Overview of CMS results

Junquan Tao (IHEP/CAS, Beijing) on behalf of the CMS collaboration

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

MC4BSM 2016 Beijing

The 10th workshop on Monte Carlo Tools for Physics Beyond Standard Model

July 20-24 2016, UCAS-Yuquan, China

Outline

CMS experiment and performance

Selected CMS physics results

Soft QCD, forward scattering, quarkonia production, heavy ions

- SM measurements
- Top physics
- Higgs physics
- Search for BSM physics
- Search for high mass resonances

Many new, interesting results at new energy regime, could discuss only few.

Summary

Compact Muon Solenoid (CMS) at LHC

CMS Experiment

Lac Leman

Diameter: 15 m Length: 21 m Field: 4 Tesla

Jura

Readout channels: ~80

Compact Muon Solenoid

Silicon Detectors measure tracks left by charged particles **Calorimeters** Absorb particles and measure their energy Muon Detectors Identify and measure muons that penetrate

CMS collaboration

CMS performance

Very good performance in Run1 and Run2

Subdetectors active fraction > 95% (2016)

Data collection efficiency > 92% ^{RPC} csc

CMS Integrated Luminosity, pp, 2016, $\sqrt{s}=$ 13 TeV

Detector Active Fraction

CMS physics results

Show all	Total	Exoti	ca	Standard Mod	lel	Supersymmetry	Higgs	Top Physics	
Heavy lon	B Physics		Forward Physics		Be	eyond 2 Generations	Dete	Detector Performance	

514 collider data papers submitted as of 2016-06-21

LHC Run 1

Very successful Run 1 of the LHC (2010-2012)

Discovery of the 125 GeV Higgs boson

♦ Rare Bs⁰→µ⁺µ⁻ decay
 ♦ Top-quark mass measurement, SM tests over vast magnitudes

In additional huge number of CMS searches

A few > 2σ effects
 Run 2 allow to follow up on those effects and importantly extend the reach of LHC

CMS Prelimino

The Nobel Prize in Physics

Soft QCD, forward scattering, quarkonia production, heavy ions

Total Inelastic cross section at Vs = 13 TeV

- \blacktriangleright Experimental measurement within 3.0 < η <5.2 & -6.6< η <-3.0
- > Within full phase space of inelastic domain,

Charged particle production

Soft particle production from low energy processes,

- test description of MC models with various tunes.
- underlying events accompanying hard scattering
- also important for description of pile-up.

Energy flow in forward direction (3.15 < $|\eta|$ < 6.6) at \sqrt{s} = 13 TeV

Exclusive $\gamma\gamma \rightarrow WW$ production at $\sqrt{s} = 8$ TeV

Quarkonia production at Vs = 8, 13 TeV

Nuclear modification factor in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV

Strong suppression of light and heavy flavours with comparable magnitude over wide pT range

15

March of standard model

Cross section measurements at Vs =7, 8, 13 TeV

All measurements consistent with standard model

Inclusive jet measurements at Vs = 13 TeV

Inclusive W,Z production at Vs = 13 TeV

W/Z + jets production

Wγγ, Zγγ production and quartic gauge coupling at $\sqrt{s} = 8$ TeV SMP-15-008

$$\sigma^{
m fid}_{W^{\pm}\gamma\gamma}$$
 · BR $(W
ightarrow \ell
u) = 6.0 \pm 1.8 \,(
m stat) \pm 2.3 \,(
m syst) \pm 0.2 \,(
m lumi)$ fb.

$$\sigma^{
m fid}_{Z\gamma\gamma}$$
 · BR $(Z
ightarrow \ell\ell) = 12.7 \pm 1.4$ (stat) ± 1.8 (syst) ± 0.3 (lumi) fb

- \succ W $\gamma\gamma$ process observed with significance 2.4 σ
- > $Z\gamma\gamma$ process observed with significance 5.9 σ
- \succ Limits on anomalous quartic gauge (dim-8) couplings

$W^{\pm}\gamma\gamma$	Expected (TeV^{-4})	Observed (TeV^{-4})
$f_{\rm T0}/\Lambda^4$	[-26.5, 27.0]	[-33.5, 34.0]
$f_{\mathrm{T1}}/\Lambda^4$	[-34.5, 34.8]	[-44.3, 44.8]
$f_{\rm T2}/\Lambda^4$	[-74.6, 73.7]	[-93.8, 93.2]
$f_{\rm M2}/\Lambda^4$	[-549, 531]	[-701,683]
$f_{\rm M3}/\Lambda^4$	[-916, 950]	[-1170, 1220]

Diboson productions at Vs = 13 TeV

- Measurements test SM prediction
- > Theoretical predictions accurate up to NNLO
- \succ Diboson are **backgrounds to many searches** \rightarrow need to know the

rates accurately

 $\sigma (pp \rightarrow W^+W^-) = 115.3 \pm 5.8 \text{ (stat)} \pm 5.7 \text{ (exp)} \pm 6.4 \text{ (theo)} \pm 3.6 \text{ (lumi) pb} \text{ SMP-16-006}$ $\sigma (pp \rightarrow ZZ) = 14.6^{+1.9}_{-1.8} \text{ (stat)}^{+0.5}_{-0.3} \text{ (syst)} \pm 0.2 \text{ (theo)} \pm 0.4 \text{ (lum)} \text{ pb SMP-16-001}$ $\sigma (pp \rightarrow WZ) = 40.9 \pm 3.4 \text{ (stat)}^{+3.1}_{-3.3} \text{ (syst)} \pm 0.4 \text{ (theo)} \pm 1.3 \text{ (lumi) pb}, \text{ SMP-16-002}$

Summary of diboson production at Run 1 & Run 2

So far, no smoking-gun indicating disagreement between SM predictions and experimental measurements

–Improvement in experimental accuracy and prediction precision makes tests more and more stringent

Top Physics

Top pair production

$\sigma(ttZ) = 1065 + 352 + 313} (stat) + 168 + 142} (sys.) fb$

Channel	Expected significance	Observed significance	
3ℓ analysis	2.9	3.5	
4ℓ analysis	1.2	0.9	
3ℓ and 4ℓ combined	3.1	3.6	

Top pair differential cross sections at 13 TeV

Jet multiplicity in top events

tt+jets important background to ttH

▶ Low jet multiplicity → sensitive to ME and matching to parton shower
 ▶ High jet multiplicity → parton shower α_s tuning

Electroweak production of single top at 13 TeV

Higgs Physics

Standard Model Higgs measurements at 13 TeV

 \succ VBF H, H \rightarrow bb, μ for combined 8 and 13 TeV = $1.3 + 1.2_{-1.1}$

➤ ttH , H→WW, ZZ, ττ

• Explored same sign dilepton or 3 lepton (+b-tagged jets) final states

• μ_{ttH} = 0.15 ^{+ 0.95} _{-0.81} Compare with SM expectation: 1.00^{+0.96} -0.85

$H \rightarrow WW (\rightarrow e \mu + X)$ at 13 TeV

Search for beyond standard model physics

Searches for BSM Higgs at $v_s = 13$ TeV

Search for Supersymmetry at Vs = 13 TeV

Many searches with jets, leptons, photons, missing energy in final state

• Sensitivity for both strong and weak production of SUSY particles.

Interpretation of final states in terms of simplified models,

eg. T1bbbb

Gluino searches SUS-15-002, PLB 758(2016) 152

Gluino pair to 4 tops Gluino pair to 4 bottoms Gluino pair to light quarks $pp \rightarrow \widetilde{q}\widetilde{q}$, $\widetilde{q} \rightarrow q\overline{q}\widetilde{\chi}_{4}^{0}$ pp $\rightarrow \widetilde{q}\widetilde{q}, \ \widetilde{q} \rightarrow t\overline{t}\widetilde{\chi}_{q}^{0}$ $pp \rightarrow \widetilde{q}\widetilde{q}, \ \widetilde{q} \rightarrow b\overline{b}\widetilde{\chi}^{0},$ Moriond 2016 Moriond 2016 Moriond 2016 2000 2000 1800 [GeV] [GeV] 1800 CMS Preliminary CMS Preliminarv CMS Preliminary ····· Expected Observed ---- Expected 1600 Observed ···· Expected -SUS-15-002, 0-lep (H^{miss}), 2.3 fb⁻¹ (13 TeV) 1600 -SUS-15-002 (H^{miss}), 2.3 fb⁻¹ (13 TeV) -SUS-15-002 (H^{miss}), 2.3 fb⁻¹ (13 TeV) ق 1600 ي ع 1400 کچ -SUS-15-003, 0-lep (M_{T2}), 2.3 fb⁻¹ (13 TeV) SUS-15-003 (M_{T2}), 2.3 fb⁻¹ (13 TeV) SUS-15-003 (M_{T2}), 2.3 fb⁻¹ (13 TeV) -SUS-15-004, 0-lep (Razor), 2.1 fb⁻¹ (13 TeV) 1400 -SUS-15-004 (Razor), 2.1 fb⁻¹ (13 TeV) -SUS-15-004 (Razor), 2.1 fb⁻¹ (13 TeV) - SUS-15-005, 0-lep (α_T), 2.2 fb⁻¹ (13 TeV) -SUS-15-005 (α_τ), 2.2 fb⁻¹ (13 TeV) -SUS-15-004, 1-lep (Razor), 2.1 fb⁻¹ (13 TeV) 1200 -SUS-15-005 (α_τ), 2.2 fb⁻¹ (13 TeV) 1400 -SUS-15-006, 1-lep (Δφ), 2.3 fb⁻¹ (13 TeV) – SUS-14-011 (Razor), 19.3 fb⁻¹ (8 TeV) 1200 -SUS-13-019 (M_{T2}), 19.5 fb⁻¹ (8 TeV) SUS-15-007, 1-lep (M₁), 2.2 fb⁻¹ (13 TeV) 1200 - SUS-15-008, ≥2-lep (SS), 2.2 fb⁻¹ (13 TeV) 1000 - SUS-16-003, ≥3-lep, 2.3 fb⁻¹ (13 TeV) 1000 1000 -SUS-14-010, 0+1+2+≥3-lep, 19.5 fb⁻¹ (8 TeV 800 800 800 600 600 600 400 400 400 200 200 200 600 800 1000 1200 1400 1600 1800 600 1600 1800 800 1000 1200 1400 600 1600 1000 1200 1400 1800 800 m_α [GeV] m_õ [GeV] m₇₇ [GeV]

) 152 pair to light quar

Direct production of stop pairs

Searches in hadronic final state

SUS-16-007

Search in multi-jet + missing E_{T} final state

use kinematic variables with categorization

Combination of diboson (WW/WZ/ZZ/WH/ZH) productions

Exotica searches

- Heavy Vector Singlet/Triplet model: W' → WZ, WH or Z' → WW, ZH exclusion: W' > 2.3 TeV, Z' > 1.8 TeV, triplet > 2.4 TeV
- A narrow Bulk Graviton
 → WW, ZZ : 0.9σ significance for W' (1.9-2 TeV)

> Run 1 had anomaly (slight excess around 2 TeV) at the level of 2 to 2.5 σ , not confirmed at Run 2.

B2G-16-007

Search for massive vector-like quark (charge 2/3) production

Exotica searches: June 2016

Summary of searches for beyond 2nd generation

Dark Matter searches, June 2016

Search for high mass resonances

Consistent with 8 TeV data: 19.7 fb⁻¹

EXO-16-018

- \succ Local significance = 3.4 σ ,
- \geq Global significance (accounts for mass range, spin, width) = 1.6 σ
- Search for spin 0, spin-2 resonance,
- Γ/m between 1.4*10⁻⁴ to 5.6*10⁻²

Set limits assuming gg fusion, RS-graviton (spin 2)
 Excess at 750 GeV, for Γ_x / m_x =1.4*10⁻⁴

More data required to confirm existence of resonance.
 2016 data highly crucial: in August (ICHEP) update with ~10 fb⁻¹

Results from some of the related searches

Summary

> CMS experiment is performing well in Run 2.

➢ Precision results using Run 1 data are crucial for better understanding of LHC physics.

Energy barrier for probing TeV scale physics is overcome exciting times ahead!

Data collected in 2016 is crucial to settle the issue of 750 GeV resonance.

Stay tuned ICHEP2016 !

Thanks for your attention!

Many thanks to 4400+ CMS members and to the LHC Team !

EXTRA

THE LARGE HADRON COLLIDER @ CERN

Lac Leman

Large Hadron Collider

Large Hadron

• 27 km (17 miles) circumference

Jura

- 1600 superconducting magnets at 1.9° K (-271.3 °C or - 459.7 °F)
 - 120 tonnes of liquid helium
- Accelerates beams of protons to 99.9999991% the speed of light

ES40 - V10/09/97 51

Higgs-Boson discovery

Great achievement to a four decade long quest A Higgs-like state pinned down at 125 GeV mass

update 04.07.2017 update 04.07.2012 52

Higgs-Boson mass

Phys. Rev. Letter 114, 191803(2015)

Higgs properties

Higgs story so far

- We know it exists! Phys. Lett. B 716 (2012) 30
- We know its a boson.
- We know its mass : CMS PAS HIG-14-009

 $m_H(\text{CMS}) = 125.03 \stackrel{+0.26}{_{-0.27}} \text{(stat)} \stackrel{+0.13}{_{-0.15}} \text{(syst)}$

- We have strong evidence that it couples to fermions Nat. Phys. 10 (2014) 557 Couplings are determined within 15 to 20% accuracy, leaving room for BSM physics
- We have reasons to believe that it is a spin 0 CP even object Phys. Rev. D 89 (2014) 092007
- We know it's a Higgs boson!

Is this THE Higgs boson (of the SM) or is it just A Higgs boson?

First observation: $B_S^0 \rightarrow \mu^+ \mu^-$ (CMS & LHCb)

Weighted distribution of Dimuon mass-spectrum, superimposed in a combined fit the $B_s^0 \rightarrow \mu^+ \mu^-$ and $B_s^0 \rightarrow \mu^+ \mu^-$ components first observation of $B_s^0 \rightarrow \mu^+ \mu^-$ decay and evidence for $B^0 \rightarrow \mu^+ \mu^-$ decay

Nature 522 (2015) 68

Combined result $B_s^0 \rightarrow \mu^+ \mu^-$: (CMS & LHCb)

Branching $B^0 \rightarrow \mu^+ \mu^-$: (3.9+1.6-1.4) x10⁻¹⁰ (3.7 + 1.6 - 1.4 x SM)

Nature 522 (2015) 68

top mass measurements

Top is the heaviest quark in the SM: decays into W+b jet

Combined top mass using all CMS Run I measurements at 7 and 8 TeV

Previous result combining results from ATLAS, CDF, CMS, D0:

173.34±0.27(stat)±0.71(syst) GeV

Search for Diboson VV Resonances

Di-Jet Mass Spectra 13 TeV ↔ 8 TeV

Data collection at 5TeV

CMS Integrated Luminosity, pp, 2015, $\sqrt{s} = 5$ TeV

2016 Physics reach

Example physics potential with L ~ 10 fb⁻¹

- > 750 GeV mass resonance searches (if gg-produced)
- > H(125) full programme
- Better sensitivity for Dark Matter in high-mass mediator region
- > Searches for X->VV with M_x ~ TeV
- New vector-like quarks
- SUSY via EWK interactions
- Search for anomalous couplings

How to find New Physics?

The discovery of the Higgs completes the SM and Initiates in earnest the search for p that extends it. Three complementary approaches:

Look at Higgs boson as portal to new physics

 Measure properties and couplings to other particles Direct searches for new particles and phenomena → Look for heavy resonances, SUSY or DM signatures

Indirect searches via precision measurement of SM processes

 → Study rare processes (rates and phases)

Other searches for X (750 GeV)

• pp $\rightarrow X \rightarrow Z\gamma$

LH

- Ilγ: EXO-16-016 (13 TeV), HIG-16-014 (8 TeV), EXO-16-021 (8+13 TeV combination)
- qqγ: EXO-16-020
- pp \rightarrow X \rightarrow ZZ
 - 4 lepton: HIG-15-004
 - 2| 2v: HIG-16-001
- pp \rightarrow X \rightarrow ZH(125)
 - H(125) → bb: B2G-16-003
- pp \rightarrow X \rightarrow HH
 - bbbb: HIG-16-002
 - bbπ: HIG-16-013 (13 TeV), HIG-15-013 (8 TeV)
 - WWbb: HIG-16-011
- pp \rightarrow X \rightarrow WW
 - Ivqq: B2G-16-004
- pp \rightarrow X \rightarrow $t\bar{t}$
 - Semileptonic: B2G-15-002
 - All-hadronic: B2G-15-003

LHC future: the path to High Luminosity

LHC: The 20 years plan

≻ ~75-100 fb⁻¹ will be collected during LHC Run 2

Long shutdown in 2018 to upgrade detector for Run 3 (x2 inst. lumi)
 Long shutdown in 2022 to prepare for HL-LHC
 Goal of collecting 3000 fb⁻¹ at 5x10³⁴ cm⁻²s⁻¹ beyond 2030