MT2

Myeonghun Park（明勳 朴）
Center for Theoretical Physics of the Universe

1 Institute for

MCABSM

MC4BSM 2016 Beijing

Understanding physics@LHC

- If we know the physics model (theory [=Lagrangian]) and want to determine parameters, we can directly compare Monte Carlo (MC) simulations to data

$\mathcal{L} \rightarrow M C \stackrel{\text { Madronization }}{\leftrightarrow}$ DATA(LHC)

Parton level MC (eg:MadGraph) Radiation, ...
(eg: Pythia)
Detector effect (eg: Delphes)

Sherpa (Tanju Gleisberg, et.al.) JHEP 0402 (2004) 056

- Huge amount of community's efforts have been focused on MC to describe physics more precisely. (to remove systematic uncertainties from MC, DATA comparison)
- We need observables(histograms) to compare MC outputs with data.
- One example:W-boson mass measurement@Tevatron
- At LO, W boson's transverse momentum (orthogonal to beam direction) ~ 0.
- Using the change of variable, we have a well-known Jacobian peak in leptons' PT distribution.

$$
\frac{d \sigma}{d p_{\perp}}=\frac{d \cos \hat{\theta}}{d p_{\perp}} \frac{d \sigma}{d \cos \hat{\theta}}=\frac{p_{\perp}}{\sqrt{\left(\frac{M_{W}}{2}\right)^{2}-p_{\perp}^{2}}} \frac{d \sigma}{d \cos \hat{\theta}}
$$

- In reality, W boson will be kicked off by extra jets!
-Thus, precise measurement will be highly dependent on the goodness of MC tools.
- Option:We can make some special variable to remove effects from this effect.

Black: Parton level $[P T(W)=0]$
RED: Parton level [PT(W) !=0]

Like as invariant mass is boost-invariant, a "transverse mass" will be invariant under the boost along transverse direction.

$$
m_{T}^{2}=\left(\left|\mathbf{p}_{\perp}^{\nu}\right|+\left|\mathbf{p}_{\perp}^{\ell}\right|\right)^{2}-\left(\mathbf{p}_{\perp}^{\nu}+\mathbf{p}_{\perp}^{\ell}\right)^{2}
$$

This variable is bounded by the mass of W boson, and have Jacobian peak just like lepton's PT distribution. It is important to design observables that are strong under (complicated, uncontrolled) effects.

TABLE II: Systematic uncertainties of the M_{W} measurement.

	$\Delta M_{W}(\mathrm{MeV})$		
Source	m_{T}	p_{T}^{e}	\dot{E}_{T}
Electron energy calibration	34	34	34
Electron resolution model	2	2	3
Electron shower modeling	4	6	7
Electron energy loss model	4	4	4
Hadronic recoil model	6	12	20
Electron efficiencies	5	6	5
Backgrounds	2	5	4
Experimental Subtotal	35	37	41
PDF	10	11	11
QED	7	7	9
Boson p_{T}	2	5	2
Production Subtotal	12	14	14
Total	37	40	43

Variable in Rosy dream before July. 2012

- A transverse mass $\mathrm{M}_{\mathrm{T}}: \quad M_{T}\left(m_{c}\right)=\sqrt{m_{v}^{2}+m_{c}^{2}+2\left(e_{v} e_{c}-\vec{p}_{T}^{v} \cdot \vec{p}_{T}^{(c)}\right)}$

with a transverse energy, $e_{c}=\sqrt{\vec{p}_{T}^{(c)} \cdot \vec{p}_{T}^{(c)}+m_{c}^{2}}$
- For double decay chain event: Let's use MT twice.
C.Lester, D. Summers (hep-ph/9906349)

Assumptions:
I. Decaying particle in both chain has a common mass: M_{p} II. Invisible particle in both chain has a common mass : m_{c}
III. No invisible particles except LSP

- A transverse mass MT_{T} :

$$
\begin{array}{r}
M_{T}\left(m_{c}\right)=\sqrt{m_{v}^{2}+m_{c}^{2}+2\left(e_{v} e_{c}-\vec{p}_{T}^{v} \cdot \vec{p}_{T}^{(c)}\right)} \\
\text { with a transverse energy, } \quad e_{c}=\sqrt{\vec{p}_{T}^{(c)} \cdot \vec{p}_{T}^{(c)}+m_{c}^{2}}
\end{array}
$$

- For double decay chain event: Let's use M_{T} twice

- Minimum possible Mp with above kinematics constraints= $M_{T 2}$

$$
M_{T}^{(1)} \leq M_{p} \& M_{T}^{(2)} \leq M_{p}
$$

(Transverse mass is less than the actual mass.)
by H.-C. Cheng and Z. Han (hep-ph:08I0.5I78)

$$
M_{T 2}\left(m_{c}\right)=\min \left(\max \left[M_{T}^{(1)}\left(m_{c}\right), M_{T}^{(2)}\left(m_{c}\right)\right]\right)
$$

Goodness of MT2

- It is insensitive to helicity structures:
- Your analyses are independent to BSM scenarios
- Easy to recast analysis in specific BSM to others.
- Only depends on the kinematical structure.

8Tev LHC

$$
M_{\mathrm{eff}}=P_{1 T}+P_{2 T}+E_{T}
$$

Goodness of MT2

- It is insensitive to helicity structures:
- Your analyses are independent to BSM scenarios
- Easy to recast analysis in specific BSM to others.
- Only depends on the kinematical structure.

8Tev LHC

MT2 has a Back to back boost Invariance

Back to back "Transverse" BOOST INV

- Just like MT variable

Back to back "Transverse" BOOST INV

- Just like MT variable

Back to back "Transverse" BOOST INV

- Just like MT variable

Very easy to estimate MT2 behavior for Know kinematics (Standard Model Back grounds)

MT2 as a CUT variable

- $M_{T 2}$ inherits the good property of M_{T} : Transverse boost invariance! (But only when you put the the right value for m_{c})
- Since we don't know the true mass of LSP, we only can get the constraint of decayed particle in terms of LSP mass.
- But we know what will be missing particles of background (Standard Model) : neutrino
-Thus, experimentalists started to use this variable as one of cuts. (by Alan Barr, Claire Gwenlan : arxiv:0907.27I3)

Process	$m_{T 2}\left(v_{1}, v_{2}, \mathbf{p}_{T}, 0,0\right)$	Comments
```QCD di-jet \(\rightarrow\) hadrons QCD multi jets \(\rightarrow\) hadrons \(t \bar{t}\) production Single top / \(t W\) Multi jets: "fake" \(\not{ }_{T}\) Multi jets: "real" \({ }^{p}\) \(Z \rightarrow \nu \bar{\nu}\) \(Z j \rightarrow \nu \bar{\nu} j\) \(W \rightarrow \ell \nu{ }^{b}\) \(W j \rightarrow \ell \nu j^{b}\) \(W W \rightarrow \ell \nu \ell \nu{ }^{b}\) \(Z Z \rightarrow \nu \bar{\nu} \nu \bar{\nu}\)```	$\begin{aligned} & =\max m_{j} \text { by Lemmas } 1,4 \\ & =\max m_{j} \text { by Lemma } 4 \\ & =\max m_{j} \text { by Lemma } 4 \\ & \leq m_{t} \text { by Lemmas } 1,7 \\ & =\max m_{j} \text { by Lemma } 4 \\ & \leq m_{t} \text { by Lemmas } 2,7 \\ & =\max m_{j} \text { by Lemma }[5] \\ & =\max m_{j} \text { by Lemma } 6 \\ & =\max m_{j} \text { by Lemma }[5] \\ & =\max m_{j} \text { by Lemma } 6 \\ & =0 \text { by Lemma } 3 \\ & =m_{j} \text { by Lemma } 3 \\ & =m_{\ell} \text { by Lemma } 3 \\ & \leq m_{W} \text { by Lemma } 2 \\ & \leq m_{W} \text { by Lemma } 1 \\ & =0 \text { by Lemma } 3 \end{aligned}$	fully hadronic decays any leptonic decays fully hadronic decays any leptonic decays single mismeasured jet ${ }^{a}$ two mismeasured jets ${ }^{a}$ single jet with leptonic $b$ decay ${ }^{a}$ two jets with leptonic $b$ decays a   one ISR jet ${ }^{a}$   one ISR jet ${ }^{a}$   also $=m_{j}$ for one ISR jet ${ }^{a}$
$\begin{aligned} & L Q \overline{L Q} \rightarrow q \nu \bar{q} \bar{\nu} \\ & \tilde{q} \tilde{\tilde{q}} \rightarrow q \tilde{\chi}_{\chi}^{0} \bar{q} \tilde{\chi}_{1}^{0} \\ & q_{1}, \bar{q}_{1} \rightarrow q \gamma_{1}, \bar{q} \gamma_{1} \end{aligned}$	$\begin{aligned} & \leq m_{L Q} \\ & \leq m_{\tilde{q}} \\ & \leq m_{q_{1}} \end{aligned}$	$\}$ i.e. can take large values

## MT2 as a CUT variable



$$
\begin{aligned}
& H_{T}=\sum E_{T}, \\
& H E T=\left|-\sum \overrightarrow{P_{T}}\right|, \\
& \alpha_{T}=\frac{E_{J}^{2 n d}}{\sqrt{H_{T}^{2}-H E T^{2}}}=\frac{E_{J}^{2 n d}}{M_{T}}, \\
& R=\frac{M_{T}^{R}}{M_{R}}, \\
& M_{T 2}=\min \left(\max \left\{M_{T_{1}}, M_{T_{2}}\right\}\right) .
\end{aligned}
$$

- alphaT and Razor are good to suppress QCD multi jets corruptions to MET events. (No finite endpoint structure, Some characteristic \# to cut backgrounds.)
- MT2 has a finite endpoint for SM backgrounds. (A.Barr arXiv:0907.27I3)
- Various contributions from all over the world.
- Cambridge: Parents of MT2
- Oxford: In detail study of MT2
- ATLAS: Analyses
- KAIST : Realization of "kink" feature of MT2, MAOS
- KEK:Various in-depth phenomenological studies of MT2
- U.C.Davis : New interpretation of MT2 as kinematical bound
- U.Florida : Generalizations, link to CMS
- CMS:Analyses
- Cornell :TTbar di-leptonic analysis@LHC
- ETHZ : CMS MT2 analysis
- CDF :Top quark measurement@Tevatron
- D0
- Even more vivid contributions so far
- Now, MT2 is the one of the standard variables in MET channels.


## MT2 under BIG assumptions

- I would like to remind you that $\mathrm{M}_{\mathrm{T} 2}$ was based on three big assumptions.
- Thus if most of signals (the new physics) violate at least one of these assumptions, is there any chance for signals can hide behind Backgrounds?
- I would like to study the behavior of $M_{T 2}$ when signals break some (all) of these assumptions.


## Various possibilities

- There may be more than one diagram in the BSM with the same signature. Some can violate assumptions of MT2

+ more if we consider different signals: squarks decays through long cascade (four leptons signals)


## Various possibilities

- As an example, we generated CMS Tchislepslep simplified model with $M_{\tilde{\chi}^{+}}>M_{\tilde{\nu}_{L}} \simeq M_{\tilde{\ell}_{t}^{+}}>M_{\tilde{\chi}^{0}}$

- Simulated[parton level] with masses: chargino 500 GeV slepton(sneutrino) 400 GeV LSP: I00GeV



## Various possibilities

- There are 12 (sub) diagrams that have two visible particles and up to four invisible particles.
- We have options:
I. we need to invent new observables based on each event-topology.

2. And/Or we need to understand how to interpret a result of existing observables (e.g. MT2) for each event-topology case.

## Effective event-topology

1. Number of invisible particle: Introduce Equivalent event-topology method



- We apply an observable that was motivated initially for the II (a) assumptions, and want to interpret results (endpoint of distributions) in various cases.
- Diagrams in II (except $k, I)$ are combinations of a basic decaying leg I (a), (b), (c), and (d).
- For example, in I (b), we can treat B that decays invisibly as invisible particle.
- The only non-trivial case will be I (c).
- We are interested in the endpoint of distributions.

Thus we need to focus on the range of a (transverse) momentum of visible particle $v$ (at the rest frame of $A$.) (Back to back Boost Inv.)

At A's rest frame, a range of transverse momentum of v


$$
0 \leq P_{T} \leq \frac{M_{A}}{2}\left(1-\frac{M_{C_{X}}^{2}}{M_{A}^{2}}\right)
$$

Thus, $\mathrm{P}_{\mathrm{T}}$ will have a maximum when the invariant mass $M_{C \chi}$ (of $C$ and chi) has a minimum value $=M_{C}+M_{\chi}$

This range of $\mathrm{P}_{\mathrm{T}}$ also come from the right diagram where a particle $\Psi$ with a mass of $M_{\Psi}=M_{C}+M_{\chi}$. Thus we can replace (d) with a right diagram for the endpoint of transverse observables.


Using "Equivalent event-topology method", we can change event-topologies with multi-invisible particles into an event-topology with two invisible particle.


- But, now we need to deal with the case with different types of invisible particle ( $M_{\Psi_{1}} \neq M_{\Psi_{2}}$ ): Studied by P. Konar, K.Matchev, K.Kong. MP [arxiv:09|l.4I26]


## When decaying particles are different

If $M_{A 2}>M_{A 1}$, then $A_{I}$ get the additional boost $\delta_{\eta}(\sqrt{\hat{s}})$ from $\mathrm{E}_{\mathrm{CM}}(\sqrt{\hat{s}})$ compared to $\mathrm{A}_{2}$.


This additional boost will give effect on the visible part on $\mathrm{A}_{\mathrm{I}}$. We can mimic this situation by inserting "GHOST" particle in front of $A_{1}$


$$
\delta \eta(\sqrt{\hat{s}}) \equiv \eta_{1}(\sqrt{\hat{s}})-\eta_{2}(\sqrt{\hat{s}})=\cosh ^{-1}\left[\frac{M_{A_{2}}^{2}+M_{A_{1}}^{2}-\left(\frac{M_{A_{2}}^{2}-M_{A_{1}}^{2}}{\sqrt{\hat{s}}}\right)^{2}}{2 M_{A_{2}} M_{A_{1}}}\right]
$$

This additional boost will give effect on the visible part on $\mathrm{A}_{1}$. We can mimic this situation by inserting "GHOST" particle in front of $A_{1}$


$$
\eta=\cosh ^{-1}\left(\frac{M_{A_{2}}^{2}+M_{A_{1}}^{2}-M_{\chi}^{2}}{2 M_{A_{2}} M_{A_{1}}}\right)
$$

Thus we can re-interpret this situation by putting invisible particle with mass

$$
M_{\chi}(\sqrt{\hat{s}}) \equiv \frac{M_{A_{2}}^{2}-M_{A_{1}}^{2}}{\sqrt{\hat{s}}}
$$


$0 \leq M_{\chi}(\sqrt{\hat{s}}) \leq M_{A_{2}}-M_{A_{1}}$ with $M_{A_{1}}+M_{A_{2}} \leq \sqrt{\hat{s}}<\infty$ resulting in the effective particle $\Psi$ 's mass dependency on the $\sqrt{\hat{s}}$

$$
\left(M_{A_{2}}, M_{A_{1}}, m_{C}\right)=(1 \mathrm{TeV}, 200 \mathrm{GeV}, 100 \mathrm{GeV})
$$




MT2 is NOT sensitive (good) variable to represent "kinematics" when decaying particles are different

## MET variables

- How to cluster visible (\& invisible) particles



## MET variables

- How to cluster visible (\& invisible) particles

Tao Han: hep-ph/0508097

$$
\begin{aligned}
& \underline{H \rightarrow W_{1} W_{2} \rightarrow \ell_{1} \nu_{1} \ell_{2} \nu_{2}:} \\
& M_{C, W W}^{2}=\left(\sqrt{p_{T, \ell \ell}^{2}+M_{\ell \ell}^{2}}+p_{T}\right)^{2}-\left(\vec{p}_{T, \ell \ell}+\overrightarrow{p_{T}}\right)^{2} \\
& 0.01 A^{\text {b) }} \\
& \text { V. Barger, T. Han, and J. Ohnemus, Phys. Rev. D37, 1174 (1988) }
\end{aligned}
$$

## MET variables

- How to project four-vector into transverse (to beam) plane.




## MET variables

- How to project four-vector into transverse (to beam) plane.

Type of variables	Operations			Notation
	First	Second	Third	
Unprojected	Partitioning	Minimization	-	$M_{N}$
Early partitioned   (late projected) $M_{N T}$	Partitioning   Partitioning   Partitioning	$\begin{aligned} & T=\top \text { projection } \\ & T=\vee \text { projection } \\ & T=\circ \text { projection } \end{aligned}$	Minimization   Minimization   Minimization	$\begin{aligned} & M_{N T} \\ & M_{N \vee} \\ & M_{N \circ} \end{aligned}$
Late partitioned (early projected) $M_{T N}$	$\begin{aligned} & T=\top \text { projection } \\ & T=\vee \text { projection } \\ & T=\circ \text { projection } \end{aligned}$	Partitioning   Partitioning   Partitioning	Minimization   Minimization   Minimization	$\begin{gathered} M_{\mathrm{T} N} \\ M_{\mathrm{VN}} \\ M_{\circ N} \end{gathered}$

## MET variables

- How to cluster visible (\& invisible) particles
- How to project four-vector into transverse (to beam) plane.


More details:

$$
\begin{aligned}
M_{1 \top}^{2}\left(\mathbf{M}_{1}\right) \equiv & \left(\sqrt{\mathbf{M}_{1}^{2}+\mathbf{p}_{1 T}^{2}}+\sqrt{\mathbf{M}_{1}^{2}+\not p_{T}^{2}}\right)^{2}-u_{T}^{2} \\
M_{1 \top}^{2}(0)= & \left(\sqrt{M_{e^{+} e^{-}}^{2}+\vec{p}_{T, e^{+} e^{-}}^{2}}+\not p_{T}\right)^{2}-\vec{u}_{T}^{2}, \\
& M_{1 \top}(0)=M_{C, W W}
\end{aligned}
$$

$$
\begin{gathered}
m_{T 2} \equiv \min _{\sum \vec{q}_{i T}=\ddot{p}_{T}}\left[\max \left[\mathcal{M}_{1 \top}, \mathcal{M}_{2 \top}\right]\right] \\
m_{T 2}^{(1+3)}(\mathbf{M}) \equiv M_{2 \top}(\mathbf{M} \mathbf{I})=M_{2}(\mathbf{M})
\end{gathered}
$$

A.J.Barr, T.J.Khoo, P. Konar, K.Kong, C.G.Lester, K.T.Matchev, and MP arXiv:1105.2977

## On-shell constrained

 M2
## Put "assumed" constraints

- One can describe SM Background more by using additional constraints



## Constrained M2

- Mass on-shell constraints


Subsystem	Parents $P_{i}$	Daughters $D_{i}$	Relatives $R_{i}$
$(a b)$	$A_{i}$	$C_{i}$	$B_{i}$
$(a)$	$A_{i}$	$B_{i}$	$C_{i}$
$(b)$	$B_{i}$	$C_{i}$	$A_{i}$

$$
\begin{aligned}
M_{2}(\tilde{m}) & \equiv \min _{\vec{q}_{1}, \vec{q}_{2}}\left\{\max \left[M_{P_{1}}\left(\vec{q}_{1}, \tilde{m}\right), M_{P_{2}}\left(\vec{q}_{2}, \tilde{m}\right)\right]\right\} \\
\vec{q}_{1 T}+\vec{q}_{2 T} & =\vec{P}_{T} \quad \text { With constraints: }
\end{aligned}
$$

Subsystem $(a b)$		Subsystem $(a)$		Subsystem (b)	
variable	constraints	variable	constraints	variable	constraints
$M_{2 X X}(a b)$	-	$M_{2 X X}(a)$	-	$M_{2 X X}(b)$	-
$M_{2 C X}(a b)$	$M_{A_{1}}^{2}=M_{A_{2}}^{2}$	$M_{2 C X}(a)$	$M_{A_{1}}^{2}=M_{A_{2}}^{2}$	$M_{2 C X}(b)$	$M_{B_{1}}^{2}=M_{B_{2}}^{2}$
$M_{2 X C}(a b)$	$M_{B_{1}}^{2}=M_{B_{2}}^{2}$	$M_{2 X C}(a)$	$M_{C_{1}}^{2}=M_{C_{2}}^{2}$	$M_{2 X C}(b)$	$M_{A_{1}}^{2}=M_{A_{2}}^{2}$
$M_{2 C C}(a b)$	$M_{A_{1}}^{2}=M_{A_{2}}^{2}$	$M_{2 C C}(a)$	$M_{A_{1}}^{2}=M_{A_{2}}^{2}$   $M_{B_{1}}^{2}=M_{B_{2}}^{2}$	$M_{2 C C}(b)$	$M_{B_{1}}^{2}=M_{B_{2}}^{2}$
		$M_{A_{1}}^{2}=M_{A_{2}}^{2}$			

- Power of constrained minimization (I) : enhanced event saturation to the target mass scale to be measured

- Power of constrained minimization for signal discovery (ex: MT2 vs M2CC)

Subsystem (ab) (No combinatorics)


- Power of constrained minimisation for signal discovery (ex: MT2 vs M2CC)

from Won Sang Cho


## Constrained Minimization

-1) of mass functions of mother particle masses :

## $\tilde{M}(p, q) \quad / . \quad \mathrm{p}$ : visible, q : invisible four momenta

-2) over invisible momentum d.o.f

- 3) subject to constraint functions
involved with on-shell $/$ endpoint relations
$\dot{c}_{i}$$(p, q)$

$$
\bar{M}=\min _{q \in R^{n}} \tilde{M}(p, q) \quad \text { subject to } \quad c_{i=1 . . m}(p, q)=0
$$

- For example) MT2
- $\Rightarrow \tilde{M}^{2} \equiv \max \left[\left(p_{1}+q_{1}\right)^{2},\left(p_{2}+q_{2}\right)^{2}\right]$
- => subject to minimal constraints with PT conservation.


## Numerical Algorithm

-Augmented Lagrangian Method

- Modify the problem
- Constrained Minimisation (in $x$, lambda)

TO

- A series of Unconstrained Minimisation (in x)
- while the constraint conditions are satisfied by the convexification by penalty-terms
-simultaneously, the Lagrange multipliers get updated and evolved, iteration by iteration !!


## Numerical Algorithm

- Augmented Lagrangian with ..

1) penalty parameter (mu)
2) augmented Lagrange parameter (lambda):

$$
\tilde{\mathcal{L}}(\vec{x} ; \boldsymbol{\lambda}, \mu) \equiv f(\vec{x})-\sum_{a} \lambda_{a} c_{a}(\vec{x})+\frac{1}{2 \mu} \sum_{a} c_{a}^{2}(\vec{x})
$$

$$
\lambda_{a}^{k+1}=\lambda_{a}^{k}-\frac{c_{a}\left(\vec{x}_{k}\right)}{\mu_{k}}
$$

## Flowchart



## Validation

- Example) M2CC of ttbar dileptonic decay



Figure 10. The same as figures 2 and 4 , but for the single event considered in section 4.3. Since the objective function has four independent arguments, in order to visualize the evolution of the minimizer, we plot $q_{1 z}$ and $q_{2 z}$, having fixed the other two variables, $q_{1 x}$ and $q_{1 y}$, to the values which minimize the objective function for the given choice of $q_{1 z}$ and $q_{2 z}$.
from Won Sang Cho

## OPTIMASS-v1 Released!

- Language : C++, Python
- Requirements : gcc(>4.4), Python(>2.6), ROOT with MINUIT2
- Webpage (for download and installation guide):
- http://hep-pulgrim.ibs.re.kr/optimass


## List of Collaborators

- Cho, Won Sang (wonsang.cho@gmail.com)
- Gainer, James S. (gainer@phys.ufl.edu)
- Kim, Doojin (immworry@ufl.edu)
- Lim, Sung Hak (sunghak.lim@kaist.ac.kr)
- Matchev, Konstantin T. (matchev@phys.ufl.edu)
- Moortgat, Filip (filip.moortgat@cern.ch)
- Pape, Luc (luc.pape@cern.ch)
- Park, Myeonghun (parc.ctpu@gmail.com)


## OPTIMASS interface for user's complicated decay topology

- [Full Decay System] Define any number of decay chains, and any type of decay vertices using user's own labelling scheme!


## Listing 1: Cards/ttbar-ab.xml

```
XML
 <?xml version='1.0' encoding='utf-8'?>
 <ProcessCard classname="TTbar_AB" debug="false" version="1.0">
 <!-- =================== -->
 <!-- Define event decay chain -->
 <!-- ================== -->
 <DecayChains>
 <DecayChain>
 t1 - b1 w1 , w1 - e1 v1
 </DecayChain>
 <DecayChain>
 t2 - b2 w2 , w2 - e2 v2
 </DecayChain>
 </DecayChains>
```


## [Subsystem-Mothers] Define your subsystem's

 head nodes easily just by listing the names of (intermediate) mother particles defined in the full decay system!```
\begin{tabular}{|c|c|}
\hline 16 &  \\
\hline 17 & <!-- Mother node particle in each decay chain to define objective function --> \\
\hline 18 &  \\
\hline 19 & <ParticleMassFunction> \\
\hline 20 & <ParticleGroup mass_function="M2" group_function="max"> \\
\hline 21 & <Particle label="t1" /> \\
\hline 22 & <Particle label="t2" /> \\
\hline 23 & </ParticleGroup> \\
\hline 24 & </ParticleMassFunction> \\
\hline
\end{tabular}
```

- [Subsystem-Effective Invisibles] Define the effective invisible nodes by simply tagging it in the full decay system!

```
<ParticleProperties>
        <Particle name="top" mass="173." />
        <Particle name="bottom" mass="4.18" />
        <Particle name="wboson" mass="80.419" optimize_target=" True" />
        <Particle name="electron" />
        <Particle name="neutrino" invisible="True" />
    </ParticleProperties>
```

- [Kinematic Constraint Functions] Using the particle names in the full decay chains, their Lorentz 4 momentum d.o.f.(ROOT: :TLorentaVector) can freely be used to define constraint functions.

```
<!-- ALM Constraints Configuration -->
    <!-- ==================== -->
    <Constraints penalty_init="1.">
    <Constraint multiplier_init="0" type="equal">
            w1.M() - w2.M()
    </Constraint>
    <Constraint multiplier_init="0" type="equal">
            t1.M() - t2.M()
        </Constraint>
</Constraints>
```

- [Combined-Events System Support] Define multiple PT conservation systems using the full system

$|$| 48 |
| :--- |
| 49 |
| 50 |
| 51 |
| 52 |
| 53 |
| 54 |
| 55 |
| 56 |

```
<!-- ======================= -->
    <!-- Subchains for MET conditions -->
    <!-- ======================== -->
    <ParticleInvisibleSubsystem>
    <Subsystem set value="manual" >
        <Particle label="t1" />
        <Particle label="t2" />
        </Subsystem>
</ParticleInvisibleSubsystem>
```

OPTIMASS as a mass and event reconstructor for hypothetical event topologies.

$$
\text { DATA: }[i, j] \Rightarrow\{? ?\} \Rightarrow[\text { visibles }]+\{i n v i s i b l e s\}
$$

OPTIMASS with (general hypothesis
-'model_card.xml' for \{??\})

Physical / Unphysically reconstructed \{invisibles\} \& \{node masses\}

\Rightarrow Better discrimination power!

Summary

- We have studied kinematics systematically
- Understanding relations among various variables
- Understanding properties of variables if
"assumed" assumptions are not correct
- One can add additional constraints to describe given kinematics more precisely.
- Dr. Wonsang Cho will provide a tutorial for OPTIMASS today.

