
Michele Selvaggi
(on behalf of the Delphes collaboration)

MC4BSM - Beijing
24/07/2016

Delphes
Fast Detector Simulation 

github.com/delphes
cp3.irmp.ucl.ac.be/projects/delphes

http://github.com/delphes
http://cp3.irmp.ucl.ac.be/projects/delphes


2

MC chain
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FAST SIMULATION

MC chain
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Detector simulation
● Full simulation (GEANT):

         -   simulates particle-matter interaction (including e.m. showering, nuclear int., 

brehmstrahlung, photon conversions, etc ...)                                    →  100  s /ev

●  Experiment Fast simulation (ATLAS, CMS ...):

         -   simplifies and makes faster simulation and reconstruction  →  1 s /ev

●  Parametric simulation (Delphes, PGS):

        -   parameterize detector response, reconstruct complex objects 

             B field propagation, Jets, Missing ET                                   →  10 ms /ev

●  Object smearing (Atom, Falcon, TurboSim):  

      -   from parton to detector object (lookup tables) 
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When FastSim?
● When to use FastSim?

         → test your model with detector simulation
         → sensitive to acceptance and complex observable (Jets,MET) 
         → scan big parameter space (SUSY-like)
         → preliminary tests of new geometries/resolutions (future detectors)
         → educational purpose (bachelor/master thesis)
         

● When not to use FastSim?

          → very exotic topologies (HSCP, long-lived, ...) (NOT YET ...)
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The Delphes Project 
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The Delphes project
● Delphes project started back in 2007 at UCL as a side project to allow quick 

phenomenological studies

● Since 2009, its development is community-based
 -   ticketing system for improvement and bug-fixes

         → user proposed patches, can be forked from github and make pull-requests

● In 2013, DELPHES 3 was released (DELPHES 2 NOT SUPPORTED ANYMORE !!):
   -   C++ modular software 

-   Dependencies: gcc, tcl, ROOT 
-   is shipped with FastJet

● Delphes is itself distributed by various tools: MadGraph, MadAnalysis, CheckMate
● Widely tested and used by the community (pheno, Snowmass, Recasting, FCC, CMS 

upgrades ...)
● Repository: github.com/delphes
● Website and manual: https://cp3.irmp.ucl.ac.be/projects/delphes
● Original publication: JHEP 02 (2014) 057 [1307.6346]

http://github.com/delphes
https://cp3.irmp.ucl.ac.be/projects/delphes
http://link.springer.com/article/10.1007/JHEP02(2014)057
http://arxiv.org/abs/1307.6346
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What is Delphes?
● Delphes is a modular framework that simulates of the response of a 

multipurpose detector in a parameterized fashion

● Includes:
  -   pile-up

     -   charged particle propagation in 
         magnetic field
     -   electromagnetic and hadronic calorimeters  

  -   muon system  

● Provides:
  
  -   leptons (electrons and muons)
  -   photons
  -   jets and missing transverse energy (particle-flow)
  -   taus and b's
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● Install ROOT from root.cern.ch

● Clone Delphes from github or download from website

● Type in shell:
./configure

make -j 4

● Run Delphes:
./DelphesSTDHEP [detector_card] [output] [input]

./DelphesHepMC [detector_card] [output] [input]

● Input formats: HepMC, StdHep, ProMC, LHE

● Output: browsable ROOT tree

Run Delphes

https://root.cern.ch/downloading-root
http://github.com/delphes/delphes
https://cp3.irmp.ucl.ac.be/projects/delphes
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● The modular system allows the user to 
configure and schedule modules via a 
configuration file (.tcl), add modules, 
change data flow, alter output 
information

● Modules communicate entirely via 
collections (vectors) of universal objects 
(TObjArray of Candidate four-vector 
like objects).

● Any module can access TObjArrays 
produced by other modules using 
ImportArray method:

ImportArray("ModuleName/arrayName")

Modular
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● Delphes configuration file is based on tcl scripting language

● This is where the detector, data-flow, and output tree is configured.

● Delphes provides tuned detector cards for most detectors:

-  ATLAS, CMS, LHCb, ILD, FCC. 

-  can find other tunes in CheckMate, MadAnalysis. 

● Order of execution of various modules is configured in the Execution Path:

                

                 set ExecutionPath {

                     ParticlePropagator

  TrackEfficiency

  ...

  Calorimeter

  ...

  TreeWriter

 }

Configuration file
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Configuration file
module FastJetFinder FastJetFinder {
  
  set InputArray EFlowMerger/eflow
  set OutputArray jets

  # algorithm: 1 CDFJetClu, 2 MidPoint, 3 SIScone, 4 kt, 5 Cambridge/Aachen, 6 antikt
  set JetAlgorithm 5
  set ParameterR 0.8

  set ComputeNsubjettiness 1
  set Beta 1.0
  set AxisMode 4

  set ComputeTrimming 1
  set RTrim 0.2
  set PtFracTrim 0.05

  set ComputePruning 1
  set ZcutPrun 0.1
  set RcutPrun 0.5
  set RPrun 0.8

  set ComputeSoftDrop 1
  set BetaSoftDrop 0.0
  set SymmetryCutSoftDrop 0.1
  set R0SoftDrop 0.8

  set JetPTMin 20.0

}
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Configuration file
module Calorimeter Calorimeter {
  
  set ParticleInputArray ParticlePropagator/stableParticles
  set TrackInputArray TrackMerger/tracks

  set TowerOutputArray towers
  set PhotonOutputArray photons

  set EFlowTrackOutputArray eflowTracks
  set EFlowPhotonOutputArray eflowPhotons
  set EFlowNeutralHadronOutputArray eflowNeutralHadrons

  ...

  # 10 degrees towers
  set PhiBins {}
  for {set i -18} {$i <= 18} {incr i} {
    add PhiBins [expr {$i * $pi/18.0}]
  }
  foreach eta {-3.2 -2.5 -2.4 -2.3 -2.2 -2.1 -2 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8 
-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 
1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 3.3} {
    add EtaPhiBins $eta $PhiBins
  }

  ...
  set ECalResolutionFormula {                  
            (abs(eta) <= 1.5) * (1+0.64*eta^2) * sqrt(energy^2*0.008^2 + energy*0.11^2 + 0.40^2) +
            (abs(eta) > 1.5 && abs(eta) <= 2.5) * (2.16 + 5.6*(abs(eta)-2)^2) * sqrt(energy^2*0.008^2 + 
energy*0.11^2 + 0.40^2) +
            (abs(eta) > 2.5 && abs(eta) <= 5.0) * sqrt(energy^2*0.107^2 + energy*2.08^2)}

output(s) candidates

input(s) candidates
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Configuration file

module TreeWriter TreeWriter {
# add Branch InputArray BranchName BranchClass
  add Branch Delphes/allParticles Particle GenParticle

  add Branch TrackMerger/tracks Track Track
  add Branch Calorimeter/towers Tower Tower

  add Branch Calorimeter/eflowTracks EFlowTrack Track
  add Branch Calorimeter/eflowPhotons EFlowPhoton Tower
  add Branch Calorimeter/eflowNeutralHadrons EFlowNeutralHadron Tower

  add Branch GenJetFinder/jets GenJet Jet
  add Branch GenMissingET/momentum GenMissingET MissingET

  add Branch UniqueObjectFinder/jets Jet Jet
  add Branch UniqueObjectFinder/electrons Electron Electron
  add Branch UniqueObjectFinder/photons Photon Photon
  add Branch UniqueObjectFinder/muons Muon Muon
  add Branch MissingET/momentum MissingET MissingET
  add Branch ScalarHT/energy ScalarHT ScalarHT
}

Output collections are configured in the TreeWriter module:
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Recent Features
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● You can now run the full MC/reconstruction chain with one simple command by 
linking Delphes with Pythia8 (more info here). 

● Set PYTHIA8 path variable and recompile Delphes:

export PYTHIA8=[path_to_pythia8_installation]

make HAS_PYTHIA8=true DelphesPythia8

● You can then directly either directly use Pythia8 matrix element, or use external 
LHE (also with matching available).

● In both case the input to Delphes will be a Pythia8 “cmnd” file:

     ./DelphesPythia8 [detector_card] [pythia8_cmnd] [output]

● Avoids storing huge intermediary event files (hepmc), all the parton/hadron-
level information can accessed via the Particle branch in the output.  

● If multiple weights were stored in LHE input, Delphes stores them in the 
Weights branch in a vector. 

Run Delphes with Pythia 8

https://cp3.irmp.ucl.ac.be/projects/delphes/wiki/WorkBook/Pythia8
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● Delphes is distributed with full fastjet, with a subset of fastjet/contribs

● However if you want to use your own fastjet code, you have to write a 
new Delphes module, or alter existing FastJetFinder, which can be 
cumbersome..

● Instead you can simply use Delphes as low-level candidate producer (i.e 
particle-flow candidates, calorimeter towers, tracks, ...) and feed those 
objects to fastjet

● We provide a shared object libDelphesNoFastjet.so that serves this 
purpose

● Complete instructions with examples can be found here. 

    

Run Delphes with external FastJet

https://cp3.irmp.ucl.ac.be/projects/delphes/wiki/WorkBook/ExternalFastJet
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Jet Substructure
JHEP 1103:015 (2011), JHEP 1202:093 (2012) and JHEP 1404:017 (2014)

● Embedded in FastJetFinder module
● τ1, τ2, .. , τ5 saved as jet members (N-subjettiness)
● Trimming, Pruning, SoftDrop ...
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                                    PUPPI has been included [arXiv:1407.6013]

Pile-Up Subtraction

Delphes and PUPPI in combination have been used to argue for a 
tracker extension up |eta| < 4 for CMS Phase II upgrades!!
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Future Studies
● Delphes has been designed to deal with high number of hadrons environment:

● Jets, MET and object isolation are modeled realistically
● pile-up simulation subtraction (FastJet Area method, PUPPI, SoftKiller)

● Recent improvements:

● different segmentation for ECAL and HCAL
● jet substructure for boosted objects
● Included configuration card for future collider studies (ILD, FCC)

● Allows for:

● reverse engineering: 
 → you have some target for jet invariant mass resolution  
     what granularity and resolution are needed to achieve it?

● impact of pile-up on isolation, jet substructure, multiplicities ...
● how much does timing information help for pile-up mitigation
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Conclusions
● Delphes 3 has been out for two years now, with major improvements:

- modularity
- default cards giving results on par with published performance from LHC experiments
- updated configurations for future e+e- and hh colliders
- interfaced within MadGraph5/Py8, CheckMate/MadAnalysis

● Delphes 3 can be used right away for fast and realistic simulation for present 
and future collider studies

● Delphes is used both by experimentalist and theorists
● Continuous development (vertexing, conversions, fakes, timing ...)
● Feel free to contribute!

 
Tutorial:

https://cp3.irmp.ucl.ac.be/projects/delphes/wiki/WorkBook/Tutorials/Mc4Bsm
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Contributors

Jerome de Favereau
Christophe Delaere
Pavel Demin
Andrea Giammanco
Vincent Lemaitre
Alexandre Mertens
Michele Selvaggi

the community ...    
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Back-up
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Particle Propagation 

● Charged and neutral particles are propagated in the magnetic field until 
they reach the calorimeters

● Propagation parameters:

     -   magnetic field B
     -   radius and half-length (Rmax, zmax) 

● Efficiency/resolution depends on:
  
  -   particle ID
  -   transverse momentum
  -   pseudorapidity

No real tracking/vertexing !!
  → no fake tracks (but can be implemented)
  → no dE/dx measurements
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Calorimetry

● Particle energy is smeared 
according to the calorimeter 
cell it reaches

● Can specify separate 
ECAL/HCAL segmentation in eta/phi 

● Each particle that reaches the 
calorimeters deposits a fraction of its 
energy in one ECAL cell (fEM) and HCAL 
cell (fHAD), depending on its type:

No Energy sharing between the neighboring cells 
No longitudinal segmentation in the different calorimeters
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Particle-Flow  
● Idea: Reproduce realistically the performances of the Particle-Flow algorithm.

● In practice, in DELPHES use tracking and calo info 
to reconstruct high reso. input objects for later use 
(jets, ET

miss, HT)

 → If σ(trk) < σ(calo)  (low energy)

Example: A pion of 10 GeV
       
        EHCAL(π+) =  9 GeV 

           ETRK(π+)   =  11 GeV
   
   Particle-Flow algorithm creates:

       PF-track, with energy  EPF-trk     =  11 GeV
    
Separate neutral and charged calo deposits has crucial implications for pile-up subtraction
       

       

ECAL

HCAL

π +
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● Idea: Reproduce realistically the performances of the Particle-Flow algorithm.

● In practice, in DELPHES use tracking and calo info 
to reconstruct high reso. input objects for later use 
(jets, ET

miss, HT)

 → If σ(trk) < σ(calo)  (low energy)

Example: A pion of 10 GeV
       
        EHCAL(π+) =  15 GeV 

           ETRK(π+)   =  11 GeV
   
   Particle-Flow algorithm creates:

       PF-track, with energy  EPF-trk     =  11 GeV
        PF-tower, with energy EPF-tower  =  4 GeV

Separate neutral and charged calo deposits has crucial implications for pile-up subtraction
       

       

ECAL

HCAL

π +

Particle-Flow  
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● Idea: Reproduce realistically the performances of the Particle-Flow algorithm.

● In practice, in DELPHES use tracking and calo info 
to reconstruct high reso. input objects for later use 
(jets, ET

miss, HT)

 → If σ(trk) > σ(calo)  (high energy)

Example: A pion of 500 GeV
       
        EHCAL(π+) =  550 GeV 

           ETRK(π+)   =  400 GeV
   
   Particle-Flow algorithm creates:

       PF-track, with energy  EPF-trk = 550 GeV
        and no PF-tower

Separate neutral and charged calo deposits has crucial implications for pile-up subtraction
       

       

ECAL

HCAL

π +

Particle-Flow  
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Validation
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Leptons, photons

● Muons/photons/electrons

 -   muons identified via their PDG id, do not deposit energy in calo 
(independent smearing parameterized in pT and η)
 -   electrons and photons reconstructed according to particle-flow

●  Isolation:                                       
                                                          

     If I(P) < Imin, the lepton is isolated  
     
     User can specify parameters Imin, ΔR, pT

min
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Validation 

    →  excellent agreement
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b and τ jets
● b-jets

   -   if b parton is found in a cone ΔR w.r.t jet direction 
       →  apply efficiency

-   if c parton is found in a cone ΔR w.r.t jet direction 
       →  apply c-mistag rate
   -   if u,d,s,g parton is found in a cone ΔR w.r.t jet direction 
       →  apply light-mistag rate

          b-tag flag is then stored in the jet collection 

● tau-jets

   -   if tau lepton is found in a cone ΔR w.r.t jet direction 
       →  apply efficiency

-   else 
       →  apply tau-mistag rate

pT and η , and nprong dependent efficiency and mistag rate
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Physics example 
Look at hardest 2 b-tagged and 2 light jets (à la CMS): 

-  correct        : 4 jets are good, match right b with lights
-  wrong         : 4 jets are good, match wrong b with lights
-  unmatched : at least one of the jets don't match
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Look at hardest 2 b-tagged and 2 light jets (à la CMS): 

-  correct        : 4 jets are good, match right b with lights
-  wrong         : 4 jets are good, match wrong b with lights
-  unmatched : at least one of the jets don't match

       

Physics example 
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Pile-Up
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Pile-up is implemented in Delphes 
since version 3.0.4

PileUpMerger module:

– mixes N minimum bias events with 
hard event sample

– spreads poisson(N), Gauss(N) 
events along z-axis with 
configurable (z,t) beamspot profle

– rotate event by random angle φ wrt 
z-axis   

Pile - Up 
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●    Charged Pile-up subtraction (most effective if used with PF algo)
- if z < |Zres| keep all charged and neutrals (→ ch. particles too close to hard 
scattering to be rejected)

- if z > |Zres| keep only neutrals (perfect charged subtraction)

- allows user to tune amount of charged particle subtraction by adjusting Z   
spread/resolution

● Residual eta dependent pile-up substraction is needed for jets and 
isolation.
– Use the FastJet Area approach (Cacciari, Salam, Soyez)

● compute ρ = event pile-up density

● jet correction : pT → pT − ρA (JetPileUpSubtractor)

● isolation : ∑ pT → ∑ pT − ρπR² (Isolation module itself)

   

Pile – Up 
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Pile - Up 



39    →  good agreement

Pile - Up 
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● H → bb in VBF channel expected to be highly affected by pile-up 

● Irreducible background bb+jets

● Select >4 jets with pT > 80, 60, 40, 40 (at least 2 b-tagged, at least 2 
light)

Emergence of pile-up jets in 
the central region:

→ depletion of rapidity gap

Pile Up validation 
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● Track parameters (p
T
, d

XY
, d

Z
 ) derived from track fitting in real experiments

● In Delphes we can smear directly d
XY

, d
Z
 according to (p

T
, η) of the track

● Count tracks within jet with large impact parameter significance. 

   → although very simple is predictive 
   → ignore correlations among track parameters

TC – btagging 
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- probability of converting after distance “∆x” 

                P (conv. after ∆x) =  1 - exp ( - ∆x /λ )

  
 1) material budget map can be provided via 
         
  λ-1 ( r , z , phi ) = average conversion rate per unit       
                             length ( m-1 )
                          =  7 / 9 * ρ / X0

  2) step length “∆x”

 3) the photon annihilation cross-section

 
  
More info:
https://cp3.irmp.ucl.ac.be/projects/delphes/raw-attachment/wiki/WorkBook/Modules/delphes_conversions.pdf

Photon Conversions

https://cp3.irmp.ucl.ac.be/projects/delphes/raw-attachment/wiki/WorkBook/Modules/delphes_conversions.pdf
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VertexFinder

● Running “out of the box”, seems low efficiency (parameters need to be tuned probably)
● Vertex resolution seems ok (CMS resolution obtained with Deterministic Annealing

1405.6569v2

Thanks to A. Hart
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VertexFinder4D

● Vertexing algorithm including time information of tracks
● Original implementation can be found in CMS software
● The DA-clusterizer in 4D is now implemented in Delphes
● Example with 160 ps x 5.3 cm beamspot and 20 ps time resolution on tracks 

measurement

20 μm
20 ps

4 ps

Vertex with highest  ∑pT
2 is taken for comparison. 

Thanks to L. Gray
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Contributors

Jerome de Favereau
Christophe Delaere
Pavel Demin
Andrea Giammanco
Vincent Lemaitre
Alexandre Mertens
Michele Selvaggi

the community ...    
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CPU time
Delphes reconstruction time per event:

 0 Pile-Up = 1 ms 

  150 Pile-Up  = 100 ms - 1s

Mainly spent in the FastJet algorithm:  
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Disk usage
Disk space for 10k ttbar events (upper limit, store all constituents):

 0 Pile-Up = 300 Mb 

  100 Pile-Up  = 3 Gb

 

Mainly taken by list of MC particles and Calo towers:  
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