

Recent ATLAS results

Massimo Della Pietra (University of Naples Federico II, INFN) on behalf of ATLAS Collaboration

Outline

- Large Hadron Collider and ATLAS experiment:
 - RUN II luminosity and data sample;
 - Detector performances;
- Standard model results:
 - Total cross section and multiplicity;
 - Bosons and di-bosons production;
 - Top quark;
 - Higgs Boson;
- Beyond Standard Model searches:
 - Search for new Resonances
 - Search for Supersymmetric Particles
 - Search for BSM in Higgs sector
 - Search for Dark Matter

LHC: Large Hadron Collider

Massimo Della Pietra

MC4BSM2016

ATLAS Run II: Data Acquisition

- 3.9 fb⁻¹ pp@13TeV recorded in 2015 (92% DAQ efficiency)
- 13.2 fb⁻¹ pp@13TeV recorded in 2016 (up to 15/7) (~ 90.7% DAQ efficiency)
 - 3 times 2015 statistic in about three months
- Peak luminosity delivered by LHC 1.08 x 10³⁴ cm⁻² s⁻¹ is greater than design value (1 x 10³⁴ cm⁻² s⁻¹)

GREAT EFFORT IN DETECTOR OPERATION, DATA QUALITY AND DATA PREPARATION

Massimo Della Pietra

MC4BSM2016

ATLAS Run II: Pile up

6

25 ns bunch spacing during 2015 instead of 50 ns bunch spacing during RUN I

• less pileup in events.

ATLAS RUN II: Detector performances

 RUN II detector performance and calibration very close to RUN I performances

From 8 TeV to 13 TeV

- Raising the centre of mass energy from 8 to 13 TeV the cross section of processes involving heavy objects is enhanced significantly.
- Increase in measurement precision of known objects (Higgs, Top, W, Z)
- Observation and study of rare process (ttH, 4 top, Boson Couplings)
- Discovery (as we all are hoping to)

Analysis on 2016 recorded data are ongoing and will be presented to ICHEP at beginning of August

Massimo Della Pietra

Inelastic pp cross section and Multiplicity

- Measurement done with using Minimum Bias Trigger Scintillators (MBTS)
 - Extrapolation from fiducial region to total depends also on diffractive contributions, which is constrained using single/double sided events
 - Data are compared to PYTHIA 8, EPOS LHC and QGSJet-II MC predictions

- Measurement done with MBTS and Inner detector
 - EPOS describes the data well for *p*T > 300 MeV.
 - For *p*T < 300 MeV, the data are underestimated by up to 15%.
 - Other MC have larger discrepancies

W and Z production @ 13 TeV

- Both absolute cross sections and ratios measured
- Ratio of W+ and W- fiducial cross section @ 13 TeV
 - Sensitive to u & d quark valence distribution, measured to a precision of 0.8%
- Ratio of W+/- and Z fiducial cross section @ 13 TeV
 - Sensitive to strange quark content

 $1-2\sigma$ lower than the various predictions based on different PDFs

Massimo Della Pietra

Phys. Lett. B 759 (2016) 601

20/07/16

Di-boson production

- Precision test of the SM @ TeV scale.
- Understanding these processes is important for back ground estimations needed for many measurements.
- SM production of two or more bosons:
 - boson self-interactions,
 - Higgs to VV decays
- Allows constraints to be set on many exotic models through the study of cross-sections, triple and quartic gauge boson couplings (TGC and QGC) vertices.

Di-boson production: WZ

- Fiducial cross-section in e and mu decay extrapolated to total phase space
- Total cross-section found to be consistent with very recent NNLO prediction

Di-boson production: ZZ

- Cross section measurement of "on shell" ZZ -> 4 leptons production @ 13 TeV
- Agreement with NNLO prediction @ 13 TeV

MC4BSM2016

20/07/16

Massimo Della Pietra

Top quark

- Heaviest of the known fundamental particle
 - its Yukawa coupling ~ 1.
- At LHC ,with luminosity ${\sim}10^{34}\,\text{cm}^{-2}\,\text{s}^{-1}$ top pair production rate is ${\sim}$ 8 pairs/s
 - Definitely LHC is a "top factory"
- It decays before hadronisation
 - its properties are transferred directly to its decay products (information on "bare quarks")
- Standard model predicts all its properties given the mass
 - Any deviation means "new physics"
 - Top dominates also Higgs production (through gluon fusion)
 - ttH coupling studied also in ttH production

Top pair production cross-section

- Recent measurement using opposite sign eµ events with b-tagged jets @ 13 TeV
- Inclusive top pair production in good agreement with NNLO prediction
- Experimental measurements have reached the theoretical calculation

 $\sigma_{t\bar{t}} = 818 \pm 8 \text{ (stat)} \pm 27 \text{ (syst)} \pm 19 \text{ (lumi)} \pm 12 \text{ (beam) pb}$

20/07/16

Top quark mass

• Measured both directly from invariant mass and derived from cross section (mass pole determination)

Higgs Strength and couplings

• Combined ATLAS and CMS study with RUN I data

Higgs Strength (RUN I legacy)

- Signal strength defined as ration between measured cross section and SM cross section.
- Dominant uncertainties:
 - photon energy scale (H->γγ) and statistic (H->ZZ*->4l)

Higgs mass

- Dominated by H->γγ and H->ZZ*->4l channels
- Precision of 240 MeV still dominated by statistic uncertainty

PhysRevLett114(2015)191803

Massimo Della Pietra

MC4BSM2016

Higgs Spin & Parity

- Studying angular variable distributions in Higgs decay products in bosonic decays several hypothesis on H(125) spin and parity can be tested
- Consistency with SM J=0+ hypothesis
- All others excluded at 99% CL

EPJC75(2015)476

Massimo Della Pietra

MC4BSM2016

Higgs ttH production: ttH coupling

- H coupling to top quarks "seen" in gluon fusion process, and loop in γγ decays
- important to probe directly for model independent determination of coupling

g 00000000000

First look at Higgs @ 13 TeV

- 2015 13 TeV data (3.2 fb⁻¹) 13 TeV are not enough to reach run 1 sensitivity for H(125)
- Cross section @ 13 TeV is almost doubled w.r.t. 8 TeV

Massimo Della Pietra

MC4BSM2016

Summary of SM Measurements

Massimo Della Pietra

MC4BSM2016

ATLAS BSM Searches

- ATLAS has a very large portfolio of results about beyond Standard Model Searches
 - SUSY Searches
 - Higgs BSM
 - Exotics
- In the next slides some highlights with emphasis on 13 TeV results or recently published Run1 results
 - Search for new Resonances
 - Search for Supersymmetric Particles
 - Search for BSM in Higgs sector
 - Search for Dark Matter

Search for new resonances

- Could manifest themselves as "peak" (resonance) or as broad "shoulders" in invariant mass spectra of dijets, dilepton, diphotons.
- Two approaches to estimate of SM background:
 - detailed simulations of shape of mass spectrum
 - smooth functional form fitted to data

Di-photons final state

 Several SM extensions predict high-mass states decaying to two photons

SPIN 0 Extended Higgs Sector

- Example: 2HDM
 - 5 phys. states h⁰,H⁰,A⁰,H[±]
 - under certain conditions, scalar and/or pseudoscalar states can have sizeable BR→di-photons

ATLAS-CONF-2016-018

SPIN 2 Randall-Sundrum graviton

- Tower of Kaluza-Klein (KK) graviton excitations;
 - first state at TeV mass scale
- Phenomenology:
 - MG* = mass of lightest KK excitation
 - κ/M_{Pl} = dimensionless coupling to SM fields

Diphoton: Search for resonance

- Selection optimised for Higgs- like signal:
 - two Photons (tight identification and isolated)
 - Different cut on photons for different analysis
- Background model: detailed shape prediction from NLO SM di-photons;

Diphoton: Results for spin-0 resonance

- Perform 2D p₀ scan (as function of mass and width of the hypothetical resonance).
- Largest deviation from backgroundonly hypothesis: near:
 - 750 GeV
 - width ≈ 45 GeV (i.e. 6%)

- Limits on fiducial cross section as a function of mass hypothesis, for several width hypotheses.
- Example shown here: width of 6%

Diphoton: results for spin-2 resonance

- Perform 2D p0 scan (as function of mass and width [i.e. coupling] of the hypothetical resonance).
- Largest deviation from backgroundonly hypothesis: near:
 - $\kappa/MPl \approx 0.21$ (i.e. 6% width)
- Local significance: 3.6 σ (Global : 1.8 σ)

- Limits on fiducial cross section as a function of mass hypothesis, for several width hypotheses.
- Example shown here: κ/M_{Pl} ≈ 0.20

Diphoton compatibility to 8 TeV data

SPIN 0

- 8 TeV data: 1.9 σ deviation from bkg-only hypothesis at m_X = 750 GeV, $\Gamma_X/m_X = 6\%$
- Compatibility 8 TeV \leftrightarrow 13 TeV (gg hypothesis): 1.2 σ
- Compatibility 8 TeV \leftrightarrow 13 TeV (qq hypothesis): 2.1 σ

SPIN 2

- 8 TeV data: no excess in the region of interest
- Compatibility 8 TeV \leftrightarrow 13 TeV (gg hypothesis): 2.7 σ
- Compatibility 8 TeV \leftrightarrow 13 TeV (qq hypothesis): 3.6 σ

30

Supersymmetry "for dummies"

- SuSy is a generalization of the SM: symmetry between fermions and bosons
 - Introduces sfermions and gauginos doubles particles content with respect to SM
 - Extended Higgs sector: h, H, A, H+, H-
- PRO:
 - alleviates hierarchy problem (m_h << m_P)
 - has a good Dark Matter candidate(neutralino)
 - allows for gauge coupling unification
- CONS:
 - in MSSM over 100 free parameters (although with some both theoretical and experimental arguments we can reduce the number of parameters)
 - wide range of possible experimental signatures

Something expected at TeV Scale

Massimo Della Pietra

SUSY: gluino and squarks

SUSY current summary

Inclusive Searches	$\begin{array}{l} MSUGRA/CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q\xi_0^{U} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q\xi_1^{V} (compressed) \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q\xi_1^{V} (compressed) \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q\tilde{q}\xi_1^{U} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q\tilde{q}\xi_1^{U} \rightarrow qqW^\pm \tilde{\chi}_1^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow qq(\ell\ell/\xi_1^{(\prime)})\gamma \tilde{\chi}_1^{U} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow qqWZ \tilde{\chi}_1^{V} \\ GMSB(\tilde{t} NLSP) \\ GGM (bigsino-bino NLSP) \\ GGM (higgsino-bino NLSP) \\ GGM (higgsino-bino NLSP) \\ GGM (higgsino bin SLSP) \\ Gravitino LSP \end{array}$	$\begin{array}{c} 0\text{-}3 \ e, \mu/1\text{-}2 \ \tau \\ 0 \\ \text{mono-jet} \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1\text{-}2 \ \tau + 0\text{-}1 \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 b 2-6 jets 1-3 jets 2-6 jets 2-6 jets 0-3 jets 7-10 jets t 0-2 jets 2 jets 2 jets 2 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 3.2 3.2 3.3 20 3.2 3.2 3.2 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1507.05525 1605.03814 1604.07773 1605.03814 1605.04285 1501.03555 1602.06194 <i>To appear</i> 1606.09150 1507.05493 1503.03290 1502.01518
3 rd gen. <u>§</u> med.	$ \begin{array}{l} \tilde{g}\tilde{g}, \; \tilde{g} \rightarrow b \bar{b} \tilde{\chi}^0_1 \\ \tilde{g}\tilde{g}, \; \tilde{g} \rightarrow t \tilde{\ell} \tilde{\chi}^0_1 \\ \tilde{g}\tilde{g}, \; \tilde{g} \rightarrow b \tilde{\ell} \tilde{\chi}^0_1 \end{array} $	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b 3 b	Yes Yes Yes	3.3 3.3 20.1	ž 1.78 TeV m(k ² ₁)<800 GeV ž 1.8 TeV m(k ² ₁)=0 GeV ž 1.37 TeV m(k ² ₁)<300 GeV	1605.09318 1605.09318 1407.0600
3 rd gen. squarks direct production	$ \begin{array}{l} \bar{b}_1 \bar{b}_1, \bar{b}_1 \rightarrow b \bar{x}_1^0 \\ \bar{b}_1 \bar{b}_1, \bar{b}_1 \rightarrow b \bar{x}_1^{\pm} \\ \bar{t}_1 \bar{t}_1, \bar{t}_1 \rightarrow b \bar{x}_1^{\pm} \\ \bar{t}_1 \bar{t}_1, \bar{t}_1 \rightarrow b \bar{x}_1^{\pm} \\ \bar{t}_1 \bar{t}_1, \bar{t}_1 \rightarrow b \bar{x}_1^0 \\ \bar{t}_1 \bar{t}_1, \bar{t}_1 \rightarrow c \bar{x}_1^0 \\ \bar{t}_1 \bar{t}_1 (natural GMSB) \\ \bar{t}_2 \bar{t}_2, \bar{t}_2 \rightarrow \bar{t}_1 + Z \\ \bar{t}_2 \bar{t}_1, \bar{t}_2 \rightarrow \bar{t}_1 + h \end{array} $	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 1-2 \ e, \mu \\ 0-2 \ e, \mu \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1 \ e, \mu \end{matrix}$	2 b) 0-3 b 1-2 b 0-2 jets/1-2 b mono-jet/c-tag 1 b 1 b 6 jets + 2 b	Yes Yes Yes Yes Yes Yes Yes Yes	3.2 3.2 4.7/20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1606.08772 1602.09058 1209.2102, 1407.0583 1506.08616, 1606.03903 1407.0608 1403.5222 1403.5222 1506.08616
EW direct	$ \begin{array}{l} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{X}_{1}^{0} \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*}, \tilde{\chi}_{1}^{*} \rightarrow \tilde{\ell}\nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*}, \tilde{\chi}_{1}^{*} \rightarrow \tilde{\ell}\nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{*} \rightarrow \ell \tilde{\nu}_{1}^{*}\tilde{\ell}_{1}(\ell \tilde{\nu}\nu), \ell \tilde{\nu}\tilde{\ell}_{L}(\ell \tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{*} \rightarrow W \tilde{\nu}_{1}^{*} \tilde{\nu} \tilde{\chi}_{1}^{*} \\ \tilde{\chi}_{2}^{*} \gamma_{2}^{*} \rightarrow W \tilde{\nu}_{1}^{*} \tilde{\nu} \tilde{\chi}_{1}^{*} \\ \tilde{\chi}_{2}^{*} \tilde{\chi}_{2}^{*} \rightarrow \tilde{\lambda} \tilde{\chi}_{1}^{*} \tilde{\lambda}_{2}^{*} \rightarrow \tilde{\ell}_{L} \ell \\ \tilde{G} M (\text{wino NLSP) weak prod.} \\ G GM (\text{bino NLSP) weak prod.} \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 4 \ e, \mu \\ 1 \ e, \mu + \gamma \\ 2 \ \gamma \end{array}$	0 0 0-2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294,1402.7029 1501.07110 1405.5086 1507.05493
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}'$ Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}'$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau$ GMSB, $\tilde{\chi}_1^0 \rightarrow Q\tilde{c}$, long-lived $\tilde{\chi}_1^0$ $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow ev/e\mu\nu/\mu\nu\nu$ GGM $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow Z\tilde{G}$	Disapp. trk dE/dx trk 0 trk dE/dx trk e, μ) 1-2 μ 2 γ displ. $ee/e\mu/$ displ. vtx + j	k 1 jet - - - - - - - - - - - - - - - - - - -	Yes Yes - - Yes - -	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1310.3675 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \tilde{v}_\tau + X, \tilde{v}_\tau \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{X}_1^+ \tilde{X}_1^-, \tilde{X}_1^+ \rightarrow W \tilde{X}_1^0, \tilde{X}_1^0 \rightarrow ee \tilde{v}_\mu, e\mu \tilde{v}_\eta \\ \tilde{X}_1^+ \tilde{X}_1, \tilde{X}_1^+ \rightarrow W \tilde{X}_1, \tilde{X}_1^+ \rightarrow r \tilde{v}_e, er \tilde{v}_\eta \\ \tilde{g} \tilde{s}, \tilde{s} \rightarrow qq \\ \tilde{g} \tilde{s}, \tilde{g} \rightarrow qq \tilde{s}_1^0, \tilde{X}_1^0 \rightarrow qq q \\ \tilde{g} \tilde{s}, \tilde{g} \rightarrow q_1 \tilde{x}_1, \tilde{v}_1 \rightarrow bs \end{array} $	$e\mu, e\tau, \mu\tau$ 2 e, μ (SS) 4 e, μ 3 $e, \mu + \tau$ 0 0 2 e, μ (SS)	0-3 <i>b</i> - 6-7 jets 6-7 jets) 0-3 <i>b</i>	- Yes Yes - - Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	\$\vec{v}_r\$ 1.7 TeV $\lambda'_{111}=0.11, \lambda_{132/133/233}=0.07$ \$\vec{q}. \vec{k}\$ 1.45 TeV m(\vec{q})=m(\vec{k}), cr_{LSP}<1 mm	1503.04430 1404.2500 1405.5086 1405.5086 1502.05686 1502.05686 1404.2500

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

Massimo Della Pietra

MC4BSM2016

34

20/07/16

BSM Higgs: example $H/A \rightarrow \tau \tau$

ATLAS-CONF-2015-061

- Two channels: $\tau_{had} \tau_{had}$ and $\tau_{lep} \tau_{had}$
- Mainly backgrounds: Zττ (MC datadriven) and multijets (datadriven)

$$m_T^{tot} = \sqrt{m_T^2(E_T^{miss}, \tau_1) + m_T^2(E_T^{miss}, \tau_2) + m_T^2(\tau_1, \tau_2)}$$

Massimo Della Pietra

Lepton Flavour Violating Higgs decays

• Not allowed in SM but can occur in 2HDM and other models

Combining both searches: $BR(H \rightarrow \tau \mu) < 1.43\%$ $BR(H \rightarrow \tau e) < 1.04\%$

Massimo Della Pietra

Dark Matter: Mono-X searches

- General analysis strategy
 - Require MET
 - Select for X
 - Veto other objects
 - Additional cuts to suppress background

- Data-driven techniques to estimate background
 - invert vetoes

Massimo Della Pietra

- Results are interpreted in the Simplified Model framework to allow comparison with Direct Detection
 - Mediator particle connects the SM quarks to DM particles: Axial Vector, Pseudoscalar, etc...
- Model depends on four parameters:
 - DM mass,
 - Mediator mass,
 - SM-mediator coupling,
 - DM-mediator coupling

MC4BSM2016

Dark Matter: Monojets

- Main backgrounds:
 - EW processes with intrinsic ETmiss + jets:
 - Z(vv)+jets: irreducible background
 - W(lv)+jets: with unrecostructed or misidentified lepton

Both estimated from data using leptonic Z or W control regions

Other backgrounds:

- Non-collision background (data)
- Multijet background (data)
- Z->ee, top, diboson (MC)

NO EXCESS OBSERVED

Dominant uncertainties: Statistical (3-10%), top (~3%), boson+jet modeling (2-4%)

arXiv.org 1604.07773

Massimo Della Pietra

Dark Matter: Monojets

Area under the limit is excluded: for m_{med} < 1TeV,mχ < 250 GeV
 arXiv.org 1604.07773

- Translate to 90% CL exclusion limit on the spin-dependent χ -p scattering σ SD
- Complementary to direct searches: excluded σ SD (χ -p) > 10⁻⁴²cm², low m χ

Massimo	Della	Pietra
Massiiii	Dena	rieua

Summary of exotic searches

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/WebHome

earch	es* -	95%	o CL	Exclusion		ATLA	AS Preliminary
				J	$\int \mathcal{L} dt = (3)$	8.2 - 20.3) fb ⁻¹	\sqrt{s} = 8, 13 TeV
<i>ℓ</i> ,γ	Jets†	E ^{miss}	∫£ dt[fb	-1] Limit			Reference
$\begin{array}{c} - \\ 2 \ e, \mu \\ 1 \ e, \mu \\ - \\ 2 \ e, \mu \\ 2 \ \gamma \\ 1 \ e, \mu \\ - \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$\geq 1 j$ $-$ $1 j$ $\geq 2 j$ $\geq 3 j$ $-$ $1 J$ $4 b$ $\geq 1 b, \geq 1 J \lambda$ $\geq 2 b, \geq 4$	Yes Yes -2j Yes Yes	3.2 20.3 3.6 3.2 3.6 20.3 20.3 3.2 3.2 3.2 3.2 20.3 3.2 3.2	Mo 6.58 Ms 4.7 TeV Max 5.2 TeV Max 2.66 TeV Gaze mass 2.66 TeV Gaze mass 2.66 TeV Gaze mass 2.66 TeV Gaze mass 2.2 TeV KK mass 1.46 TeV	8.3 TeV 8.3 TeV 8.2 TeV 9.55 TeV	$\begin{array}{l} n=2\\ n=3 \ HLZ\\ n=6\\ n=6\\ n=6\\ m=6, M_D=3 \ TeV, rot \ BH\\ n=6, M_D=3 \ TeV, rot \ BH\\ k/M_P=0.1\\ k/M_P=0.1\\ k/M_P=1.0\\ k/M_P=1.0\\ TBR=0.025\\ Tier (1,1), \ BR(A^{(1,1)}\to tt)=1 \end{array}$	1604.07773 1407.2410 1311.2006 1512.01530 1606.02265 1512.02586 1405.4123 1504.05511 ATLAS-CONF-2015-075 1606.04782 1505.07018 ATLAS-CONF-2016-013
$ \begin{array}{c} 2 e, \mu \\ 2 \tau \\ - \\ 1 e, \mu \\ A \\ 0 e, \mu \\ 1 e, \mu \\ 0 e, \mu \\ 1 e, \mu \\ 0 e, \mu \end{array} $	- 2 b - 1 J 2 J 1-2 b, 1-0 j 1-2 b, 1-0 j 2 b, 0-1 j ≥ 1 b, 1 J	- Yes Yes - Yes Yes - Yes	3.2 19.5 3.2 3.2 3.2 3.2 3.2 3.2 20.3 20.3	Z' mass 3.4 TeV Z' mass 2.02 TeV Z' mass 1.5 TeV W' mass 1.5 TeV W' mass 1.6 TeV W' mass 1.26 TeV W' mass 1.62 TeV W' mass 1.27 TeV W' mass 1.27 TeV W' mass 1.27 TeV W' mass 1.92 TeV W' mass 1.92 TeV W' mass 1.76 TeV		$g_V = 1$ $g_V = 1$ $g_V = 3$ $g_V = 3$	ATLAS-CONF-2015-070 1502.07177 1603.08791 1606.03977 ATLAS-CONF-2015-068 ATLAS-CONF-2015-074 ATLAS-CONF-2015-074 ATLAS-CONF-2015-074 1410.4103 1408.0886
2 e, μ 2 e, μ (SS)	2 j ≥ 1 b, 1-4 j	– Yes	3.6 3.2 20.3	Λ Λ Λ 4.3 ΤεΥ		$\begin{array}{c c} \textbf{17.5 TeV} & \eta_{LL} = -1 \\ \hline \textbf{23.1 TeV} & \eta_{LL} = -1 \\ C_{LL} = 1 \end{array}$	1512.01530 ATLAS-CONF-2015-070 1504.04605
0 e, μ 0 e, μ, 1 γ 0 e, μ	≥1j 1j 1J,≤1j	Yes Yes Yes	3.2 3.2 3.2	mA 1.0 TeV mA 710 GeV M. 550 GeV		$\begin{array}{l} g_{q}{=}0.25, \ g_{\chi}{=}1.0, \ m(\chi) < 250 \ {\rm GeV} \\ g_{q}{=}0.25, \ g_{\chi}{=}1.0, \ m(\chi) < 150 \ {\rm GeV} \\ m(\chi) < 150 \ {\rm GeV} \end{array}$	1604.07773 1604.01306 ATLAS-CONF-2015-080
2 e 2 µ 1 e, µ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	– – Yes	3.2 3.2 20.3	LQ mass 1,1 TeV LQ mass 1,05 TeV LQ mass 640 GeV		$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \beta = 0 \end{array}$	1605.06035 1605.06035 1508.04735
1 e,μ 1 e,μ 1 e,μ 2/≥3 e,μ 1 e,μ 1 e,μ	$\begin{array}{l} \geq 2 \ b, \geq 3 \\ \geq 1 \ b, \geq 3 \\ \geq 2 \ b, \geq 3 \\ \geq 2 \ b, \geq 3 \\ \geq 2/{\geq}1 \ b \\ \geq 4 \ j \\ \geq 1 \ b, \geq 5 \end{array}$	Yes Yes - Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3	T mass 855 GeV Y mass 770 GeV B mass 735 GeV B mass 735 GeV Q mass 690 GeV T v ₁ mass 840 GeV		T in (T,B) doublet Y in (B,Y) doublet isospin singlet B in (B,Y) doublet	1505.04306 1505.04306 1505.04306 1409.5500 1509.04261 1503.05425
1γ 1 or 2 e, μ 3 e, μ 3 e, μ, τ	1 j 2 j 1 b, 1 j 1 b, 2-0 j - -	- - Yes -	3.2 3.6 3.2 20.3 20.3 20.3	q' mass 4.4 TeV q' mass 5.2 TeV b' mass 2.1 TeV b' mass 1.5 TeV d' mass 3.0 TeV	<u>,</u>	only u^* and $d^*, \Lambda = m(q^*)$ only u^* and $d^*, \Lambda = m(q^*)$ $f_g = f_L = f_R = 1$ $\Lambda = 3.0$ TeV $\Lambda = 1.6$ TeV	1512.05910 1512.01530 1603.08791 1510.02664 1411.2921 1411.2921
$1 e, \mu, 1 \gamma 2 e, \mu 2 e, \mu (SS) 3 e, \mu, \tau 1 e, \mu 5 = 8 TeV$	_ 2 j - 1 b - - -	Yes Yes TeV	20.3 20.3 20.3 20.3 20.3 20.3 7.0	ar mass 960 GeV N ² mass 551 GeV H ⁴⁴ mass 551 GeV H ⁴⁵ mass 657 GeV spin-1 invibito particle mass 657 GeV moltic-charged particle mass 785 GeV monopole mass 1.34 TeV 10 ⁻¹ 1	1	$\begin{split} m(W_R) &= 2.4 \text{ TeV}, \text{no mixing} \\ \text{DY production, } BR(H_L^{+1} \to \ell\ell) = 1 \\ \text{DY production, } BR(H_L^{\pm\pm} \to \ell\tau) = 1 \\ a_{\text{non-me}} &= 0.2 \\ \text{DY production, } q &= 5e \\ \text{DY production, } g &= 1g_D, \text{ spin } 1/2 \end{split}$	1407.8150 1506.06020 1412.0237 1411.2921 1410.5404 1504.04188 1509.08059
	$\begin{array}{c} \ell, \gamma \\ \hline \\ \ell, \gamma \\ \hline \\ - \\ 2 e, \mu \\ 1 e, \mu \\ - \\ 2 e, \mu \\ (SS) \\ 0 e, \mu, 1 \\ 0 e, \mu \\ 1 e, \mu \\ 1$	EXAMPLANCE STATE I , γ Jets i , μ j i , μ j j , μ j , μ j j , μ j j j	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{aligned} \int \mathcal{L} dt = (3) \\ \int \mathcal{L} d$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded. † Small-radius (large-radius) jets are denoted by the letter i (J).

Massimo Della Pietra

20/07/16

Conclusions

- ATLAS has published to date more than 500 physics papers; here I presented just a tiny fraction of our results
 - (see ATLAS Public Results)
- Run 1 legacy data are (still become) available.
- Many results from 2015 13 TeV run are provided.
 - The detector performed well
 - Increased sensitivity for high mass BSM searches
- High expectation from 2016 Run (25 fb-1 expected)
 - i.e. Confirm or deny Diphoton excess
- LHC plan is to take data in 2016, 2017 and 2018 at full steam before another long shutdown period to collect 100 fb-1

Backup slides

Massimo Della Pietra

MC4BSM2016

20/07/16

42

Multiplicity

 Events with al least two charged particle with pT > 100 MeV and eta<2.5, each with a lifetime >300 ps are considered

Higgs boson & decay modes

• Total cross section @ 13 TeV is doubled with respect to RUN I data.

Production	Cross section [pb]		
process	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	
ggF	15.0 ± 1.6	19.2 ± 2.0	
VBF	1.22 ± 0.03	1.57 ± 0.04	
WH	0.573 ± 0.016	0.698 ± 0.018	
ZH	0.332 ± 0.013	0.412 ± 0.013	
bbH	0.155 ± 0.021	0.202 ± 0.028	
ttH	0.086 ± 0.009	0.128 ± 0.014	
tH	0.012 ± 0.001	0.018 ± 0.001	
Total	17.4 ± 1.6	22.3 ± 2.0	

Higgs Strength

Combined ATLAS and CMS study with RUN I data

Higgs width

- SM expectation $\Gamma_{\rm H} \sim 4$ MeV
- Direct measurements of width of mass distributions (channels $\gamma\gamma$ and ZZ →4l) $\sigma_m \sim$ 1-2 GeV
- Indirect constraint through the on-shell/off-shell ratio of $gg \rightarrow H \rightarrow VV$: $\Gamma_{\rm H} < 23 \text{ MeV} (31 \text{ exp})$
 - (Assuming no change of couplings, no new physics at high masses, no anomalous couplings)

Higgs differential cross section

• Differential cross section measured with $\gamma\gamma$ and ZZ \rightarrow 4l channels:

MC4BSM2016

First look at H(125) @ 13 TeV

Massimo Della Pietra

MC4BSM2016

48

ATLAS SM Measurements

- Summary of several total cross section measurements
- Comparison with best available theoretical prediction (NLO or higher)

SUSY gluino

