
Michele Selvaggi
(on behalf of the Delphes collaboration)

MC4BSM - Beijing
24/07/2016

Delphes
Fast Detector Simulation

github.com/delphes
cp3.irmp.ucl.ac.be/projects/delphes

http://github.com/delphes
http://cp3.irmp.ucl.ac.be/projects/delphes

2

MC chain

courtesy of A. Salzburger

3

courtesy of A. Salzburger

FAST SIMULATION

MC chain

4

Detector simulation
● Full simulation (GEANT):

 - simulates particle-matter interaction (including e.m. showering, nuclear int.,

brehmstrahlung, photon conversions, etc ...) → 100 s /ev

● Experiment Fast simulation (ATLAS, CMS ...):

 - simplifies and makes faster simulation and reconstruction → 1 s /ev

● Parametric simulation (Delphes, PGS):

 - parameterize detector response, reconstruct complex objects

 B field propagation, Jets, Missing ET → 10 ms /ev

● Object smearing (Atom, Falcon, TurboSim):

 - from parton to detector object (lookup tables)

5

When FastSim?
● When to use FastSim?

 → test your model with detector simulation
 → sensitive to acceptance and complex observable (Jets,MET)
 → scan big parameter space (SUSY-like)
 → preliminary tests of new geometries/resolutions (future detectors)
 → educational purpose (bachelor/master thesis)

● When not to use FastSim?

 → very exotic topologies (HSCP, long-lived, ...) (NOT YET ...)

6

The Delphes Project

7

The Delphes project
● Delphes project started back in 2007 at UCL as a side project to allow quick

phenomenological studies

● Since 2009, its development is community-based
 - ticketing system for improvement and bug-fixes

 → user proposed patches, can be forked from github and make pull-requests

● In 2013, DELPHES 3 was released (DELPHES 2 NOT SUPPORTED ANYMORE !!):
 - C++ modular software

- Dependencies: gcc, tcl, ROOT
- is shipped with FastJet

● Delphes is itself distributed by various tools: MadGraph, MadAnalysis, CheckMate
● Widely tested and used by the community (pheno, Snowmass, Recasting, FCC, CMS

upgrades ...)
● Repository: github.com/delphes
● Website and manual: https://cp3.irmp.ucl.ac.be/projects/delphes
● Original publication: JHEP 02 (2014) 057 [1307.6346]

http://github.com/delphes
https://cp3.irmp.ucl.ac.be/projects/delphes
http://link.springer.com/article/10.1007/JHEP02(2014)057
http://arxiv.org/abs/1307.6346

8

What is Delphes?
● Delphes is a modular framework that simulates of the response of a

multipurpose detector in a parameterized fashion

● Includes:
 - pile-up

 - charged particle propagation in
 magnetic field
 - electromagnetic and hadronic calorimeters

 - muon system

● Provides:

 - leptons (electrons and muons)
 - photons
 - jets and missing transverse energy (particle-flow)
 - taus and b's

9

● Install ROOT from root.cern.ch

● Clone Delphes from github or download from website

● Type in shell:
./configure

make -j 4

● Run Delphes:
./DelphesSTDHEP [detector_card] [output] [input]

./DelphesHepMC [detector_card] [output] [input]

● Input formats: HepMC, StdHep, ProMC, LHE

● Output: browsable ROOT tree

Run Delphes

https://root.cern.ch/downloading-root
http://github.com/delphes/delphes
https://cp3.irmp.ucl.ac.be/projects/delphes

10

● The modular system allows the user to
configure and schedule modules via a
configuration file (.tcl), add modules,
change data flow, alter output
information

● Modules communicate entirely via
collections (vectors) of universal objects
(TObjArray of Candidate four-vector
like objects).

● Any module can access TObjArrays
produced by other modules using
ImportArray method:

ImportArray("ModuleName/arrayName")

Modular

11

● Delphes configuration file is based on tcl scripting language

● This is where the detector, data-flow, and output tree is configured.

● Delphes provides tuned detector cards for most detectors:

- ATLAS, CMS, LHCb, ILD, FCC.

- can find other tunes in CheckMate, MadAnalysis.

● Order of execution of various modules is configured in the Execution Path:

 set ExecutionPath {

 ParticlePropagator

 TrackEfficiency

 ...

 Calorimeter

 ...

 TreeWriter

 }

Configuration file

12

Configuration file
module FastJetFinder FastJetFinder {

 set InputArray EFlowMerger/eflow
 set OutputArray jets

 # algorithm: 1 CDFJetClu, 2 MidPoint, 3 SIScone, 4 kt, 5 Cambridge/Aachen, 6 antikt
 set JetAlgorithm 5
 set ParameterR 0.8

 set ComputeNsubjettiness 1
 set Beta 1.0
 set AxisMode 4

 set ComputeTrimming 1
 set RTrim 0.2
 set PtFracTrim 0.05

 set ComputePruning 1
 set ZcutPrun 0.1
 set RcutPrun 0.5
 set RPrun 0.8

 set ComputeSoftDrop 1
 set BetaSoftDrop 0.0
 set SymmetryCutSoftDrop 0.1
 set R0SoftDrop 0.8

 set JetPTMin 20.0

}

13

Configuration file
module Calorimeter Calorimeter {

 set ParticleInputArray ParticlePropagator/stableParticles
 set TrackInputArray TrackMerger/tracks

 set TowerOutputArray towers
 set PhotonOutputArray photons

 set EFlowTrackOutputArray eflowTracks
 set EFlowPhotonOutputArray eflowPhotons
 set EFlowNeutralHadronOutputArray eflowNeutralHadrons

 ...

 # 10 degrees towers
 set PhiBins {}
 for {set i -18} {$i <= 18} {incr i} {
 add PhiBins [expr {$i * $pi/18.0}]
 }
 foreach eta {-3.2 -2.5 -2.4 -2.3 -2.2 -2.1 -2 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8
-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 3.3} {
 add EtaPhiBins $eta $PhiBins
 }

 ...
 set ECalResolutionFormula {
 (abs(eta) <= 1.5) * (1+0.64*eta^2) * sqrt(energy^2*0.008^2 + energy*0.11^2 + 0.40^2) +
 (abs(eta) > 1.5 && abs(eta) <= 2.5) * (2.16 + 5.6*(abs(eta)-2)^2) * sqrt(energy^2*0.008^2 +
energy*0.11^2 + 0.40^2) +
 (abs(eta) > 2.5 && abs(eta) <= 5.0) * sqrt(energy^2*0.107^2 + energy*2.08^2)}

output(s) candidates

input(s) candidates

14

Configuration file

module TreeWriter TreeWriter {
add Branch InputArray BranchName BranchClass
 add Branch Delphes/allParticles Particle GenParticle

 add Branch TrackMerger/tracks Track Track
 add Branch Calorimeter/towers Tower Tower

 add Branch Calorimeter/eflowTracks EFlowTrack Track
 add Branch Calorimeter/eflowPhotons EFlowPhoton Tower
 add Branch Calorimeter/eflowNeutralHadrons EFlowNeutralHadron Tower

 add Branch GenJetFinder/jets GenJet Jet
 add Branch GenMissingET/momentum GenMissingET MissingET

 add Branch UniqueObjectFinder/jets Jet Jet
 add Branch UniqueObjectFinder/electrons Electron Electron
 add Branch UniqueObjectFinder/photons Photon Photon
 add Branch UniqueObjectFinder/muons Muon Muon
 add Branch MissingET/momentum MissingET MissingET
 add Branch ScalarHT/energy ScalarHT ScalarHT
}

Output collections are configured in the TreeWriter module:

15

Recent Features

16

● You can now run the full MC/reconstruction chain with one simple command by
linking Delphes with Pythia8 (more info here).

● Set PYTHIA8 path variable and recompile Delphes:

export PYTHIA8=[path_to_pythia8_installation]

make HAS_PYTHIA8=true DelphesPythia8

● You can then directly either directly use Pythia8 matrix element, or use external
LHE (also with matching available).

● In both case the input to Delphes will be a Pythia8 “cmnd” file:

 ./DelphesPythia8 [detector_card] [pythia8_cmnd] [output]

● Avoids storing huge intermediary event files (hepmc), all the parton/hadron-
level information can accessed via the Particle branch in the output.

● If multiple weights were stored in LHE input, Delphes stores them in the
Weights branch in a vector.

Run Delphes with Pythia 8

https://cp3.irmp.ucl.ac.be/projects/delphes/wiki/WorkBook/Pythia8

17

● Delphes is distributed with full fastjet, with a subset of fastjet/contribs

● However if you want to use your own fastjet code, you have to write a
new Delphes module, or alter existing FastJetFinder, which can be
cumbersome..

● Instead you can simply use Delphes as low-level candidate producer (i.e
particle-flow candidates, calorimeter towers, tracks, ...) and feed those
objects to fastjet

● We provide a shared object libDelphesNoFastjet.so that serves this
purpose

● Complete instructions with examples can be found here.

Run Delphes with external FastJet

https://cp3.irmp.ucl.ac.be/projects/delphes/wiki/WorkBook/ExternalFastJet

18

Jet Substructure
JHEP 1103:015 (2011), JHEP 1202:093 (2012) and JHEP 1404:017 (2014)

● Embedded in FastJetFinder module
● τ1, τ2, .. , τ5 saved as jet members (N-subjettiness)
● Trimming, Pruning, SoftDrop ...

19

 PUPPI has been included [arXiv:1407.6013]

Pile-Up Subtraction

Delphes and PUPPI in combination have been used to argue for a
tracker extension up |eta| < 4 for CMS Phase II upgrades!!

20

Future Studies
● Delphes has been designed to deal with high number of hadrons environment:

● Jets, MET and object isolation are modeled realistically
● pile-up simulation subtraction (FastJet Area method, PUPPI, SoftKiller)

● Recent improvements:

● different segmentation for ECAL and HCAL
● jet substructure for boosted objects
● Included configuration card for future collider studies (ILD, FCC)

● Allows for:

● reverse engineering:
 → you have some target for jet invariant mass resolution
 what granularity and resolution are needed to achieve it?

● impact of pile-up on isolation, jet substructure, multiplicities ...
● how much does timing information help for pile-up mitigation

21

Conclusions
● Delphes 3 has been out for two years now, with major improvements:

- modularity
- default cards giving results on par with published performance from LHC experiments
- updated configurations for future e+e- and hh colliders
- interfaced within MadGraph5/Py8, CheckMate/MadAnalysis

● Delphes 3 can be used right away for fast and realistic simulation for present
and future collider studies

● Delphes is used both by experimentalist and theorists
● Continuous development (vertexing, conversions, fakes, timing ...)
● Feel free to contribute!

Tutorial:

https://cp3.irmp.ucl.ac.be/projects/delphes/wiki/WorkBook/Tutorials/Mc4Bsm

22

Contributors

Jerome de Favereau
Christophe Delaere
Pavel Demin
Andrea Giammanco
Vincent Lemaitre
Alexandre Mertens
Michele Selvaggi

the community ...

23

Back-up

24

Particle Propagation

● Charged and neutral particles are propagated in the magnetic field until
they reach the calorimeters

● Propagation parameters:

 - magnetic field B
 - radius and half-length (Rmax, zmax)

● Efficiency/resolution depends on:

 - particle ID
 - transverse momentum
 - pseudorapidity

No real tracking/vertexing !!
 → no fake tracks (but can be implemented)
 → no dE/dx measurements

25

Calorimetry

● Particle energy is smeared
according to the calorimeter
cell it reaches

● Can specify separate
ECAL/HCAL segmentation in eta/phi

● Each particle that reaches the
calorimeters deposits a fraction of its
energy in one ECAL cell (fEM) and HCAL
cell (fHAD), depending on its type:

No Energy sharing between the neighboring cells
No longitudinal segmentation in the different calorimeters

26

Particle-Flow
● Idea: Reproduce realistically the performances of the Particle-Flow algorithm.

● In practice, in DELPHES use tracking and calo info
to reconstruct high reso. input objects for later use
(jets, ET

miss, HT)

 → If σ(trk) < σ(calo) (low energy)

Example: A pion of 10 GeV

 EHCAL(π+) = 9 GeV

 ETRK(π+) = 11 GeV

 Particle-Flow algorithm creates:

 PF-track, with energy EPF-trk = 11 GeV

Separate neutral and charged calo deposits has crucial implications for pile-up subtraction

ECAL

HCAL

π +

27

● Idea: Reproduce realistically the performances of the Particle-Flow algorithm.

● In practice, in DELPHES use tracking and calo info
to reconstruct high reso. input objects for later use
(jets, ET

miss, HT)

 → If σ(trk) < σ(calo) (low energy)

Example: A pion of 10 GeV

 EHCAL(π+) = 15 GeV

 ETRK(π+) = 11 GeV

 Particle-Flow algorithm creates:

 PF-track, with energy EPF-trk = 11 GeV
 PF-tower, with energy EPF-tower = 4 GeV

Separate neutral and charged calo deposits has crucial implications for pile-up subtraction

ECAL

HCAL

π +

Particle-Flow

28

● Idea: Reproduce realistically the performances of the Particle-Flow algorithm.

● In practice, in DELPHES use tracking and calo info
to reconstruct high reso. input objects for later use
(jets, ET

miss, HT)

 → If σ(trk) > σ(calo) (high energy)

Example: A pion of 500 GeV

 EHCAL(π+) = 550 GeV

 ETRK(π+) = 400 GeV

 Particle-Flow algorithm creates:

 PF-track, with energy EPF-trk = 550 GeV
 and no PF-tower

Separate neutral and charged calo deposits has crucial implications for pile-up subtraction

ECAL

HCAL

π +

Particle-Flow

29

Validation

30

Leptons, photons

● Muons/photons/electrons

 - muons identified via their PDG id, do not deposit energy in calo
(independent smearing parameterized in pT and η)
 - electrons and photons reconstructed according to particle-flow

● Isolation:

 If I(P) < Imin, the lepton is isolated

 User can specify parameters Imin, ΔR, pT

min

31

Validation

 → excellent agreement

32

b and τ jets
● b-jets

 - if b parton is found in a cone ΔR w.r.t jet direction
 → apply efficiency

- if c parton is found in a cone ΔR w.r.t jet direction
 → apply c-mistag rate
 - if u,d,s,g parton is found in a cone ΔR w.r.t jet direction
 → apply light-mistag rate

 b-tag flag is then stored in the jet collection

● tau-jets

 - if tau lepton is found in a cone ΔR w.r.t jet direction
 → apply efficiency

- else
 → apply tau-mistag rate

pT and η , and nprong dependent efficiency and mistag rate

33

Physics example
Look at hardest 2 b-tagged and 2 light jets (à la CMS):

- correct : 4 jets are good, match right b with lights
- wrong : 4 jets are good, match wrong b with lights
- unmatched : at least one of the jets don't match

34

Look at hardest 2 b-tagged and 2 light jets (à la CMS):

- correct : 4 jets are good, match right b with lights
- wrong : 4 jets are good, match wrong b with lights
- unmatched : at least one of the jets don't match

Physics example

35

Pile-Up

36

Pile-up is implemented in Delphes
since version 3.0.4

PileUpMerger module:

– mixes N minimum bias events with
hard event sample

– spreads poisson(N), Gauss(N)
events along z-axis with
configurable (z,t) beamspot profle

– rotate event by random angle φ wrt
z-axis

Pile - Up

37

● Charged Pile-up subtraction (most effective if used with PF algo)
- if z < |Zres| keep all charged and neutrals (→ ch. particles too close to hard
scattering to be rejected)

- if z > |Zres| keep only neutrals (perfect charged subtraction)

- allows user to tune amount of charged particle subtraction by adjusting Z
spread/resolution

● Residual eta dependent pile-up substraction is needed for jets and
isolation.
– Use the FastJet Area approach (Cacciari, Salam, Soyez)

● compute ρ = event pile-up density

● jet correction : pT → pT − ρA (JetPileUpSubtractor)

● isolation : ∑ pT → ∑ pT − ρπR² (Isolation module itself)

Pile – Up

38

Pile - Up

39 → good agreement

Pile - Up

40

● H → bb in VBF channel expected to be highly affected by pile-up

● Irreducible background bb+jets

● Select >4 jets with pT > 80, 60, 40, 40 (at least 2 b-tagged, at least 2
light)

Emergence of pile-up jets in
the central region:

→ depletion of rapidity gap

Pile Up validation

41

● Track parameters (p
T
, d

XY
, d

Z
) derived from track fitting in real experiments

● In Delphes we can smear directly d
XY

, d
Z
 according to (p

T
, η) of the track

● Count tracks within jet with large impact parameter significance.

 → although very simple is predictive
 → ignore correlations among track parameters

TC – btagging

42

- probability of converting after distance “∆x”

 P (conv. after ∆x) = 1 - exp (- ∆x /λ)

 1) material budget map can be provided via

 λ-1 (r , z , phi) = average conversion rate per unit
 length (m-1)
 = 7 / 9 * ρ / X0

 2) step length “∆x”

 3) the photon annihilation cross-section

More info:
https://cp3.irmp.ucl.ac.be/projects/delphes/raw-attachment/wiki/WorkBook/Modules/delphes_conversions.pdf

Photon Conversions

https://cp3.irmp.ucl.ac.be/projects/delphes/raw-attachment/wiki/WorkBook/Modules/delphes_conversions.pdf

43

VertexFinder

● Running “out of the box”, seems low efficiency (parameters need to be tuned probably)
● Vertex resolution seems ok (CMS resolution obtained with Deterministic Annealing

1405.6569v2

Thanks to A. Hart

44

VertexFinder4D

● Vertexing algorithm including time information of tracks
● Original implementation can be found in CMS software
● The DA-clusterizer in 4D is now implemented in Delphes
● Example with 160 ps x 5.3 cm beamspot and 20 ps time resolution on tracks

measurement

20 μm
20 ps

4 ps

Vertex with highest ∑pT
2 is taken for comparison.

Thanks to L. Gray

45

Contributors

Jerome de Favereau
Christophe Delaere
Pavel Demin
Andrea Giammanco
Vincent Lemaitre
Alexandre Mertens
Michele Selvaggi

the community ...

46

CPU time
Delphes reconstruction time per event:

 0 Pile-Up = 1 ms

 150 Pile-Up = 100 ms - 1s

Mainly spent in the FastJet algorithm:

47

Disk usage
Disk space for 10k ttbar events (upper limit, store all constituents):

 0 Pile-Up = 300 Mb

 100 Pile-Up = 3 Gb

Mainly taken by list of MC particles and Calo towers:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

