Higgs Boson: a Window to New Physics

Hong-Jian He Tsinghua University

UCAS, Beijing, July 23, 2016

LHC New Discovery → **High Energy Physics at <u>Turning Point</u>**

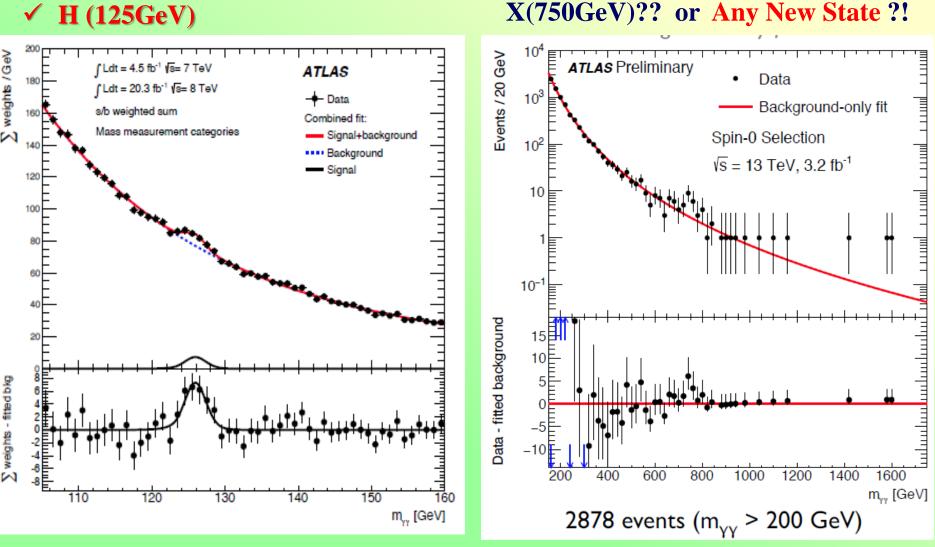
Run-1 Higgs Discovery h(125GeV) in 2012
 Run-2 New Particle Discovery in 2016 ??

These will lead to

New Set of Key Physics Questions for Future Colliders to answer!!

& Interface with Cosmology & Quantum Gravity

Making of the Standard Model


SM Structure seems complete, but

Recall: situation around 1900 – Newton Mechanics was Complete \rightarrow End of Physics !? \rightarrow No !

Now, 4 Years after 2012: New Physics Beyond SM ???

h(125GeV) Discovery at LHC Run-1. X(750GeV) or Any New State at LHC Run-2 ?!

✓ H (125GeV)

a Window to New Physics ??

Spin-O Higgs Boson Itself is New Physics !!!

Representation of Lorentz Group

➢ Isomorphic Lorentz Group: O(3,1) ⇔ SU(2) ⊗ SU(2)
➢ Group Generators of SU(2) ⊗ SU(2) :

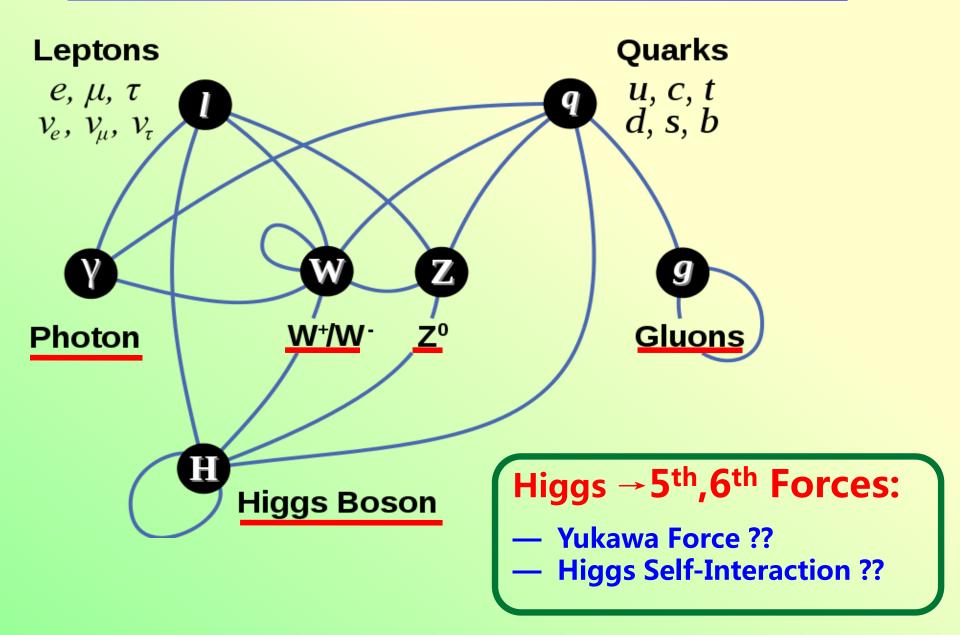
Lorentz Algebra:

$$\begin{bmatrix} A^{i}, A^{j} \end{bmatrix} = i\epsilon^{ijk}A^{k}$$
$$\begin{bmatrix} B^{i}, B^{j} \end{bmatrix} = i\epsilon^{ijk}B^{k}$$
$$\begin{bmatrix} A^{i} = \frac{1}{2}(J^{i} + iK^{i}) \\ B^{i} = \frac{1}{2}(J^{i} - iK^{i}) \\ B^{i} = \frac{1}{2}(J^{i} - iK^{i}) \end{bmatrix}$$

- ➢ Irreducible Representation (j) of SU(2) (j=0, ½, 1, 3/2...)
 → Representations of Lorentz Group: (j, j').
 (½, 0), (0, ½) → Fermions; (½, ½) → Gauge Bosons.
- The Simplest Lorentz representation is Scalar Representation:
 (0, 0)

Special Relativity predicted possible Scalar Particle (Higgs Boson) !!!

Spin-0 Higgs Boson Itself is New Physics:


>Mass Puzzle:

- W,Z Masses (EWSB)
- Fermion Masses (Quark/Lepton/Neutrino) ?
- Higgs Boson Mass: Naturalness ? Higgs Self-interactions ?

>Vacuum Puzzle:

- Vacuum Stability ?
- Vacuum Energy (Dark Energy) ?
- ➤Inflation Puzzle: Higgs Boson as Inflaton ?
- **Dark Matter Puzzle:** Higgs Portal ?
- Missing Antimatter Puzzle:
 - Baryogenesis, Leptogenesis, ... ?

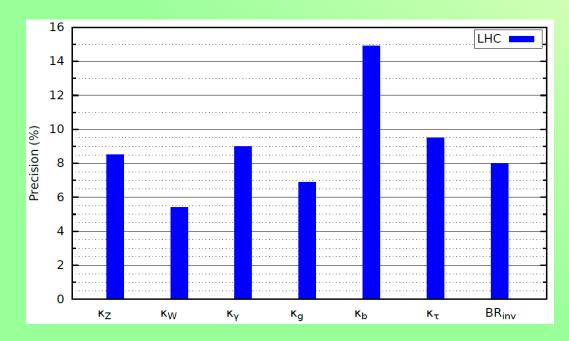
Fundamental Forces vs Higgs Boson

3 Types of Fundamental Forces in SM Itself

- > 1. Gauge Forces: mediated by Spin-1 Vector Boson.
- > 2. Yukawa Forces: mediated by Spin-0 Higgs Boson.
- 3. Higgs Self-Interaction Force: h³ & h⁴ forces, (concerns spontaneous EWSB and generating Higgs mass itself).

Type-2 & Type-3 are two New Fundamental Forces, Solely due to Spin-0 Higgs, which were never directly probed before, despite they already exist in SM !!!

3 Types of Fundamental Forces in SM Itself


- > 1. Gauge Forces: mediated by Spin-1 Vector Boson.
- > 2. Yukawa Forces: mediated by Spin-0 Higgs Boson.
- 3. Higgs Self-Interaction Force: h³ & h⁴ forces, (concerns spontaneous EWSB and generating Higgs mass itself).

- In SM, Only Higgs can have Self-Interactions (involving exactly the same particle, h³ & h⁴), but not all other fundamental particles (as forbidden by their spin & charge).
- Spin-0 Higgs Boson is Unique in many ways, but all its associated forces are not yet directly tested, especially, the New Type-2 and Type-3 forces mediated by Higgs Itself.

3 Fundamental Forces inside SM Itself

Status:

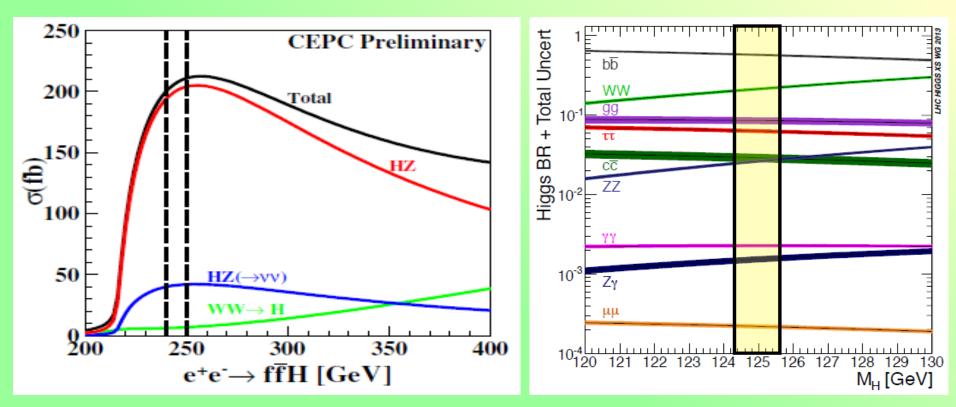
- LEP/Tevatron/LHC only have good tests on Gauge Forces.
- LHC only has weak sensitivity to Yukawa couplings of h-τ-τ, h-b-b, h-t-t at order of 10-20%.
- **LHC cannot probe Most Other Yukawa Couplings !**
- LHC can hardly probe Higgs Self-Interaction !
- LHC cannot establish h(125GeV) as God Particle !

LHC(14TeV, 300/fb) M. E. Peskin, Snowmass Study, arxiv:1312.4974

Higgs 125GeV and Beyond

<u>Conclusion-1:</u> Higgs is not only a New Particle, but also <u>New Forces !!!</u>

Even within SM Forces, strongly motivated to quantitatively test Type-2 & Type-3 New Forces (Higgs Yukawa Forces and Self-Interaction-Forces) mediated by Higgs Boson.


<u>Conclusion-2</u>: Any New Discovery of Run-2 will require further Precision Tests.

This requires to Go Beyond the LHC!

→ High Energy Circular Colliders: CEPC/SPPC & FCC ee (90-250GeV, 350GeV) pp(50-100TeV)

Higgs Factory: CEPC (240-250GeV)

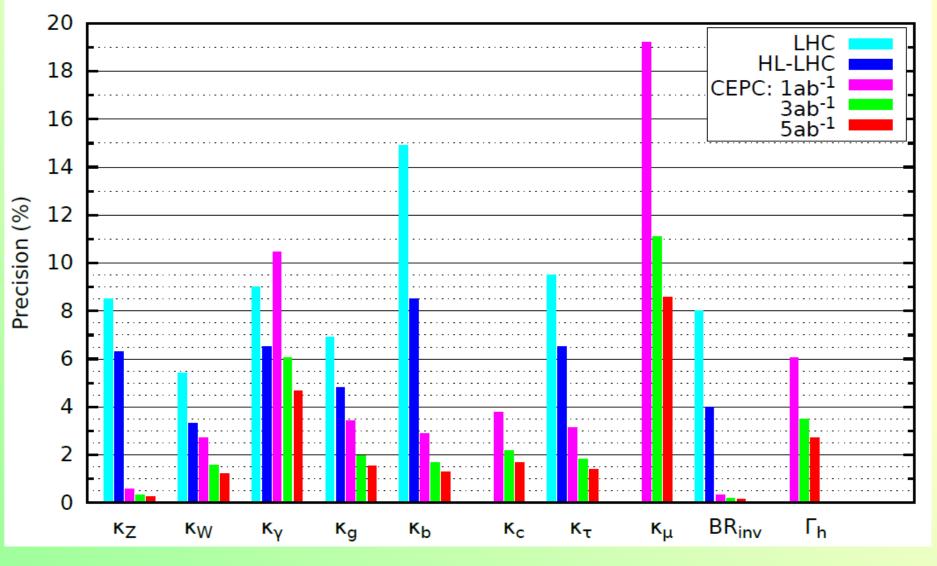
- LHC-8 tells us: h(125) is SM-like. Precision Test is Crucial !
- \succ CEPC produces h(125) mainly via ee \rightarrow hZ and ee \rightarrow vvh.
- CEPC makes indirect probe to New Physics !
 CEPC designed: 5/ab for 2 detectors in10y. -> 10⁶ Higgs Bosons !!

Inputs: Event Rate \rightarrow Cross Section & BR

ΔM _h	Γ _h	$\sigma(Zh)$		$\sigma(uar{ u}h)$) × Br(h	$\rightarrow bb)$
2.6 MeV	2.8%	0.5%	<u> </u>		2.8%	
D	ecay Moo	de σ	(Zh	$) \times Br$	Br	
h	ightarrow bb	•	0.2	21%	0.54%	_
h	ightarrow cc		2.	5%	2.5%	
h	ightarrow gg		1.	7%	1.8%	
h	$\rightarrow \tau \tau$		1.	2%	1.3%	
h	$\rightarrow WW$		1.	4%	1.5%	
h	ightarrow ZZ		4.	3%	4.3%	
h	$\rightarrow \gamma \gamma$		9.	0%	9.0%	
h	$\rightarrow \mu\mu$		1	7%	17%	
h	\rightarrow invisil	ble		_	0.14%	latest 1σ uncertainty Software WS, March 26

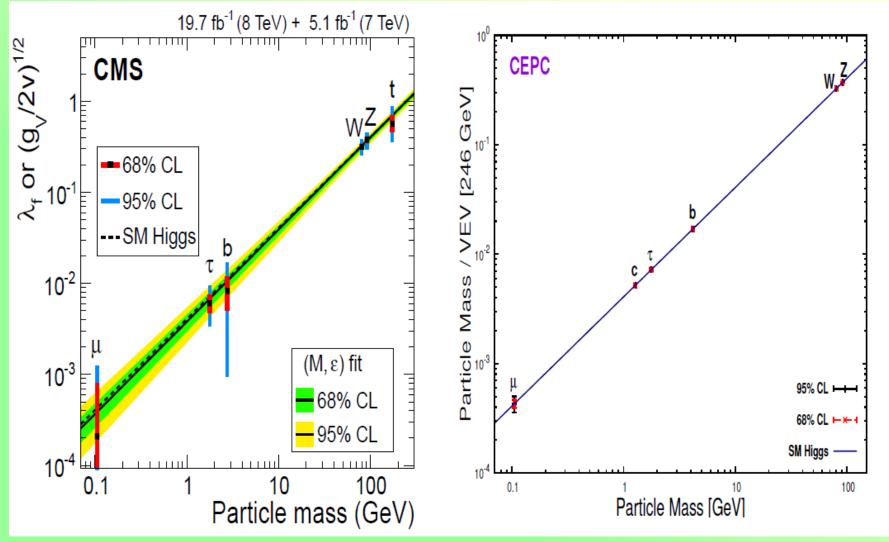
SM Predictions

 $\operatorname{Br}(b\bar{b}) \operatorname{Br}(c\bar{c}) \operatorname{Br}(gg) \operatorname{Br}(\tau\bar{\tau}) \operatorname{Br}(WW) \operatorname{Br}(ZZ) \operatorname{Br}(\gamma\gamma) \operatorname{Br}(\mu\bar{\mu}) \operatorname{Br}(\operatorname{inv})$


58.1% 2.10% 7.40% 6.64% 22.5% 2.77% 0.243% 0.023% 0

CEPC Detector Group

Effective Higgs Couplings: Gauge & Yukawa


$$\mathcal{L} = \kappa_3 \frac{m_H^2}{2v} H^3 + \kappa_Z \frac{m_Z^2}{v} Z_\mu Z^\mu H + \kappa_W \frac{2m_W^2}{v} W^+_\mu W^{-\mu} H + \kappa_g \frac{\alpha_s}{12\pi v} G^a_{\mu\nu} G^{a\mu\nu} H + \kappa_\gamma \frac{\alpha}{2\pi v} A_{\mu\nu} A^{\mu\nu} H + \kappa_Z \gamma \frac{\alpha}{\pi v} A_{\mu\nu} Z^{\mu\nu} H - \left(\kappa_t \sum_{f=u,c,t} \frac{m_f}{v} f \overline{f} + \kappa_b \sum_{f=d,s,b} \frac{m_f}{v} f \overline{f} + \kappa_\tau \sum_{f=e,\mu,\tau} \frac{m_f}{v} f \overline{f} \right) H$$

Testing Higgs Coupling: CEPC vs LHC

Ge, He, Xiao, arXiv:1603.03385

Higgs Coupling Precision: LHC vs CEPC

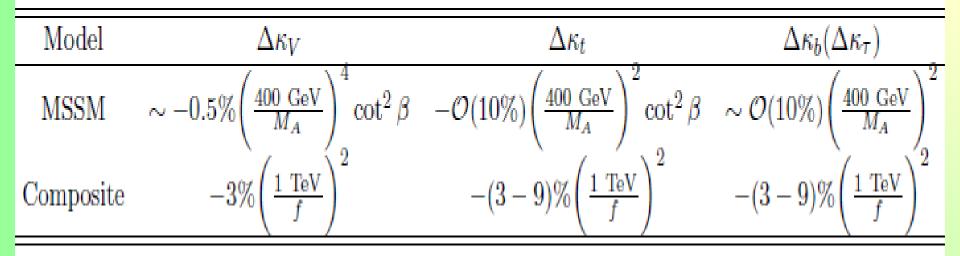
arXiv:1603.03385

CEPC Sensitivity to Higgs Coupling

CEPC (250GeV, $5ab^{-1}$) vs LHC (14TeV, 300fb⁻¹), HL-LHC (3ab⁻¹)

Precision (%)	Analyt	ic χ^2 fit	LHC	HL-LHC
κ_Z	0.254	0.254	8.5	6.3
κ_W	1.22	1.22	5.4	3.3
κ_{γ}	4.67	4.67	9.0	6.5
κ_{g}	1.52	1.52	6.9	4.8
κ_b	1.29	1.29	14.9	8.5
κ_c	1.69	1.69	_	_
$\kappa_{ au}$	1.40	1.40	9.5	6.5
κ_{μ}		8.59	_	_
Br(inv)	0.138	0.138	8.0	4.0
Γ_h	2.8	2.8	_	

- CEPC Higgs WG Report, Ge and He


$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{M^2} \mathcal{O}_{6,i}$$

 $(\mathbf{M} = \mathbf{\Lambda})$

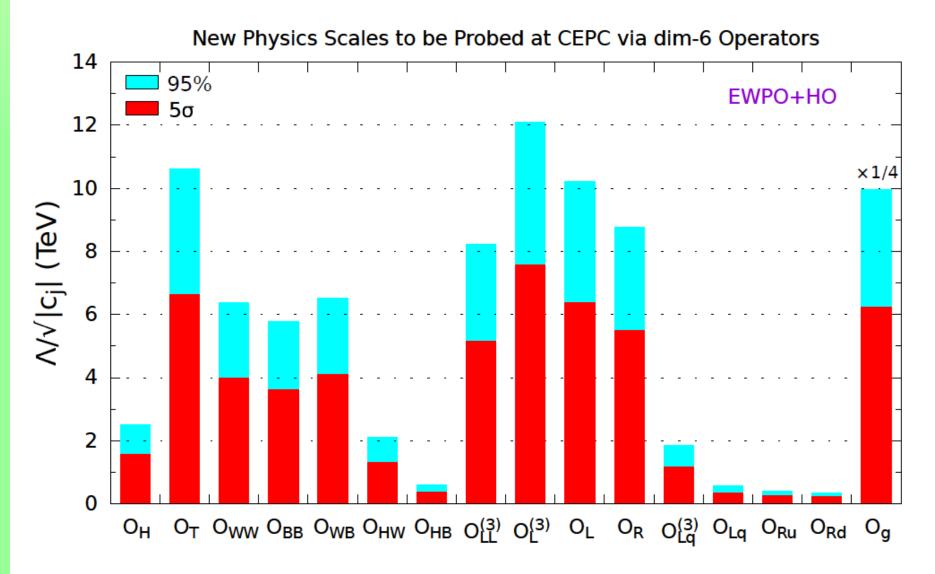
Higgs	EW Gauge Bosons	Fermions
$\mathcal{O}_H = \frac{1}{2} (\partial_\mu H ^2)^2$	$\mathcal{O}_{WW} = g^2 H ^2 W^a_{\mu\nu} W^{a\mu\nu}$	$\mathcal{O}_L^{(3)} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D}_{\mu}H)(\overline{\Psi}_L \gamma^{\mu}\sigma^a \Psi_L)$
$\mathcal{O}_T = \frac{1}{2} (H^\dagger \overset{\leftrightarrow}{D}_\mu H)^2$	$\mathcal{O}_{BB} = g^2 H ^2 B_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{LL}^{(3)} = (\overline{\Psi}_L \gamma_\mu \sigma^a \Psi_L) (\overline{\Psi}_L \gamma^\mu \sigma^a \Psi_L)$
	$\mathcal{O}_{WB} = gg' H^{\dagger} \sigma^a H W^a_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_L = (iH^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H) (\overline{\Psi}_L \gamma^{\mu} \Psi_L)$
Gluon	$\mathcal{O}_{HW} \!= ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$	$\mathcal{O}_R = (i H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H) (\overline{\psi}_R \gamma^{\mu} \psi_R)$
$\mathcal{O}_g \!= g_s^2 H ^2 G^a_{\mu\nu} G^{a\mu\nu}$	$\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$	

Effective Operators & Sizes of New Physics

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{M^2} \mathcal{O}_{6,i}$$
 (M

-- Higgs WG Report

 $=\Lambda$)


Existing EWPO & Future HO

Solution Observables: EWPO (PDG14) + HO (preCDR)

Central Value	Relative Error	SM Prediction
$7.2973525698 \times 10^{-3}$	3.29×10^{-10}	_
$1.1663787 \times 10^{-5} \text{GeV}^{-2}$	5.14×10^{-7}	_
91.1876GeV	2.3×10^{-5}	_
80.385GeV	1.87×10^{-4}	_
_	0.51%	-
-	2.86%	-
-	0.75%	-
_	1.6%	22.5%
-	4.3%	2.77%
_	0.57%	58.1%
_	2.3%	2.10%
_	1.7%	7.40%
_	1.3%	6.64%
_	9.0%	0.243%
_	17%	0.023%
	$7.2973525698 \times 10^{-3}$ $1.1663787 \times 10^{-5} \text{GeV}^{-2}$ 91.1876 GeV	$\begin{array}{cccccccc} 7.2973525698 \times 10^{-3} & 3.29 \times 10^{-10} \\ 1.1663787 \times 10^{-5} \text{GeV}^{-2} & 5.14 \times 10^{-7} \\ 91.1876 \text{GeV} & 2.3 \times 10^{-5} \\ 80.385 \text{GeV} & 1.87 \times 10^{-4} \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ \end{array}$

Se, He, Xiao, 1603.03385 Se, He, Xiao, 1603.03385

Sensitivities from Existing EWPO & Future HO

Ge, He, Xiao, 1603.03385

Enhancement from M_Z & M_W @ CEPC

Observables		Relative Error
	Current	CEPC
M _Z	$2.3 imes 10^{-5}$	$5.5 imes 10^{-6} \sim 1.1 imes 10^{-5}$ $3.7 imes 10^{-5} \sim 6.2 imes 10^{-5}$
M_W	$1.9 imes10^{-4}$	$3.7 imes \mathbf{10^{-5}} \sim 6.2 imes 10^{-5}$

Table: The M_Z & M_W @ CEPC [Z.Liang, "Z & W Physics @ CEPC" & preCDR].

Scheme-Independent Analysis

Ge, He, Xiao, arXiv:1603.03385

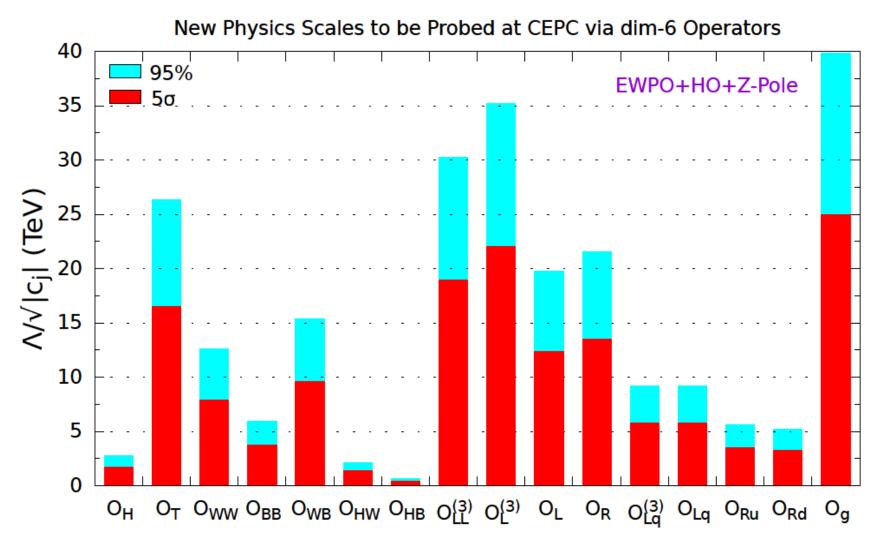
$\frac{\Lambda}{\sqrt{c_i}}$ [TeV]	\mathcal{O}_H	\mathcal{O}_{T}	\mathcal{O}_{WW}	\mathcal{O}_{BB}	\mathcal{O}_{WB}	\mathcal{O}_{HW}	\mathcal{O}_{HB}	$\mathcal{O}_{LL}^{(3)}$	$\mathcal{O}_L^{(3)}$	\mathcal{O}_L	\mathcal{O}_R	$\mathcal{O}_{L,q}^{(3)}$	$\mathcal{O}_{L,q}$	$\mathcal{O}_{R,u}$	$\mathcal{O}_{R,d}$	\mathcal{O}_{g}
HO+EWPO	2.74	10.6	6.38	5.78	6.53	2.15	0.603	8.57	12.1	10.2	8.78	1.85	0.565	0.391	0.337	39.8
$+M_z$	2.74	10.7	6.38	5.78	6.54	2.15	0.603	8.61	12.1	10.2	8.78	1.85	0.565	0.391	0.337	39.8
$+M_W$	2.74	21.0	6.38	5.78	10.4	2.15	0.603	15.5	16.4	10.2	8.78	1.85	0.565	0.391	0.337	39.8
$+M_{Z,W}$	2.74	23.7	6.38	5.78	11.6	2.15	0.603	17.4	18.1	10.2	8.78	1.85	0.565	0.391	0.337	39.8

Note: The CEPC Z-pole & W-pair simulation is preliminary. BUT, the detail does not really matter for above demonstrating the matter of principle for probing New Physics: including vs excluding CEPC measurements of M_Z, M_W.

Enhancement from Z-Pole Observables @ CEPC

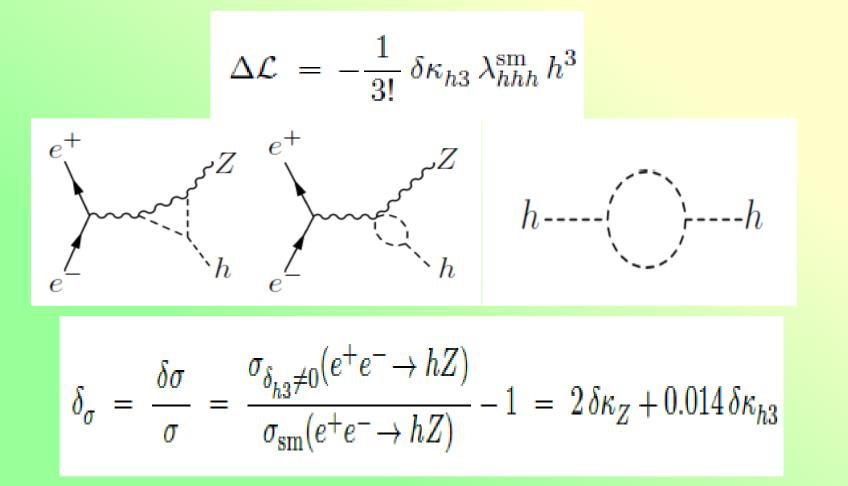
$$\frac{N_{\nu}}{1.8 \times 10^{-3}} \frac{A_{FB}(b)}{1.5 \times 10^{-3}} \frac{R^{b}}{8 \times 10^{-4}} \frac{R^{\mu}}{5 \times 10^{-4}} \frac{R^{\tau}}{5 \times 10^{-4}} \frac{\sin^{2} \theta_{w}}{1 \times 10^{-4}}$$

Table: The Z-pole measurements at CEPC [Z.Liang, "Z & W Physics @ CEPC" & preCDR].


Ge, He, Xiao, 1603.03385

Z-Pole Observables are **IMPORTANT** for New Physics Scale Probe

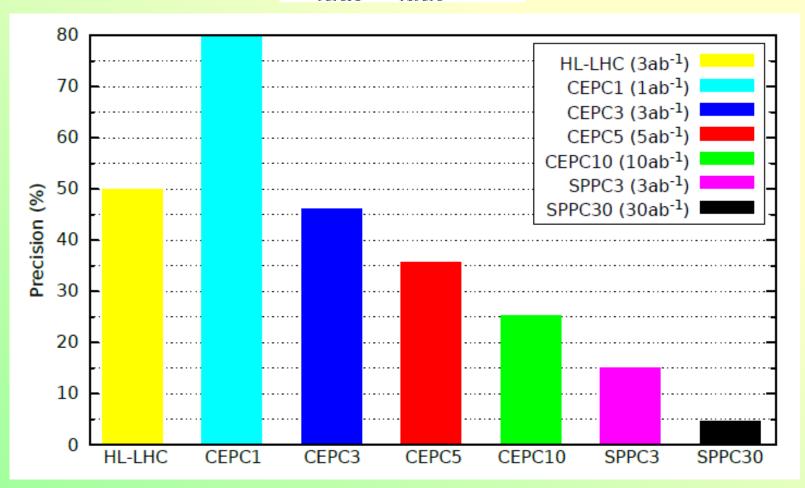
		\mathcal{O}_{WW}													
2.74	23.7	6.38	5.78	11.6	2.15	0.603	17.4	18.1	10.2	8.78	1.85	0.565	0.391	0.337	39.8
2.74	23.7	6.38	5.78	11.6	2.15	0.603	17.5	18.3	10.5	8.78	1.85	0.565	0.391	0.337	39.8
2.74	24.0	8.32	5.80	12.2	2.15	0.603	20.7	23.0	12.5	13.0	2.08	1.62	0.391	3.97	39.8
2.74	24.0	8.33	5.80	12.2	2.15	0.603	20.7	23.0	12.5	13.0	7.90	7.89	3.55	4.05	39.8
2.74	24.0	8.54	5.80	12.2	2.15	0.603	20.7	23.4	14.4	14.0	8.63	8.62	4.88	4.71	39.8
2.74	24.0	8.75	5.80	12.3	2.15	0.603	20.7	23.7	15.8	14.9	9.21	9.21	5.59	5.17	39.8
2.74	26.3	12.6	5.93	15.3	2.15	0.603	30.2	35.2	19.8	21.6	9.21	9.21	5.59	5.17	39.8


Extra Factor-2 Improvements from more Z-pole observales!

Sensitivity from EWPO+HO+Z-Pole

Ge, He, Xiao, 1603.03385

CEPC Probe of h³ Coupling



M. McCullough, arXiv:1312.3322

Recall: HL-LHC probes h³ to 50%. ILC500 probes h³ to 83%.

Sensitivity to Higgs Self-Coupling h³

> Comparison: h³ at CEPC(1, 3, 5/ab) and SPPC(3, 30/ab), vs HL-LHC (3/ab): $|\lambda_{hhh}/\lambda_{hhh}^{sm} - 1|$

-- Higgs WG Rept

Summary of CEPC Precision Tests:

- CEPC produces 10⁶ Higgs Bosons at 250GeV (5/ab).
 Higgs Gauge & Yukawa Couplings ~ O(1%)
 Higgs Self-coupling ~ 30%
- CEPC Indirect Probe of New Physics Scales: up to 10TeV (40TeV for Og) from EWPO + HO. up to 35TeV after including Z-pole (CEPC).
- CEPC can sensitively probe Exotic Higgs Decays

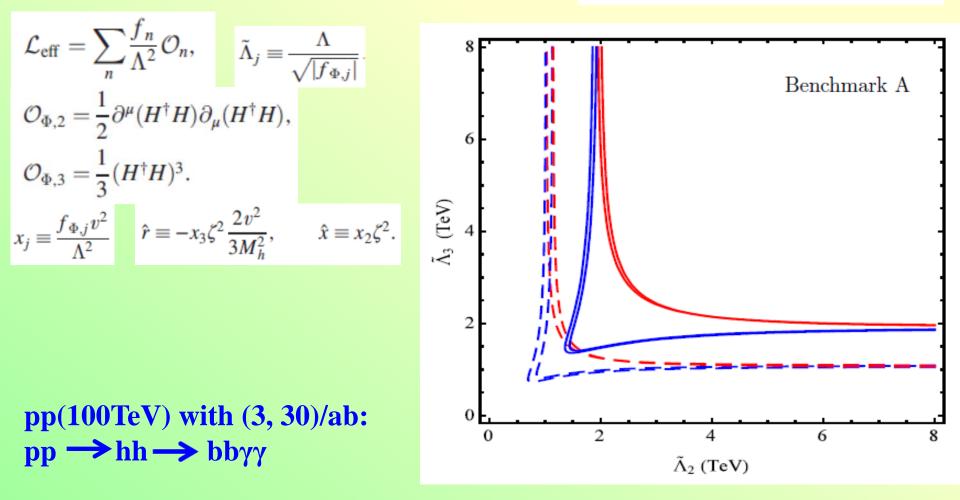
Probing Higgs Self-Interactions

$$V = -\mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2,$$
$$V_{\text{int}} = \frac{\lambda_3}{3!} h^3 + \frac{\lambda_4}{4!} h^4,$$

SM:
$$\lambda_3 = 6\lambda v = 3M_h^2/v$$
 and $\lambda_4 = 6\lambda = 3M_h^2/v^2$.

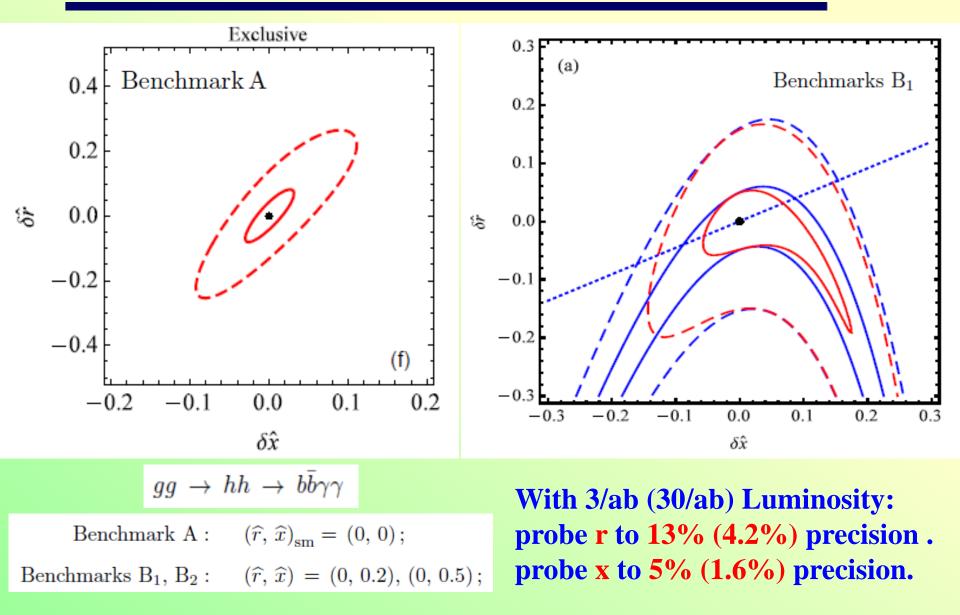
New Physics could modify h^3 & h^4 couplings only via dim-6 operators! $\mathcal{O}_{\Phi,1} = (D^{\mu}H)^{\dagger}HH^{\dagger}(D_{\mu}H), \qquad \mathcal{O}_{\Phi,2} = \frac{1}{2}\partial^{\mu}(H^{\dagger}H)\partial_{\mu}(H^{\dagger}H)$

$$\mathcal{O}_{\Phi,1} = (D^{\mu}H)^{\dagger}HH^{\dagger}(D_{\mu}H), \qquad \mathcal{O}_{\Phi,2} = \frac{1}{2}\partial^{\mu}(H^{\dagger}H)\partial_{\mu}(H^{\dagger}H),$$
$$\mathcal{O}_{\Phi,3} = \frac{1}{3}(H^{\dagger}H)^{3}, \qquad \mathcal{O}_{\Phi,4} = (D^{\mu}H)^{\dagger}(D_{\mu}H)(H^{\dagger}H).$$


 $\mathcal{O}_{\Phi,f}\,=\,(H^{\dagger}H)\,\overline{L}Hf_R+{\rm h.c.},$

Under SU(2)c and using EOM, only 2 modify h³/h⁴ vertex:

$$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (H^{\dagger} H) \partial_{\mu} (H^{\dagger} H), \qquad \mathcal{O}_{\Phi,3} = \frac{1}{3} (H^{\dagger} H)^3.$$


Probing Higgs Self-Interaction h³

Benchmark A : $(\hat{r}, \hat{x})_{sm} = (0, 0);$

HJH, Ren, Yao, arXiv:1506.03302, PRD(2015)

Probing Higgs Self-Interaction h³

HJH, Ren, Yao, arXiv:1506.03302, PRD(2015)

Searching for Heavier Higgs Boson via Di-Higgs Production at LHC Run-2

Probing Higgs Self-Interaction Hhh

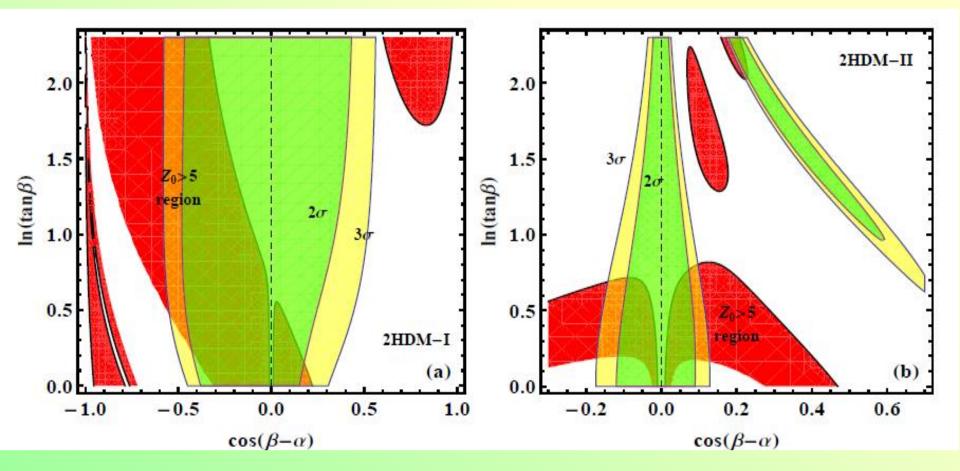
 $pp \to H \to hh \to WW^* \gamma \gamma$ ($WW^* \to \ell \bar{\nu} \bar{\ell} \nu$, $q\bar{q}' \ell \nu$)

$pp \rightarrow q\bar{q}' \ell \nu \gamma \gamma$	$\sigma_{\mathrm total}$	Selection+Basic Cuts	$M_{\gamma\gamma}, M_{qq}, E_T$	Final Cuts
Signal (fb)	1.32	0.0891	0.0671	0.0533
$BG[qq\ell\nu\gamma\gamma]$ (fb)	31.59	0.581	0.0291	0.00672
$BG[\ell \nu \gamma \gamma]$ (fb)	143.3	0.0642	0.00454	0.000891
BG[Wh] (fb)	0.42	0.00509	0.00335	0.00139
BG[WWh] (fb)	0.0023	0.000210	0.000127	0.000057
$BG[t\bar{t}h]$ (fb)	0.0148	0.00163	0.00111	0.000441
BG[<i>hh</i>] (fb)	0.00462	0.000291	0.000197	0.000155
BG[th] (fb)	0.0129	0.000479	0.000247	0.000104
BG[Total] (fb)	175.35	0.653	0.0386	0.0098
Significance(Z_0)	1.72	1.87	4.86	6.22

 $M_{H} = (300, 400, 600) \,\text{GeV},$

$$Z_0(\text{combined}) = \sqrt{Z_0^2(\ell \nu \ell \nu \gamma \gamma) + Z_0^2(q \bar{q}' \ell \nu \gamma \gamma)}$$

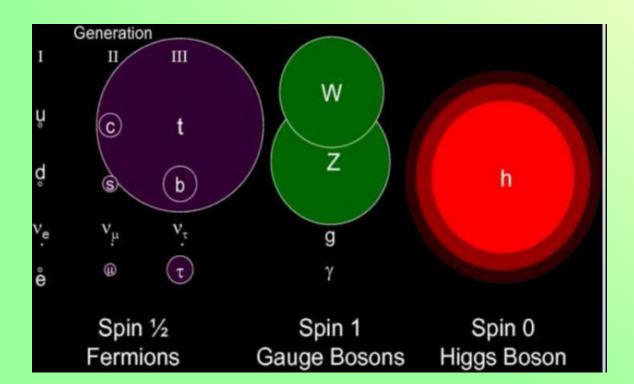
 \simeq (9.06, 7.41, 12.1), for $\mathcal{L} = (300, 300, 3000) \, \text{fb}^{-1};$


 \simeq (7.40, 6.05, 6.99), for $\mathcal{L} = (200, 200, 1000) \, \text{fb}^{-1};$

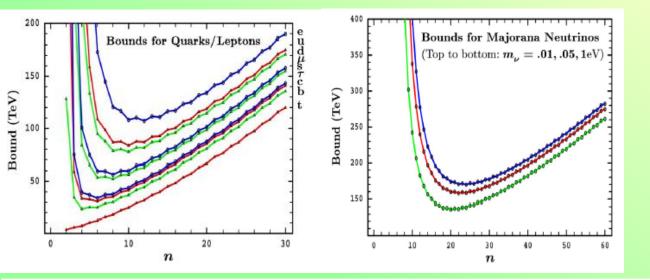
Lv, Du, Fang, HJH, Zhang, arXiv:1507.02644, PLB(2015)

Searching for Heavier Higgs Boson via Di-Higgs Production at LHC Run-2

Probing Higgs Self-Interaction Hhh


 $pp \to H \to hh \to WW^* \gamma \gamma$ ($WW^* \to \ell \bar{\nu} \bar{\ell} \nu$, $q\bar{q}' \ell \nu$)

Lv, Du, Fang, HJH, Zhang, arXiv:1507.02644, PLB(2015)


SM is **Incomplete:** Mass Puzzle

- Yukawa Force is Flavor-dependent & Unnatural ! Why Quark/Lepton Masses differ so much at Tree Level?
- What are underlying Scales of Fermion Mass Generations?
- Why is Higgs Mass itself Unnatural under Loop Corrections?

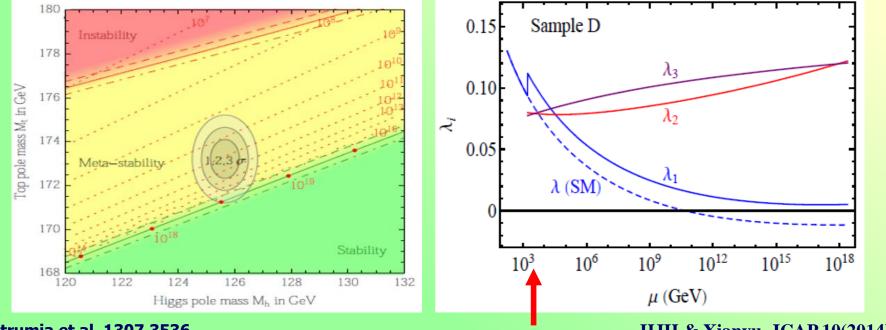
SM is **Incomplete:** Fermion Mass Puzzle

Yukawa Force is Flavor-dependent & Unnatural! Why Quark/Lepton Masses differ so much at Tree Level?
What are underlying Scales of Fermion Mass Generations?

Upper Bounds on Scales of Fermion Mass Generations:

2nd+3rd Families: 3.5-56 TeV 1st Family: 77-107 TeV

— All these bounds Tied to O(3-100TeV) Scales !


$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\xi_1\xi_2$	$V_L V_L$	$t\overline{t}$	$b\overline{b}$	$c\overline{c}$	88	$d\bar{d}$	$u\overline{u}$	$\tau^- \tau^+$	$\mu^-\mu^+$	e^-e^+	$\nu_L \nu_L$
$E_{2 \to n}^{\star(\min)} (\text{TeV}) 1.2 3.49 23.4 30.8 52.1 77.4 83.6 33.9 56.3 107 158$	Mass (GeV)	80.4	178	4.85	1.65	0.105	0.006	0.003	1.777	0.106	$5.11\!\times\!10^{-4}$	5×10^{-11}
	n_s	2	2	4	6	8	10	10	6	8	12	22
$E_{2\to2}^{\star}(\text{TeV}) = 1.2 3.49 128 377 6 \times 10^3 10^5 2 \times 10^5 606 10^4 2 \times 10^6 1.1 \times 10^{13}$	$E_{2 \to n}^{\star(\min)} ({\rm TeV})$	1.2	3.49	23.4	30.8	52.1	77.4	83.6	33.9	56.3	107	158
	$E^{\star}_{2 \rightarrow 2} ({\rm TeV})$	1.2	3.49	128	377	$6\! imes\!10^3$	10^{5}	$2\!\times\!10^5$	606	10^{4}	$2\!\times\!10^6$	$1.1\!\times\!10^{13}$

Dicus and HJH, PRL.94 (2005) 221802 PRD.71 (2005) 093009

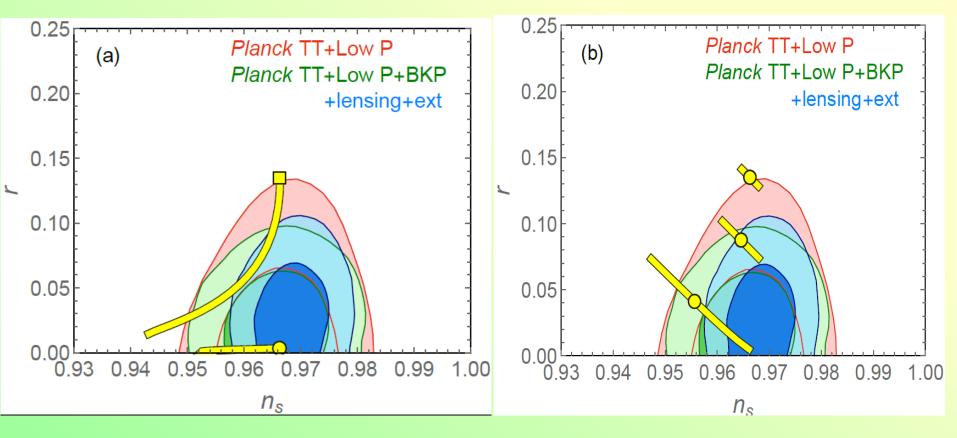
see: Nima's Overview in preCDR

SM is **Incomplete:** Vacuum, BA, DM, Inflation??

- Vacuum Puzzle: EW vacuum is Unstable at 10⁹⁻¹¹ GeV !
- Inflation Puzzle: naive SM provides no Inflaton !
- Puzzle of Missing Antimatter (Baryon Asymmetry) ?
- Dark Matter Puzzle (80% of all Matter): SM has no DM !

Strumia et al, 1307.3536

HJH & Xianyu, JCAP 10(2014) 019. arXiv:1602.01801


Eample: New Physics at TeV Scale: New singlet scalar + New quarks of masses ~ O(TeV)

Higgs Inflation in No-Scale SUSY GUT

Predictions for inflation observables: ζ =1: quadratical inflation. ζ =0: Starobinsky-like inflation

With small deviation δ :

 $\beta = \tfrac{1}{3}(1-\zeta+\delta)\,m$

Ellis, HJH, Xianyu, arXiv:1606.02202

Higgs Inflation in No-Scale SUSY GUT

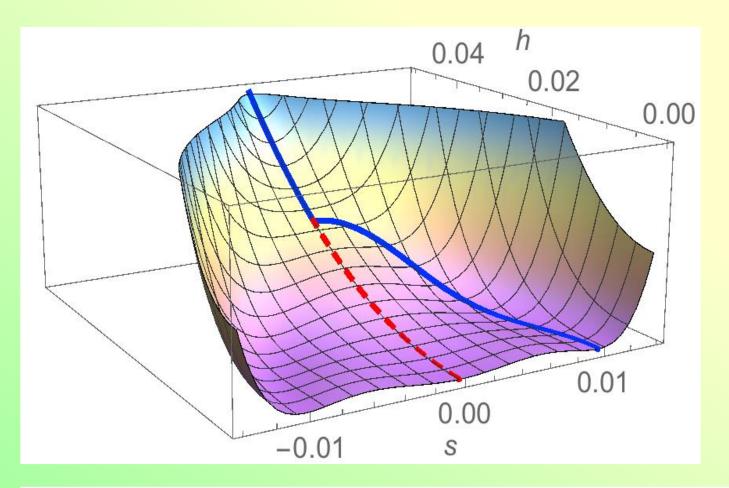
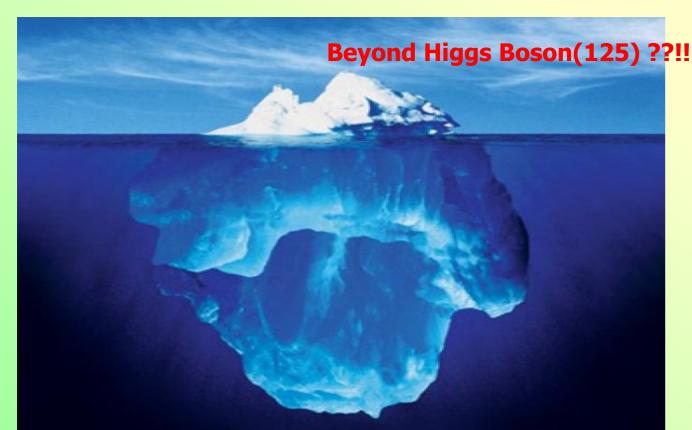
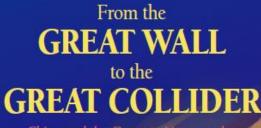



Figure 2. Three-dimensional plot of the scalar potential V(h, s) in the minimal SU(5) model as functions of the (h, s) fields. The blue curve depicts the trajectory of the inflaton after passing the branch point.

Ellis, HJH, Xianyu, arXiv:1606.02202

Higgs Boson: Window to New Physics !?


- All Particle Masses & Inflation of Universe ?! Connections to SUSY, DM, CPV, Baryogenesis?
- h(125) is just the Tip of a giant Iceberg ! To open a Door to New Phys beneath water ?

From Great Wall to Great Collider

see: book of Nadis and Yau

Shanhai Pass (山海关) vs CEPC-SPPC

China and the Quest to Uncover the Inner Workings of the Universe

> Steve Nadis Shing-Tung Yau

Great Wall → Great Collider (CEPC-SPPC)

Broadview

一个迷人的故事,着重探讨超越希格斯玻色子发现的新物理, 以及能够引领我们实现这个目标的巨型粒子加速器。

从万里长城到 巨型方撞机 中国探索宇宙最深层奥秘的前景

More Excitments Ahead !

Let us continue to work together and do good works !

获2016年 美国PROSE奖 (物理化学类)

> [美]丘成桐 史蒂夫·纳迪斯 著 鲜于中之 何红建 译

