MT2

Myeonghun Park (明勳 朴) Center for Theoretical Physics of the Universe

> b Institute for Basic Science

MC4BSM 2016 Beijing

Understanding physics@LHC

 If we know the physics model (theory [=Lagrangian]) and want to determine parameters, we can directly compare Monte Carlo (MC) simulations to data

Sherpa (<u>Tanju Gleisberg</u>, et.al.) JHEP 0402 (2004) 056

- Huge amount of community's efforts have been focused on MC to describe physics more precisely. (<u>to remove systematic</u> uncertainties from MC, DATA comparison)
- We need observables(histograms) to compare MC outputs with data.
- One example: W-boson mass measurement@Tevatron
- At LO, W boson's transverse momentum (orthogonal to beam direction) ~ 0.
- Using the change of variable, we have a well-known Jacobian peak in leptons' PT distribution.

$$\frac{d\sigma}{dp_{\perp}} = \frac{d\cos\hat{\theta}}{dp_{\perp}} \frac{d\sigma}{d\cos\hat{\theta}} = \frac{p_{\perp}}{\sqrt{\left(\frac{M_{W}}{2}\right)^{2} - p_{\perp}^{2}}} \frac{d\sigma}{d\cos\hat{\theta}}$$

- •In reality,W boson will be kicked off by extra jets!
- •Thus, precise measurement will be highly dependent on the goodness of MC tools.
- •Option:We can make some special variable to remove effects from this effect.

Like as invariant mass is boost-invariant, a "transverse mass" will be invariant under the boost along transverse direction.

This variable is bounded by the mass of W boson, and have Jacobian peak just like lepton's PT distribution.

D0(arxiv:0908.0766)

What we learned from old days: It is important to design observables that are strong under (complicated, uncontrolled) effects.

TABLE II: Systematic uncertainties of the M_W measurement.

		ΔM_W (Me	V)
Source	m_T	p_T^e (mo	` ₿ _T
Electron energy calibration	34	34	34
Electron resolution model	2	2	3
Electron shower modeling	4	6	7
Electron energy loss model	4	4	4
Hadronic recoil model	6	12	20
Electron efficiencies	5	6	5
Backgrounds	2	5	4
Experimental Subtotal	35	37	41
PDF	10	11	11
QED	7	7	9
Boson p_T	2	5	2
Production Subtotal	12	14	14
Total	37	40	43

Variable in Rosy dream before July. 2012

A transverse mass M_T:

Mp

Mp disible

$$M_T(m_c) = \sqrt{m_v^2 + m_c^2 + 2\left(e_v e_c - \vec{p}_T^v \cdot \vec{p}_T^{(c)}\right)}$$

with a transverse energy, $e_c = \sqrt{\vec{p}_T^{(c)}\cdot\vec{p}_T^{(c)}+m_c^2}$

For double decay chain event: Let's use M_T twice.

C.Lester, D. Summers (hep-ph/9906349)

invisible m_c Assumptions: I. Decayin m_c II. Invisible

I. Decaying particle in both chain has a common mass : M_p II. Invisible particle in both chain has a common mass : m_c III. No invisible particles except LSP • A transverse mass M_T:

•

$$M_T(m_c) = \sqrt{m_v^2 + m_c^2 + 2\left(e_v e_c - \vec{p}_T^v \cdot \vec{p}_T^{(c)}\right)}$$

$$M_T(m_c) = \sqrt{m_v^2 + m_c^2 + 2\left(e_v e_c - \vec{p}_T^v \cdot \vec{p}_T^{(c)}\right)}$$
with a transverse energy, $e_c = \sqrt{\vec{p}_T^{(c)} \cdot \vec{p}_T^{(c)} + m_c^2}$

For double decay chain event: Let's use M_T twice

Goodness of MT2

- It is insensitive to helicity structures:
 - Your analyses are independent to BSM scenarios
 - Easy to recast analysis in specific BSM to others.
 - Only depends on the kinematical structure.

Goodness of MT2

- It is insensitive to helicity structures:
 - Your analyses are independent to BSM scenarios
 - Easy to recast analysis in specific BSM to others.
 - Only depends on the kinematical structure.

Back to back "Transverse" BOOST INV

• Just like MT variable

Back to back "Transverse" BOOST INV

• Just like MT variable

Back to back "Transverse" BOOST INV

• Just like MT variable

Very easy to **estimate** MT2 behavior for **Know kinematics** (Standard Model Back grounds)

MT2 as a CUT variable

- M_{T2} inherits the good property of M_T : Transverse boost invariance! (But only when you put the the right value for m_c)
- Since we don't know the true mass of LSP, we only can get the constraint of decayed particle in terms of LSP mass.
- But we know what will be missing particles of background (Standard Model) : neutrino
 - Thus, experimentalists started to use this variable as one of cuts. (by Alan Barr, Claire Gwenlan : arxiv:0907.2713)

Process	$m_{T2}(v_1,v_2,{p \!\!\!/}_T,0,0)$	Comments
QCD di-jet \rightarrow hadrons	$= \max m_j$ by Lemmas 1.4	
QCD multi jets \rightarrow hadrons	$= \max m_j$ by Lemma 4	
$t\bar{t}$ production	$= \max m_j$ by Lemma 4	fully hadronic decays
	$\leq m_t$ by Lemmas 1.7	any leptonic decays
Single top / tW	$= \max m_j$ by Lemma 4	fully hadronic decays
	$\leq m_t$ by Lemmas 2.7	any leptonic decays
Multi jets: "fake" p_T	$= \max m_j$ by Lemma 5	single mismeasured jet^a
	$= \max m_j$ by Lemma 6	two mismeasured jets ^{a}
Multi jets: "real" $p_{_T}$	$= \max m_j$ by Lemma 5	single jet with leptonic $b \operatorname{decay}^a$
	$= \max m_j$ by Lemma 6	two jets with leptonic b decays ^{<i>a</i>}
$Z ightarrow u ar{ u}$	= 0 by Lemma 3	
$Z j ightarrow u ar{ u} j$	$= m_j$ by Lemma 3	one ISR jet^a
$W ightarrow \ell u^{\ b}$	$= m_{\ell}$ by Lemma 3	
$W j ightarrow \ell u j^{\ b}$	$\leq m_W$ by Lemma 2	one ISR jet^a
$WW ightarrow \ell u \ell u ightarrow {}^{b}$	$\leq m_W$ by Lemma 1	
$ZZ ightarrow u ar{ u} u ar{ u}$	= 0 by Lemma 3	$also = m_j$ for one ISR jet ^a
$LQ \overline{LQ} ightarrow q u ar{q} ar{ u}$	$\leq m_{LQ}$	1
$ig ilde{q} ar{ar{q}} ightarrow q ilde{\chi}_1^0 ar{q} ilde{\chi}_1^0$	$\leq m_{ ilde{q}}$	i.e. can take large values
$q_1, ar q_1 o q \gamma_1, ar q \gamma_1$	$\leq m_{q_1}$	-

MT2 as a CUT variable

- alphaT and Razor are good to suppress QCD multi jets corruptions to MET events. (No finite endpoint structure, Some characteristic # to cut backgrounds.)
- MT2 has a finite endpoint for SM backgrounds. (A.Barr arXiv:0907.2713)

- Various contributions from all over the world.
 - Cambridge: Parents of MT2
 - Oxford: In detail study of MT2
 - ATLAS: Analyses
 - KAIST : Realization of "kink" feature of MT2, MAOS
 - KEK:Various in-depth phenomenological studies of MT2
 - U.C.Davis : New interpretation of MT2 as kinematical bound
 - U.Florida : Generalizations, link to CMS
 - CMS: Analyses
 - Cornell :TTbar di-leptonic analysis@LHC
 - ETHZ : CMS MT2 analysis
 - CDF : Top quark measurement@Tevatron
 - D0
 - Even more vivid contributions so far
- Now, MT2 is the one of the **standard** variables in MET channels.

MT2 under BIG assumptions

- I would like to remind you that M_{T2} was based on three big assumptions.
- Thus if most of signals (the new physics) violate at least one of these assumptions, is there any chance for signals can hide behind Backgrounds?
- I would like to study the behavior of M_{T2} when signals break some (all) of these assumptions.

Various possibilities

 There may be more than one diagram in the BSM with the same signature. Some can violate assumptions of MT2

 $\underbrace{\tilde{u}}_{\tilde{u}^{*}} \xrightarrow{\tilde{\chi}^{0}}_{W^{+}} \underbrace{\tilde{\chi}^{0}}_{W^{+}} \underbrace{\ell^{+}}_{V} \nu}_{\tilde{u}^{*}} \frac{\tilde{\chi}^{0}}{\tilde{\chi}^{0}} \underbrace{\ell^{+}}_{\ell^{-}} \frac{\tilde{\chi}^{0}}{\tilde{v}} \frac{\ell^{+}}{\tilde{v}} \nu}_{\tilde{u}^{*}} + \text{ more if we consider different signals: squarks decays through long cascade (four leptons signals)}$

Various possibilities

• As an example, we generated CMS Tchislepslep simplified model with $M_{\tilde{\chi}^+} > M_{\tilde{\nu}_L} \simeq M_{\tilde{\ell}^+_L} > M_{\tilde{\chi}^0}$

 Simulated[parton level] with masses: chargino 500GeV slepton(sneutrino) 400GeV LSP: 100GeV

Various possibilities

(a) v_1	$(b) \qquad \begin{vmatrix} v_1 & \chi_1 \\ & \downarrow \end{vmatrix}$	$(c) \chi_{1 } v_1$	$(d) v_1 \chi_1$
$A \longrightarrow C_1$	$A = B_1 + C_1$	$A - \begin{bmatrix} B_1 \\ B_1 \end{bmatrix} - C_1$	$A \xrightarrow{V} \cdots C_1$
$A C_2$	$A \xrightarrow{\qquad C_2 \\ v_2}$	$A \xrightarrow{\qquad C_2 \\ v_2}$	A
$(e) \begin{matrix} v_1 & \chi_1 \\ B_1 & I \\ B_1 & I \end{matrix}$	$\begin{pmatrix} f \end{pmatrix} \begin{pmatrix} \chi_1 \\ B_1 \end{pmatrix}^{v_1} = 0$	$egin{array}{ccc} (g) & v_1 & \chi_1 & \ & & & & & & & & & & & & & & & & & $	$(h) \begin{array}{c c} \chi_1 & v_1 \\ & R_1 \end{array}$
$A = \begin{bmatrix} D_1 \\ D_1 \end{bmatrix} = C_1$	$A \xrightarrow{1 \\ } C_1$	$A \xrightarrow{ V} \cdots C_1$	$A \xrightarrow{[D_1]} - C_1$
$A = \begin{bmatrix} B_2 \\ I \\ v_2 \end{bmatrix} \begin{bmatrix} V_2 \\ \chi_2 \end{bmatrix}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$A = \begin{bmatrix} B_2 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} B_2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{c c} A & B_2 \\ & B_2 \\ & \chi_2 \\ & \chi_2 \end{array} \\ v_2 \end{array}$
$(i) \chi_{1} v_{1}$	$(j) v_1 \chi_1$	$\begin{pmatrix} k \end{pmatrix} \begin{array}{c} v_1 & v_2 \\ v_1 & v_2 \end{pmatrix}$	$(l) v_1 v_2$
$A \underbrace{[B_1]}_{A} - C_1$	$A \underbrace{V}_{C_1} C_1$	$A _ B_1 _ C_1$	$A _ _ C_1$
$A = \frac{1}{v_2} / \frac{1}{v_2}$	$A = \frac{1}{v_2} / \frac{1}{v_2}$	<i>C</i> ₂	C_2

- There are 12 (sub) diagrams that have two visible particles and up to four invisible particles.
- We have options:

 we need to invent new observables based on each event-topology.

2. And/Or we need to <u>understand how to</u> <u>interpret a result of</u> <u>existing observables (e.g.</u> <u>MT2)</u> <u>for each event-topology</u> <u>case.</u>

Effective event-topology

- We apply an observable that was motivated initially for the II (a) assumptions, and want to interpret results (endpoint of distributions) in various cases.
- Diagrams in II (except k,I) are combinations of a basic decaying leg I (a), (b), (c), and (d).
- For example, in I (b), we can treat B that decays invisibly as invisible particle.
- The only non-trivial case will be I (c).

 We are interested in the endpoint of distributions. Thus we need to focus on the range of a (transverse) momentum of visible particle v (at the rest frame of A.) (Back to back Boost Inv.)

At A's rest frame, a range of transverse momentum of v

$$0 \le P_T \le \frac{M_A}{2} \left(1 - \frac{M_{C\chi}^2}{M_A^2} \right)$$

Thus, P_T will have a maximum when the invariant mass $M_{C\chi}$ (of C and chi) has a minimum value = $M_C + M_{\chi}$

This range of P_T also come from the right diagram where a particle Ψ with a mass of $M_{\Psi} = M_C + M_{\chi}$. Thus we can replace (d) with a right diagram for the endpoint of transverse observables.

Using "Equivalent event-topology method", we can change event-topologies with multi-invisible particles

into an event-topology with two invisible particle.

((a) v C	$ \begin{array}{c c} (b) & v & \chi \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	(e) v
	$ \frac{A}{M_{\Psi} = M_{C}} $ $ \frac{M_{\Psi} = M_{C}}{M_{\Psi} = M_{A} \left\{ 1 - \frac{M_{B}}{M_{A}} \left(1 - \frac{M_{C}^{2}}{M_{B}^{2}} \right) e^{\eta} \right\}^{1/2}} $	$ \frac{A \qquad B \qquad - \ C}{M_{\Psi} = M_B} \frac{M_{\Psi} = M_B}{\begin{pmatrix} d \end{pmatrix}} \frac{v \\ \chi' \\ \chi' \\ \chi' \\ M_{\Psi} = M_{\chi} + M_C $	<u>Α</u> Ψ

• But, now we need to deal with the case with different types of invisible particle ($M_{\Psi_1} \neq M_{\Psi_2}$): Studied by P. Konar, K.Matchev, K.Kong. MP [arxiv:0911.4126]

When decaying particles are different

If $M_{A2} > M_{A1}$, then A_1 get the additional boost $\delta \eta \left(\sqrt{\hat{s}} \right)$ from $E_{CM} \left(\sqrt{\hat{s}} \right)$ compared to A_2 .

This additional boost will give effect on the visible part on $A_{\rm L}$ We can mimic this situation by inserting "GHOST" particle in front of $A_{\rm I}$

$$\frac{MA_{1}}{\sqrt{\hat{s}}} \frac{m_{c}}{M_{A_{2}} \text{ invisible}} m_{c} \qquad \delta \eta(\sqrt{\hat{s}}) \equiv \eta_{1}(\sqrt{\hat{s}}) - \eta_{2}(\sqrt{\hat{s}}) = \cosh^{-1} \left[\frac{M_{A_{2}}^{2} + M_{A_{1}}^{2} - \left(\frac{M_{A_{2}}^{2} - M_{A_{1}}^{2}}{\sqrt{\hat{s}}}\right)^{2}}{2M_{A_{2}}M_{A_{1}}} \right]$$

This additional boost will give effect on the visible part on $A_{\rm L}$ We can mimic this situation by inserting "GHOST" particle in front of $A_{\rm I}$

$$\underbrace{A_{2}}_{W_{\Psi}} = M_{A_{2}} \left\{ 1 - \frac{M_{A_{1}}}{M_{A_{2}}} \left(1 - \frac{m_{c}^{2}}{M_{A_{1}}^{2}} \right) e^{\eta} \right\}^{1/2}$$

$$M_{\chi}(\sqrt{\hat{s}}) \equiv \frac{M_{A_2}^2 - M_{A_1}^2}{\sqrt{\hat{s}}}$$

 $\eta = \cosh^{-1} \left(\frac{M_{A_2}^2 + M_{A_1}^2 - M_{\chi}^2}{2M_{A_2}M_{A_1}} \right)$

 $0 \leq M_{\chi}(\sqrt{\hat{s}}) \leq M_{A_2} - M_{A_1}$ with $M_{A_1} + M_{A_2} \leq \sqrt{\hat{s}} < \infty$ resulting in the effective particle Ψ 's mass dependency on the $\sqrt{\hat{s}}$ $(M_{A_2}, M_{A_1}, m_C) = (1\text{TeV}, 200\text{GeV}, 100\text{GeV})$

MT2 is **NOT** sensitive (good) variable to represent "kinematics" when decaying particles are **different**

How to cluster visible (& invisible) particles

• How to cluster visible (& invisible) particles

• How to project four-vector into transverse (to beam) plane.

• How to project four-vector into transverse (to beam) plane.

Type of	Operations			
variables	First	Second	Third	Notation
Unprojected	Partitioning	Minimization		M_N
Early partitioned	Partitioning	$T = \top$ projection	Minimization	$M_{N op}$
(late projected)	Partitioning	$T = \lor$ projection	Minimization	$M_{N\vee}$
M_{NT}	Partitioning	$T = \circ$ projection	Minimization	$M_{N\circ}$
Late partitioned	$T = \top$ projection	Partitioning	Minimization	$M_{ op N}$
(early projected)	$T = \lor$ projection	Partitioning	Minimization	$M_{\lor N}$
M_{TN}	$T = \circ$ projection	Partitioning	Minimization	$M_{\circ N}$

- How to cluster visible (& invisible) particles
- How to project four-vector into transverse (to beam) plane.

$$\begin{split} M_{1\top}^{2}(\mathbf{M}_{1}) &\equiv \left(\sqrt{\mathbf{M}_{1}^{2} + \mathbf{p}_{1T}^{2}} + \sqrt{\mathbf{M}_{1}^{2} + \mathbf{p}_{T}^{2}}\right)^{2} - u_{T}^{2} \\ M_{1\top}^{2}(0) &= \left(\sqrt{M_{e^{+}e^{-}}^{2} + \mathbf{p}_{T,e^{+}e^{-}}^{2}} + \mathbf{p}_{T}\right)^{2} - \vec{u}_{T}^{2}, \\ M_{1\top}(0) &= M_{C,WW} \\ \\ m_{T2} &\equiv \min_{\sum \vec{q}_{iT} = \vec{p}_{T}} \left[\max \left[\mathcal{M}_{1\top}, \mathcal{M}_{2\top} \right] \right] \\ m_{T2}^{(1+3)}(\mathbf{M}) &\equiv M_{2\top}(\mathbf{M}) = M_{2}(\mathbf{M}). \end{split}$$

A.J.Barr, T.J.Khoo, P. Konar, K.Kong, C.G.Lester, K.T.Matchev, and MP arXiv:1105.2977

On-shell constrained M2

Put "assumed" constraints

• One can describe SM Background more by using additional constraints

Yang Bai, Hsin-Chia Cheng, Jason Gallicchio, and Jiayin Gu (arXiv:1203.4813)

Constrained M2

• Mass on-shell constraints

Subsystem	Parents P_i	Daughters D_i	Relatives R_i
(ab)	A_i	C_i	B_i
(a)	A_i	B_i	C_i
(b)	B_i	C_i	A_i

 $M_2(\tilde{m}) \equiv \min_{\vec{q}_1, \vec{q}_2} \{ \max[M_{P_1}(\vec{q}_1, \tilde{m}), M_{P_2}(\vec{q}_2, \tilde{m})] \}$ $\vec{q}_{1T} + \vec{q}_{2T} = \vec{P}_T \text{ with constraints:}$

Subsys	stem (ab)	Subsystem (a)		Subsystem (b)	
variable	$\operatorname{constraints}$	variable	$\operatorname{constraints}$	variable	$\operatorname{constraints}$
$M_{2XX}(ab)$		$M_{2XX}(a)$		$M_{2XX}(b)$	
$M_{2CX}(ab)$	$M_{A_1}^2 = M_{A_2}^2$	$M_{2CX}(a)$	$M_{A_1}^2 = M_{A_2}^2$	$M_{2CX}(b)$	$M_{B_1}^2 = M_{B_2}^2$
$M_{2XC}(ab)$	$M_{B_1}^2 = M_{B_2}^2$	$M_{2XC}(a)$	$M_{C_1}^2 = M_{C_2}^2$	$M_{2XC}(b)$	$M_{A_1}^2 = M_{A_2}^2$
$M_{a,\alpha,\alpha}(ab)$	$M_{A_1}^2 = M_{A_2}^2$	$M_{2} \propto \alpha(\alpha)$	$M_{A_1}^2 = M_{A_2}^2$	$M_{a} \propto \alpha(b)$	$M_{B_1}^2 = M_{B_2}^2$
$M_{2CC}(ab)$	$M_{B_1}^2 = M_{B_2}^2$	$ M_{2CC}(a) $	$M_{C_1}^2 = M_{C_2}^2$	$M_{2CC}(0)$	$M_{A_1}^2 = M_{A_2}^2$

• Power of constrained minimization (I) : enhanced event saturation to the target mass scale to be measured

 Power of constrained minimization for signal discovery (ex: MT2 vs M2CC)

 Power of constrained minimisation for signal discovery (ex: MT2 vs M2CC)

Subsystem (ab) (No combinatorics)

from Won Sang Cho

Constrained Minimization

• 1) of mass functions of mother particle masses :

 $\tilde{M}(p,q)$ /. p: visible, q: invisible four momenta

- · 2) over invisible momentum d.o.f :

$$\overline{M} = \min_{q \in \mathbb{R}^n} \widetilde{M}(p,q)$$
 subject to $c_{i=1..m}(p,q) = 0$

• For example) MT2

$$\tilde{M}^2 \equiv \max\left[(p_1 + q_1)^2, (p_2 + q_2)^2\right]$$

• => subject to minimal constraints with PT conservation.

Numerical Algorithm

•Augmented Lagrangian Method

- •Modify the problem
- •Constrained Minimisation (in x, lambda)

то

•A series of Unconstrained Minimisation (in x)

- while the constraint conditions are satisfied by the convexification by penalty-terms
- •simultaneously, the Lagrange multipliers get updated and evolved, iteration by iteration !!

Numerical Algorithm

- Augmented Lagrangian with ...
 - 1) penalty parameter (mu)
 - 2) augmented Lagrange parameter (lambda):

$$\tilde{\mathcal{L}}(\vec{x}; \boldsymbol{\lambda}, \mu) \equiv f(\vec{x}) - \sum_{a} \lambda_{a} c_{a}(\vec{x}) + \frac{1}{2\mu} \sum_{a} c_{a}^{2}(\vec{x})$$

$$\lambda_a^{k+1} = \lambda_a^k - \frac{c_a(\vec{x}_k)}{\mu_k}$$

Flowchart

Validation

• Example) M2CC of ttbar dileptonic decay

Figure 10. The same as figures 2 and 4, but for the single event considered in section 4.3. Since the objective function has four independent arguments, in order to visualize the evolution of the minimizer, we plot q_{1z} and q_{2z} , having fixed the other two variables, q_{1x} and q_{1y} , to the values which minimize the objective function for the given choice of q_{1z} and q_{2z} .

OPTIMASS-v1 Released!

- Language : C++, Python
- Requirements : gcc(>4.4), Python(>2.6), ROOT with MINUIT2
- Webpage (for download and installation guide):
 - <u>http://hep-pulgrim.ibs.re.kr/optimass</u>

List of Collaborators

- Cho, Won Sang (wonsang.cho@gmail.com)
- Gainer, James S. (<u>gainer@phys.ufl.edu</u>)
- Kim, Doojin (<u>immworry@ufl.edu</u>)
- Lim, Sung Hak (sunghak.lim@kaist.ac.kr)
- Matchev, Konstantin T. (<u>matchev@phys.ufl.edu</u>)
- Moortgat, Filip (<u>filip.moortgat@cern.ch</u>)
- Pape, Luc (<u>luc.pape@cern.ch</u>)
- Park, Myeonghun (<u>parc.ctpu@gmail.com</u>)

Main code developers

CMS

OPTIMASS interface for user's complicated decay topology

 [Full Decay System] Define any number of decay chains, and any type of decay vertices using user's own labelling scheme!

Listing 1: Cards/ttbar-ab.xml

```
# XML
2
3
   <?xml version='1.0' encoding='utf-8'?>
4
   <ProcessCard classname="TTbar_AB" debug="false" version="1.0">
5
      <!-->
6
      <!-- Define event decay chain -->
7
      <!-->
8
      <DecayChains>
9
          <DecayChain>
10
                 t1 - b1 w1 , w1 - e1 v1
11
          </DecayChain>
12
          <DecayChain>
13
                 t2 - b2 w2 , w2 - e2 v2
14
          </DecayChain>
15
      </DecayChains>
```

 [Subsystem-Mothers] Define your subsystem's head nodes easily just by listing the names of (intermediate) mother particles defined in the full decay system!

16	===================================</th
17	Mother node particle in each decay chain to define objective function
18	</th
19	<particlemassfunction></particlemassfunction>
20	<particlegroup group_function="max" mass_function="M2"></particlegroup>
21	<particle label="t1"></particle>
22	<particle label="t2"></particle>
23	
24	

 [Subsystem-Effective Invisibles] Define the effective invisible nodes by simply tagging it in the full decay system!

41	<particleproperties></particleproperties>
42	<particle mass="173." name="top"></particle>
43	<particle mass="4.18" name="bottom"></particle>
44	<particle mass="80.419" name="wboson" optimize_target="True"></particle>
45	<particle name="electron"></particle>
46	<particle invisible="True" name="neutrino"></particle>
47	
	from Won Sang Ch

[Kinematic Constraint Functions] Using the particle
names in the full decay chains, their Lorentz 4 momentum
d.o.f.(ROOT::TLorentaVector) can freely be used to
define constraint functions.

 [Combined-Events System Support] Define multiple PT conservation systems using the full system

⇒ Better discrimination power!

Summary

- We have studied kinematics systematically
 - Understanding relations among various variables
 - Understanding properties of variables if "assumed" assumptions are not correct
- One can add additional constraints to describe given kinematics more precisely.
- Dr. Wonsang Cho will provide a tutorial for OPTIMASS today.