Overview: NLO and beyond

Li Lin Yang
 Peking University

MC4BSM 2016 Beijing

The 10th workshop on Monte Carlo Tools for Physics Beyond Standard Model

Topics

* Quick reminder on ideas behind NLO+PS
* Going beyond NLO+PS
* Beyond NLO: NNLO calculations
* NNLO+PS in simple cases
* Alternative to parton shower: analytic resummation
* Towards NNLO+NNLL'+PS event generators

Ingredients of NLO+PS

* NLO hard matrix elements
* Recursion relations for tree amplitudes
* New methods and tools for one-loop amplitudes
* Automation of infrared subtraction methods
* Matching and merging

One-loop integrals

Basis of one-loop integrals known since Passarino-Veltman!

$$
\mathcal{M}=\sum_{i} a_{i} A_{i}+\sum_{i} b_{i} B_{i}+\sum_{i} c_{i} C_{i}+\sum_{i} d_{i} D_{i}+R
$$

We only need to know the coefficients...
Generalized unitarity + tree-level techniques!

(a)

(b)

(c)

Automated tools: Blackhat, CutTools, MadLoop, GoSam, OpenLoops, Sherpa, Samurai, Grace, Rocket, Whizard, FDC, ...

Beyond NLO+PS

Why beyond?

NLO accuracy not enough (e.g., in Higgs, gauge boson, top quark productions)

(N)NNLO

LL resummation not enough in certain phase space regions

NNLO in a nutshell

Combining 3 contributions to cancel infrared divergences

double real

virtual+real

double virtual

- Two-loop integrals
- IR cancellation (subtraction/slicing)

Two-loop integrals

* Unlike NLO, generic basis of integrals not known (yet)!
* Case-by-case reduction to "master integrals" via IBP relations (Laporta algorithm) Laporta (hep-ph/0102033)
* Public tools: Air, Fire, LiteRed, Reduze, ...
* Time-consuming for complicated problems!
* Computation of master integrals highly non-trivial!

Two-loop master integrals

* Simplifications of analytic calculations (and results)
* Canonical basis for differential equations

Henn (1304.1806)

* Mathematical structures of iterated integrals

TASI 2014 lecture by Duhr (1411.7538)

* Application to production of vector bosons

VVamp: Gehrmann, von Manteuffel, Tancredi (1503.04812); vM, T(1503.08835)

* Progresses in numeric evaluations

Numeric loop integrals

* The only possibility for complicated processes!
* Numerically solving differential equations: top pair

Bärnreuther, Czakon, Fiedler (1312.6279)

* Sector decomposition

Binoth, Heinrich (hep-ph/0004013, hep-ph/0305234)

* Public codes: FIESTA, SecDec, ...
* Mellin-Barnes

Sector decomposition

Factorization of singularities in Feynman parameters

Figure from Heinrich (0803.4177)

* A recent remarkable application: HH production with full top mass dependence

Borowka, Greiner, Heinrich, et al. (1604.06447)

* A new efficient code from a Chinese group

Li, Wang, Yan, Zhao (1508.02512)

Two-loop amplitudes: analytic IR structure

Generic formula from soft-collinear effective theory (SCET):

$$
\begin{array}{r}
Z-1(\epsilon \mathrm{IR}) \boldsymbol{\sim}(\epsilon \mathrm{IR})=0(\epsilon \mathrm{IR}) \\
\boldsymbol{Z}=1+\frac{\alpha_{s}^{\mathrm{QCD}}}{4 \pi}\left(\frac{\Gamma_{0}^{\prime}}{4 \epsilon^{2}}+\frac{\Gamma_{0}}{2 \epsilon}\right) \\
+\left(\frac{\alpha_{s}^{\mathrm{QCD}}}{4 \pi}\right)^{2}\left\{\frac{\left(\Gamma_{0}^{\prime}\right)^{2}}{32 \epsilon^{4}}+\frac{\Gamma_{0}^{\prime}}{8 \epsilon^{3}}\left(\Gamma_{0}-\frac{3}{2} \beta_{0}\right)+\frac{\boldsymbol{\Gamma}_{0}}{8 \epsilon^{2}}\left(\boldsymbol{\Gamma}_{0}-2 \beta_{0}\right)+\frac{\Gamma_{1}^{\prime}}{16 \epsilon^{2}}+\frac{\boldsymbol{\Gamma}_{1}}{4 \epsilon}\right. \\
\left.-\frac{2 T_{F}}{3} \sum_{i=1}^{n_{h}}\left[\Gamma_{0}^{\prime}\left(\frac{1}{2 \epsilon^{2}} \ln \frac{\mu^{2}}{m_{i}^{2}}+\frac{1}{4 \epsilon}\left[\ln ^{2} \frac{\mu^{2}}{m_{i}^{2}}+\frac{\pi^{2}}{6}\right]\right)+\frac{\Gamma_{0}}{\epsilon} \ln \frac{\mu^{2}}{m_{i}^{2}}\right]\right\}+\mathcal{O}\left(\alpha_{s}^{3}\right) \\
\boldsymbol{\Gamma}(\{\underline{p}\},\{\underline{m}\}, \mu)=\sum_{(i, j)} \frac{\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}}{2} \gamma_{\mathrm{cusp}}\left(\alpha_{s}\right) \ln \frac{\mu^{2}}{-s_{i j}}+\sum_{i} \gamma^{i}\left(\alpha_{s}\right)
\end{array}
$$

Universal two-loop result:
Ferroglia, Neubert, Pecjak, LLY: 0907.4791

$$
-\sum_{(I, J)} \frac{\boldsymbol{T}_{I} \cdot \boldsymbol{T}_{J}}{2} \gamma_{\text {cusp }}\left(\beta_{I J}, \alpha_{s}\right)+\sum_{I} \gamma^{I}\left(\alpha_{s}\right)+\sum_{I, j} \boldsymbol{T}_{I} \cdot \boldsymbol{T}_{j} \gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{m_{I} \mu}{-s_{I j}}
$$

$$
+\sum_{(I, J, K)} i f^{a b c} \boldsymbol{T}_{I}^{a} \boldsymbol{T}_{J}^{b} \boldsymbol{T}_{K}^{c} F_{1}\left(\beta_{I J}, \beta_{J K}, \beta_{K I}\right)
$$

$$
+\sum_{(I, I)} \sum_{k} i f^{a b c} \boldsymbol{T}_{I}^{a} \boldsymbol{T}_{J}^{b} \boldsymbol{T}_{k}^{c} f_{2}\left(\beta_{I J}, \ln \frac{-\sigma_{J k} v_{J} \cdot p_{k}}{-\sigma_{I k} v_{I} \cdot p_{k}}\right)+\mathcal{O}\left(\alpha_{s}^{3}\right) .
$$

IR subtraction at NNLO

* A couple of methods become mature and productive
* Antenna subtraction: ZJ, HJ, JJ, ...

Gehrmann-De Ridder, Gehrmann, Glover (hep-ph/0505111)

* Qt subtraction: color-neutral final states, e.g., VV

Catani, Grazzini (hep-ph/0703012)

* Sector improved: top pair, HJ, ...

Czakon (1005.0274)

* N -jettiness subtraction: $\mathrm{VV}, \mathrm{VH}, \mathrm{HJ}, \ldots$

Boughezal, Focke, Liu, Petriello (1504.02131)
Gaunt, Stahlhofen, Tackmann, Walsh (1505.04794)

NNNLO Higgs production

Anastasiou, Duhr, Dulat, Herzog, Mistlberger (1503.06056)

First NNNLO result!

NNLO+PS

* Simple cases work: proof of concept
* POWHEG+MiNLO Hamilton, Nason, Re, Zanderighi (1309.0017)
* UNNLOPS Hoeche, Li, Prestel (1405.3607, 1407.3773)
* GENEVA (SCET based)

Alioli, Bauer, Berggren, Tackmann, Walsh, Zuberi (1311.0286)

* With the sparkle of NNLO calculations, extensions should be possible
* Main obstacle towards a general-purpose NNLO+PS event generator: two-loop integrals

NNLO for $\mathrm{e}^{+} \mathrm{e}^{-}$colliders?

* In the context of Higgs factories (CEPC, FCC-ee, ILC)
* Most important process: ZH production (per-mille experimental precision!)
* A lot of discussions on how to use ZH to search for BSM physics
* How about SM predictions?
* NLO EW: about -3\%

Denner, Kühlbeck, Mertig, Böhm (1992)

* NNLO EW and QCD+EW?

QCD+EW for ZH

Gong, Li, Xu, LLY (to appear)

* 41 master integrals, most involve 4 mass scales
* Two methods:
* Expansion in $1 / \mathrm{m}_{\mathrm{t}}$
* Numeric evaluation using sector decomposition
* Preliminary result: about -0.4\% correction, similar in size to experimental precision!

Alternative to PS: analytic resummation

* Direct analytic formulas for jet cross sections
* Can achieve high logarithmic accuracies (NNNLL)
* Cross-validation of parton shower results
* Hints for scale choices in event generators

Large corrections and scale hierarchy

Resummation is necessary whenever an observable involves several very different mass scales

$$
\alpha_{s}^{n} \ln ^{m}\left(M_{1} / M_{2}\right)
$$

An example: boosted tops
M_{2}
Pecjak, Scott, Wang, LLY: 1601.07020

Boosted kinematics

Producing boosted tops

Two dangerous contributions

$\ln \frac{\hat{s}-M_{t \bar{t}}^{2}}{M_{t \bar{t}}^{2}}$

$\ln \frac{m_{t}^{2}}{M_{t \bar{t}}^{2}}$

A tale of three scales

$$
\hat{\sigma}\left(M_{t \bar{t}}^{2}, \hat{s}-M_{t \bar{t}}^{2}, m_{t}^{2}, \mu_{f}^{2}\right)
$$

Mellin/Laplace transform

$$
\hat{\sigma}\left(M_{t \bar{t}}^{2}, M_{t \bar{t}}^{2} / \bar{N}^{2}, m_{t}^{2}, \mu_{f}^{2}\right) \ni \ln \frac{M_{t \bar{t}}^{2}}{\mu_{f}^{2}}, \ln \frac{M_{t \bar{t}}^{2}}{\bar{N}^{2} \mu_{f}^{2}}, \ln \frac{m_{t}^{2}}{\mu_{f}^{2}}
$$

Question: what should μ_{f} be?

No good answer!

Factorization and resummation!

Double factorization

Boosted limit: $M \gg M / N, m_{t}$

$$
\hat{\sigma}\left(N, \mu_{f}\right) \sim \operatorname{Tr}\left[\boldsymbol{H}\left(L_{h}, \mu_{f}\right) \boldsymbol{S}\left(L_{s}, \mu_{f}\right)\right] C_{D}^{2}\left(L_{c}, \mu_{f}\right) S_{D}^{2}\left(L_{s c}, \mu_{f}\right)
$$

Emergence of a soft-collinear scale $\mathrm{m}_{t} / \mathrm{N}$!

NNLL' resummation

$$
\begin{array}{r}
\hat{\sigma}\left(N, \mu_{f}\right) \sim \operatorname{Tr}\left[\boldsymbol{U}\left(\mu_{f}, \mu_{h}, \mu_{s}\right) \boldsymbol{H}\left(L_{h}, \mu_{h}\right) \boldsymbol{U}^{\dagger}\left(\mu_{f}, \mu_{h}, \mu_{s}\right) \boldsymbol{S}\left(L_{s}, \mu_{s}\right)\right] \\
\vdots \\
\vdots \\
\vdots
\end{array}
$$

- Combined with NNLL threshold resummation
- Combined with NLO result
- Applicable not only in the boosted region!

Compare to data

CMS PAS TOP-16-008
$2.3 \mathrm{fb}^{-1}(13 \mathrm{TeV})$

CMS PAS TOP-16-011

Perfect agreements!

Towards NNLO+NNLL'+PS event generators?

* GENEVA: an ambitious SCET-
based approach Alioli, Bauer, Berggren, Tackmann, Walsh (1508.01475)
* NNLO+NNLL' for Drell-Yan
* Not clear how to extend to, e.g., top pair

Summary

* NLO+PS now standard in MC community (thanks in part to advances in loop calculations)
* NNLO+PS for simple processes emerging
* Still far from general-purpose tools (requires major breakthroughs in loop calculations!)
* In certain cases it is necessary to go beyond LL: analytic resummation (boosted tops as an example)
* Possible to combine high-accuracy resummation and parton shower!

Thank you!

