau_{2} \phi_{i}^{*} \tau_{2} \\
& V(\Delta, \phi)=\alpha_{i j} T_{r}\left(\phi_{i}^{+} \phi_{j}\right) \operatorname{Tr}\left(\Delta_{i}^{+} \Sigma_{2}+\Delta_{R}^{+} t_{k}\right) \\
& +\beta_{i j} \operatorname{Tr}\left(\phi_{i}^{+} \phi_{j} \Delta_{2}^{+} \Delta_{2}+\phi_{i} \phi_{j}^{+} \alpha_{k}^{+}\right) \\
& +\left(\gamma_{i j} \operatorname{Tr}\left(\Delta_{L}^{+} \phi_{i} \Delta_{k} \phi_{j}^{+}\right)+\text {h.c. }\right)
\end{align*}
$$

$$
\begin{aligned}
& \left\langle\Delta_{L R}=\left(\begin{array}{cc}
0 & 0 \\
v_{L R} & 0
\end{array}\right)\right. \\
& \langle\phi\rangle=\left(\begin{array}{cc}
k & 0 \\
0 & R^{\prime}
\end{array}\right) e^{i \alpha} \\
& V_{L}=\left(\frac{\gamma_{12}}{2\left(\rho_{1}+2\right)-\rho_{3}}\right) \frac{k^{2}}{v_{R}}
\end{aligned}
$$

Rich Higgs pleno:
2: $\delta_{1}^{++} \delta_{2}^{++} \longleftarrow \delta_{2}^{++}, \delta_{R}^{++}$
2: $\frac{\left(\delta_{1}^{+} \delta_{2}^{+}\right)}{\left(G_{1}^{+} G_{2}^{+}\right)} \longleftarrow \delta_{L}^{+}, \delta_{R}^{+}, \phi_{1}^{+}, \phi_{2}^{+}$
$6=\quad \delta_{1}^{0} \cdots \delta_{6}^{0} \longleftarrow \delta_{2}^{0}, \delta_{R}^{0}, \phi_{1}^{0}, \phi_{2}^{0}$

$$
\left(G_{1}^{0}, G_{2}^{0}\right)
$$

No. of phypies parametrars

$$
(2+1)+(2+1)+\left(6+\frac{6 \times 5}{2}\right)=27
$$

No. of indperdent paramoters in T / Q Couplings

$$
31-27=4
$$

(a naive comet)

3. Higgs Potentials@Colliders

- The production and decay of new Higgs bosons
- The determinations of mixing angles
- The measurement of T/Q Couplings
- Global fit to the Higgs potential

J. Baglio, A. Djouadi, J. Quevillon, 1511.07853

J. Baglio, A. Djouadi, J. Quevillon, 1511.07853

Triple

Sensitivity at a 100 TeV Collider with a 3000/fb data set

To overcome the b mistag and photo mistag issues, $g g \rightarrow h h \rightarrow W W^{*} W W^{*} \rightarrow 3 \ell+2 j+M E T$ is proposed.

By using this mode, SPPC can determine
λ_{3} to the window [0.9,1.2]
Q. Li, Z. Li, QY, X.R. Zhao, PRD92(2015)1,014015, arXiv:1503.07611

Quartic Coupling

A 100 TeV collider can set a loose bound to λ_{4} via $g g \rightarrow h h h \rightarrow 4 b 2 \gamma$ mode.
Better modes are under searching.
C.Y. Chen,QY, X.R. Zhao, Z.J. Zhao, Y.M. Zhong, PRD93 (2016)1, 013007

Heavy Higgs in single+SM

	B1	B2	B3		B1	B2	B3
$\begin{gathered} m_{H_{2}}(\mathrm{GeV}) \\ \theta \\ a_{2} \\ b_{3}(\mathrm{GeV}) \\ b_{4} \\ \hline \end{gathered}$	460	500	490	$\Gamma_{\text {tot }}\left(H_{2}\right)(\mathrm{GeV})$	5.6	7.5	7.0
	0.354	0.354	0.354	$B R\left(H_{2} \rightarrow W^{+} W^{-}\right)$	0.57	0.56	0.57
	3.29	3.48	3.43	$B R\left(H_{2} \rightarrow Z Z\right)$	0.27	0.27	0.27
	-706	-612	$\left.\begin{gathered} -637 \\ 8.38 \end{gathered} \right\rvert\,$	$B R\left(H_{2} \rightarrow t \bar{t}\right)$	0.15	0.16	0.16
	8.38	8.38		$B R\left(H_{2} \rightarrow b \bar{b}\right)$	3.4×10^{-4}	2.8×10^{-4}	2.9×10^{-4}
				$B R\left(H_{2} \rightarrow H H\right)$	5.3×10^{-7}	8.8×10^{-7}	1.5×10^{-7}
\%08.				BR($\left.\mathrm{H}_{2} \rightarrow \mathrm{HHH}\right)$	1.0×10^{-3}	1.4×10^{-3}	1.3×10^{-3}
				$\sigma\left(g g \rightarrow H_{2}\right) @ 14 \mathrm{TeV}(\mathrm{fb})$	3.2×10^{2}	2.3×10^{2}	2.5×10^{2}
0000				$\sigma(g g \rightarrow H H H) @ 14 \mathrm{TeV}(\mathrm{fb})$	0.70	0.69	0.71
				$\sigma\left(g g \rightarrow H_{2}\right) @ 100 \mathrm{TeV}(\mathrm{fb})$	1.4×10^{4}	1.1×10^{4}	1.2×10^{4}
	ihan			$\sigma(g g \rightarrow H H H) @ 100 \mathrm{TeV}(\mathrm{fb})$	37	38	39

C.Y. Chen, QY, X.R. Zhao, Z.J. Zhao, Y.M. Zhong, PRD93 (2016)1, 013007

Interplay between tth and hh

 LHC-HL run
100 TeV SPPC

$$
\Delta \mathcal{L}=Y_{t}\left(a \bar{t} t+i b \bar{t} \gamma_{5} t\right) h+\lambda_{3} \lambda_{S M} v h h h+\cdots
$$

J.F. Gunion, B. Grzadkowski, X.G. He, PRL77(1996)5172
Q. Li, Z. Li, QY, X.R. Zhao, in preparation

$$
e^{+} e^{-} \rightarrow h_{i} h_{j}
$$

A. Mendez, A. Pomarol, PLB272(1991)313

$$
\gamma \gamma \rightarrow h h
$$

R. Belusevic, G. Jikia, PRD70(2004)073017

$$
e^{+} e^{-} \rightarrow h h
$$

J.J.Lopez-Villarejo and J.A.M. Vermaseren, PLB675,356
S. Heinemeyer and C. Schappacher, 1511.06002

S. Heinemeyer and C. Schappacher, 1511.06002

Higgs Decay:

Prospects

- High Precision predictions for Higgs Physics
- Discovery new Higgs Bosons
- Multi-Higgs boson Final States, Discovery and Precision measurement
- CP phases determination of Higgs potentials
- Higgs portal and dark matter

