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Topics
Quick reminder on ideas behind NLO+PS 

Going beyond NLO+PS 

Beyond NLO: NNLO calculations 

NNLO+PS in simple cases 

Alternative to parton shower: analytic resummation 

Towards NNLO+NNLL’+PS event generators



Ingredients of NLO+PS

NLO hard matrix elements 

Recursion relations for tree amplitudes 

New methods and tools for one-loop amplitudes 

Automation of infrared subtraction methods 

Matching and merging

Talks of Mawatari and Re



One-loop integrals
Basis of one-loop integrals known since Passarino-Veltman!

M =
X

i

ai Ai +
X

i

bi Bi +
X

i

ci Ci +
X

i

di Di +R

We only need to know the coefficients…

Generalized unitarity + tree-level techniques!

Automated tools: Blackhat, CutTools, MadLoop, GoSam, 
OpenLoops, Sherpa, Samurai, Grace, Rocket, Whizard, FDC, …



Beyond NLO+PS
Why beyond?

NLO accuracy not enough 
(e.g., in Higgs, gauge boson, 

top quark productions)

LL resummation not enough 
in certain phase space regions

(N)NNLO (N)NNLL



NNLO in a nutshell
Combining 3 contributions to cancel infrared divergences

double real virtual+real double virtual

• Two-loop integrals 
• IR cancellation (subtraction/slicing)

Bottlenecks:



Two-loop integrals

Unlike NLO, generic basis of integrals not known (yet)! 

Case-by-case reduction to “master integrals” via IBP 
relations (Laporta algorithm) 

Public tools: Air, Fire, LiteRed, Reduze, … 

Time-consuming for complicated problems! 

Computation of master integrals highly non-trivial!

Laporta (hep-ph/0102033)



Two-loop master integrals

Simplifications of analytic calculations (and results) 

Canonical basis for differential equations 

Mathematical structures of iterated integrals 

Application to production of vector bosons 

Progresses in numeric evaluations

Henn (1304.1806)

TASI 2014 lecture by Duhr (1411.7538)

VVamp: Gehrmann, von Manteuffel, Tancredi (1503.04812); vM, T(1503.08835)



Numeric loop integrals

The only possibility for complicated processes! 

Numerically solving differential equations: top pair 

Sector decomposition 

Public codes: FIESTA, SecDec, … 

Mellin-Barnes

Bärnreuther, Czakon, Fiedler (1312.6279)

Binoth, Heinrich (hep-ph/0004013, hep-ph/0305234)
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Figure 1: Sector decomposition schematically.
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∫ 1

0
dy y−1−(a+b)ϵ

∫ 1

0
dt t−1−aϵ

(

1 + (1 − y) t
)−1

. (2)

We observe that the singularities are now factorised such that they can be read off
from the powers of simple monomials in the integration variables, while the polynomial
denominator goes to a constant if the integration variables approach zero. The same
concept will be applied to N -dimensional parameter integrals over polynomials raised
to some power, where the procedure in general has to be iterated to achieve complete
factorisation.

3 The algorithm for multi-loop integrals

3.1 Feynman parameter integrals

A general Feynman graph Gµ1...µR

l1...lR
in D dimensions at L loops with N propagators

and R loop momenta in the numerator, where the propagators can have arbitrary, not
necessarily integer powers νj , has the following representation in momentum space:

Gµ1...µR

l1...lR
=

∫ L
∏

l=1

dDκl
kµ1

l1
. . . kµR

lR
N∏

j=1
P

νj

j ({k}, {p}, m2
j)

dDκl =
µ4−D

iπ
D
2

dDkl , Pj({k}, {p}, m2
j) = (q2

j − m2
j + iδ) , (3)

where the qj are linear combinations of external momenta pi and loop momenta kl.
Introducing Feynman parameters according to

1
∏N

j=1 P
νj

j

=
Γ(Nν)

∏N
j=1 Γ(νj)

∫ ∞

0

N
∏

j=1

dxj x
νj−1
j δ

(

1 −
N

∑

i=1

xi

) 1
[
∑N

j=1 xjPj

]Nν
, (4)

where Nν =
N

∑

j=1

νj , leads to

Gµ1...µR

l1...lR
=

Γ(Nν)
∏N

j=1 Γ(νj)

∫ ∞

0

N
∏

j=1

dxj x
νj−1
j δ

(

1 −
N

∑

i=1

xi

)
∫

dDκ1 . . .dDκL

kµ1

l1
. . . kµR

lR

⎡

⎣

L
∑

i,j=1

kT
i Mij kj − 2

L
∑

j=1

kT
j · Qj + J + i δ

⎤

⎦

−Nν

, (5)

4

Sector decomposition

A recent remarkable application: HH production with 
full top mass dependence 

A new efficient code from a Chinese group

Figure from Heinrich (0803.4177)

Factorization of singularities in Feynman parameters

Borowka, Greiner, Heinrich, et al. (1604.06447)

Li, Wang, Yan, Zhao (1508.02512)



Two-loop amplitudes: 
analytic IR structure

Z�1(✏IR)M(✏IR) = O(✏0IR)

Generic formula from soft-collinear effective theory (SCET):

result

Z = 1 +
αQCD

s

4π

(

Γ′
0

4ϵ2
+

Γ0

2ϵ

)

+

(

αQCD
s

4π

)2
{

(Γ′
0)

2

32ϵ4
+
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(
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]}

+ O(α3
s) .

(62)

The coefficients Γn are defined via the expansion

Γ =
∑

n≥0

Γn

(αs

4π

)n+1
, (63)

and similarly for the quantity Γ′ = −2Ci γcusp(αs), where Ci = CF for the qq̄ channel, and
Ci = CA for the gg channel. The f2 term enters the two-loop 1/ϵ pole via Γ1/ϵ in (62).
We emphasize that in the β-function coefficient β0 = 11

3 CA − 4
3 TFnl and in the two-loop

anomalous-dimension coefficients Γ1 and Γ′
1 in (62) the number nl of active flavors only includes

the massless quarks, not the massive ones. The nh dependence of the full-theory Z factor is
contained entirely in the terms shown in the third line.

The result (60) is an exact prediction for the IR poles of the partonic amplitudes at
two-loop order, which can be tested against explicit loop calculations. In practice, however,
one is interested mainly in the real part of the interference terms ⟨M(0)

n |M(2)
n ⟩, since it is

these which are needed to calculate partonic cross sections. For this reason, we give results
for the interference terms rather than the amplitudes themselves. For the specific case of
tt̄ production, the full results for both the qq̄ and gg channels are rather lengthy and are
included as a computer program in the electronic version of this paper. In what follows, we
will define the color decomposition used at two-loop order and describe to what extent we
can compare our results with those available in the literature. As explained below, the three-
parton correlations proportional to f2 do not appear in the interference of the Born level and
two-loop amplitudes, neither in the qq̄ channel nor in the gg channel.

For the qq̄ → tt̄ channel, the result for the interference term between the Born and two-loop
amplitudes can be decomposed into color structures according to [42]

2 Re ⟨M(0)|M(2)⟩qq̄ = 2(N2 − 1)

(

N2Aq + Bq +
1

N2
Cq + Nnl D

q
l + Nnh Dq

h

+
nl

N
Eq

l +
nh

N
Eq

h + n2
l F

q
l + nlnh F q

lh + n2
hF

q
h

)

.

(64)

To compute the IR poles in the color coefficients above, we evaluate the general relation (60)
using (62) for the renormalization factor and (53) for the anomalous-dimension matrix. In
addition, we need the finite parts of the UV-renormalized one-loop QCD amplitude up to
O(ϵ), decomposed into the singlet-octet color basis. We have obtained these through direct

19

with TF = 1
2 . Here mi denote the masses of the heavy quarks. Note that, as an alternative

to (2), one can convert the expression for the Z factor from the effective to the full theory by
replacing αs → ξ−1 αQCD

s . We will make use of this possibility in Section 4 to predict the IR
poles of the qq̄ → tt̄ and gg → tt̄ amplitudes in full QCD.

The relation

Z−1(ϵ, {p}, {m}, µ)
d

d lnµ
Z(ϵ, {p}, {m}, µ) = −Γ({p}, {m}, µ) (4)

links the renormalization factor to a universal anomalous-dimension matrix Γ, which governs
the scale dependence of effective-theory operators built out of collinear SCET fields for the
massless partons and heavy-quark effective theory (HQET [32]) fields for the massive ones. For
the case of massless partons, the anomalous dimension has been calculated at two-loop order
in [7, 8] and was found to contain only two-parton color-dipole correlations. It has recently
been conjectured that this result may hold to all orders of perturbation theory [10, 14, 16]. On
the other hand, when massive partons are involved in the scattering process, then starting at
two-loop order correlations involving more than two partons appear [25], the reason being that
constraints from soft-collinear factorization and two-parton collinear limits, which protect the
anomalous dimension in the massless case, no longer apply [26].

At two-loop order, the general structure of the anomalous-dimension matrix is [26]

Γ({p}, {m}, µ) =
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij

+
∑

i

γi(αs)

−
∑

(I,J)

TI · TJ

2
γcusp(βIJ , αs) +

∑

I

γI(αs) +
∑

I,j

TI · Tj γcusp(αs) ln
mIµ

−sIj

+
∑

(I,J,K)

ifabc T a
I T b

J T c
K F1(βIJ , βJK , βKI) (5)

+
∑

(I,J)

∑

k

ifabc T a
I T b

J T c
k f2

(

βIJ , ln
−σJk vJ · pk

−σIk vI · pk

)

+ O(α3
s) .

The one- and two-parton terms depicted in the first two lines start at one-loop order, while
the three-parton terms in the last two lines start at O(α2

s). Starting at three-loop order also
four-parton correlations would appear. The notation (i, j, . . . ) etc. refers to unordered tuples
of distinct parton indices. We have defined the cusp angles βIJ via

cosh βIJ =
−sIJ

2mImJ

= −σIJ vI · vJ − i0 = wIJ . (6)

They are the hyperbolic angles formed by the time-like Wilson lines of two heavy partons.
The physically allowed values for wIJ are wIJ ≥ 1 (one parton incoming and one outgoing),
corresponding to βIJ ≥ 0, or wIJ ≤ −1 (both partons incoming or outgoing), corresponding
to βIJ = −b + iπ with real b ≥ 0.1 The first possibility corresponds to space-like kinematics,

1This choice implies that sinhβ =
√

w2 − 1. Alternatively, we could have used βIJ = b − iπ with b ≥ 0, in
which case sinhβ = w

√
1 − w−2. We have confirmed that our results are the same in both cases.

4

Universal two-loop result:
Ferroglia, Neubert, Pecjak, LLY: 0907.4791



IR subtraction at NNLO

A couple of methods become mature and productive 

Antenna subtraction: ZJ, HJ, JJ, … 

QT subtraction: color-neutral final states, e.g., VV 

Sector improved: top pair, HJ, … 

N-jettiness subtraction: VV, VH, HJ, …
Czakon (1005.0274)

Boughezal, Focke, Liu, Petriello (1504.02131) 
Gaunt, Stahlhofen, Tackmann, Walsh (1505.04794)

Catani, Grazzini (hep-ph/0703012)

Gehrmann-De Ridder, Gehrmann, Glover (hep-ph/0505111)



NNNLO Higgs production
Anastasiou, Duhr, Dulat, Herzog, Mistlberger (1503.06056)

3
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FIG. 2: Scale variation of the gluon fusion cross-section at
all perturbative orders through N3LO.

pressions valid for all regions are known, is similarly sup-
prerssed. We therefore believe that the uncertainty of
our computation for the hadronic cross-section due to
the truncation of the threshold expansion is negligible
(less than 0.2%).

In Fig. 2 we present the hadronic gluon-fusion Higgs
production cross-section at N3LO as a function of a com-
mon renormalisation and factorisation scale µ = µr =
µf . We observe a significant reduction of the sensitiv-
ity of the cross-section to the scale µ. Inside a range

µ 2
⇥
mH

4 ,mH

⇤
the cross-section at N3LO varies in the

interval [�2.7%,+0.3%] with respect to the cross-section
value at the central scale µ = mH

2 . For comparison, we
note that the corresponding scale variation at NNLO is
about ±9% [2, 3]. This improvement in the precision of
the Higgs cross-section is a major accomplishment due to
our calculation and will have a strong impact on future
measurements of Higgs-boson properties. Furthermore,
even though for the scale choice µ = mH

2 the N3LO cor-
rections change the cross-section by about +2.2%, this
correction is captured by the scale variation estimate for
the missing higher order e↵ects of the NNLO result at
that scale. We illustrate this point in Fig. 3, where we
present the hadronic cross-section as a function of the
hadronic center-of-mass energy

p
S at the scale µ = mH

2 .
We observe that the N3LO scale uncertainty band is in-
cluded within the NNLO band, indicating that the per-
turbative expansion of the hadronic cross-section is con-
vergent. However, we note that for a larger scale choice,
e.g., µ = mH , the convergence of the perturbative series
is slower than for µ = mH

2 .

In table I we quote the gluon fusion cross section
in e↵ective theory at N3LO for di↵erent LHC energies.
The perturbative uncertainty is determined by varying
the common renormalisation and factorisation scale in
the interval

⇥
mH

4 ,mH

⇤
around mH

2 and in the interval⇥
mH

2 , 2mH

⇤
around mH .

�/pb 2 TeV 7 TeV 8 TeV 13 TeV 14 TeV

µ = mH
2 0.99+0.43%

�4.65% 15.31+0.31%
�3.08% 19.47+0.32%

�2.99% 44.31+0.31%
�2.64% 49.87+0.32%

�2.61%

µ = mH 0.94+4.87%
�7.35% 14.84+3.18%

�5.27% 18.90+3.08%
�5.02% 43.14+2.71%

�4.45% 48.57+2.68%
�4.24%

TABLE I: The gluon fusion cross-section in picobarn in the e↵ective theory for di↵erent collider energies in the interval
[mH

4 ,mH ] around µ = mH
2 and in the interval [mH

2 , 2mH ] around µ = mH .

Given the substantial reduction of the scale uncertainty
at N3LO, the question naturally arises whether other
sources of theoretical uncertainty may contribute at a
similar level. In the remainder of this Letter we briefly
comment on this issue, leaving a more detailed quantita-
tive study for future work.

First, we note that given the small size of the N3LO
corrections compared to NNLO, we expect that an esti-
mate for the higher-order corrections at N4LO and be-
yond can be obtained from the scale variation uncer-
tainty. Alternatively, partial N4LO results can be ob-
tained by means of factorisation theorems for thresh-
old resummation. However, we expect that the insight
from resummation on the N4LO soft contributions is only

qualitative given the importance of next-to-soft, next-to-
next-to-soft and purely virtual contributions observed at
N3LO, as seen in Fig. 1.

Electroweak corrections to Higgs production have been
calculated through two loops in ref. [32], and estimated
at three loops in ref. [33]. They furnish a correction of
less than +5% to the inclusive cross-section. Thus, they
are not negligible at the level of accuracy indicated by
the scale variation at N3LO and need to be combined
with our result in the future. Mixed QCD-electroweak
or purely electroweak corrections of even higher order
are expected to contribute at the sub-percent level and
should be negligible.

Next, we have to comment on our assumption that the

First NNNLO result!



NNLO+PS
Simple cases work: proof of concept 

POWHEG+MiNLO 

UNNLOPS 

GENEVA (SCET based) 

With the sparkle of NNLO calculations, extensions 
should be possible 

Main obstacle towards a general-purpose NNLO+PS 
event generator: two-loop integrals

Hamilton, Nason, Re, Zanderighi (1309.0017)

Hoeche, Li, Prestel (1405.3607, 1407.3773)

Alioli, Bauer, Berggren, Tackmann, Walsh, Zuberi (1311.0286)



NNLO for e+e- colliders?
In the context of Higgs factories (CEPC, FCC-ee, ILC) 

Most important process: ZH production (per-mille 
experimental precision!) 

A lot of discussions on how to use ZH to search for 
BSM physics 

How about SM predictions? 

NLO EW: about -3% 

NNLO EW and QCD+EW?

Denner, Kühlbeck, Mertig, Böhm (1992)



QCD+EW for ZH

41 master integrals, most involve 4 mass scales 

Two methods: 

Expansion in 1/mt 

Numeric evaluation using sector decomposition 

Preliminary result: about -0.4% correction, similar in 
size to experimental precision!

Gong, Li, Xu, LLY (to appear)



Alternative to PS: analytic 
resummation

Direct analytic formulas for jet cross sections  

Can achieve high logarithmic accuracies (NNNLL) 

Cross-validation of parton shower results 

Hints for scale choices in event generators



Large corrections and 
scale hierarchy

M1

M2

Resummation is necessary whenever an observable 
involves several very different mass scales

↵n
s lnm(M1/M2)

An example: boosted tops

Pecjak, Scott, Wang, LLY: 1601.07020



Boosted kinematics
L = L0 +

X

n,i

cn,i
⇤4+n

On,i

4

For small pcutT , the coe�cients �, ✏ are very small, modifying the cross section only by a few percent, which
is less than the uncertainty expected in the inclusive Higgs cross section measurements [116–118]. This is
what is expected due to the very good description of both the top and the new particle loop by the e↵ective
interaction. On the other hand, �, ✏ grow significantly as pcutT increases, and they become O(1) for pcutT > 300
GeV [45]. It means we can break the degeneracy by measuring the Higgs pT distribution while we cannot break
the degeneracy along ct + g = const. direction only by determining the inclusive cross-section.

III. EVENT GENERATION

A. Signal sample

In this paper we consider H+jet events with subsequent H decays to WW ⇤ ! `+`�⌫⌫̄ and ⌧+⌧� modes as a
signal. The signal events are generated with MadGraph5, version 1.5.15 [119] and showered with HERWIG++ [120–
122], where only WW ⇤ and ⌧+⌧� decays are specified.

We have used MadGraph5 to generate H+jet events using the ‘HEFT’ model with SM couplings which makes
use of the low energy theorem. The generated cross-section is proportional to |M(0, 1)|2 and does not take into
account finite top mass e↵ects which are crucial to our analysis. To obtain the correct weight of the events we
reweighted them by a weight factor

w(ct,g) =
|M(ct,g)|2
|M(0, 1)|2 (10)

making use of our own code, which is based on an implementation of the formulas for the matrix elements
given in [115] and also calculated in [123]. At present no finite top mass NLO computation of the SM Higgs pT
spectrum is available. An exact NLO prediction of SM Higgs pT spectrum would be very desirable and help to
exploit the full potential of this observable. Recent progress in the precision prediction of h+ jet can be found
in Refs. [124–126]. We will approximate the NNLO (+ NNLL) result of 49.85 pb [127–130] by multiplying the
exact LO result with a K factor of 1.71.

We reweight the events for points along the line ct + g = 1 for g 2 [�0.5, 0.5] with steps of 0.1, as shown
in the left panel of Fig. 1. This is consistent with the SM inclusive Higgs production cross-section. The size
of ct alone is only weakly constrained by the current tt̄H measurement. Although we only consider the most
di�cult points satisfying ct+g = 1 (i.e. an exactly SM-like inclusive cross-section), an analysis along di↵erent
ct + g = const. lines would be straightforward as a di↵erent choice essentially just corresponds to an overall
rescaling of the signal.

‡‡
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FIG. 1. Left panel: model points generated for this analysis in (ct,g) plane. The shaded area shows parameter
space which gives the inclusive cross-section consistent to the SM prediction within 20%. Right panel: parton level pT,H

distributions for the SM, and (ct,g) = (1� g,g) with g = ±0.1,±0.3,±0.5.

• Tails of distributions 
sensitive to new physics 

• Testing the SM in the 
energy frontier 

• Important background to 
BSM scenarios

Schlaffer et al. (2014)



Producing boosted tops
Two dangerous contributions

quasi-collinear 
gluons

soft gluons

ln
ŝ�M2

tt̄

M2
tt̄

ln
m2

t

M2
tt̄



A tale of three scales
�̂
�
M2

tt̄, ŝ�M2
tt̄,m

2
t , µ

2
f

�

Mellin/Laplace transform

Question: what should μf be? 

�̂
�
M2

tt̄,M
2
tt̄/N̄

2,m2
t , µ

2
f

�
3 ln

M2
tt̄

µ2
f

, ln
M2

tt̄

N̄2µ2
f

, ln
m2

t

µ2
f

No good answer!

Factorization and resummation!



Double factorization

�̂(N,µf ) ⇠ Tr
⇥
H(Lh, µf )S(Ls, µf )

⇤
C2

D(Lc, µf )S
2
D(Lsc, µf )

ln
M2

µ2
f ln

M2

N̄2µ2
f

ln
m2

t

N̄2µ2
fln

m2
t

µ2
f

Boosted limit: M ≫ M/N, mt 

Emergence of a soft-collinear scale mt/N!



NNLL’ resummation
�̂(N,µf ) ⇠ Tr

⇥
U(µf , µh, µs)H(Lh, µh)U

†(µf , µh, µs)S(Ls, µs)
⇤

⇥ U2
D(µf , µc, µsc)C

2
D(Lc, µc)S

2
D(Lsc, µsc)

µf

µh

µs µc

µsc

• Combined with NNLL threshold 
resummation 

• Combined with NLO result 
• Applicable not only in the boosted 

region!



Compare to data
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Figure 8: Differential cross sections at parton level as a function of pT(t), |y(t)|, and M(tt̄)
compared to the predictions of an approximate NNNLO calculation [29, 30] and a NLO+NNLL’
calculation [31].
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Figure 4: Normalized differential tt̄ production cross section as a function of the pt
T (top) and

yt (bottom) of the top quarks or antiquarks. The inner (outer) error bars indicate the statistical
(combined statistical and systematic) uncertainty. The data are compared to predictions from
POWHEG V2 + PYTHIA8, MG5 aMC@NLO + PYTHIA8 [FxFx], MG5 aMC@NLO + PYTHIA8
[MLM], and POWHEG V2 + HERWIG++ (left), and to beyond-NLO QCD calculations [17–20]
(right), when available.
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Towards NNLO+NNLL’+PS 
event generators?

GENEVA: an ambitious SCET-
based approach 

NNLO+NNLL’ for Drell-Yan 

Not clear how to extend to, 
e.g., top pair

Alioli, Bauer, Berggren, Tackmann, Walsh (1508.01475)
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FIG. 7. Comparison of Geneva with NNLO transverse-
momentum distribution of the negatively charged lepton. The
orange curve shows the results from Dynnlo, while the black
histogram shows the Geneva result. For Geneva, the uncer-
tainties shown are the FO uncertainties as described in the
text.

a more accurate prediction. Finally, the region above
pT ` > m`+`�/2 can only be populated if the transverse
momentum of the vector boson is nonzero, making this
region only NLO accurate. Close to pT `

>⇠ m`+`�/2
Geneva lies above the FO prediction and converges back
to the FO result for large values of pT `. This is likely still
the e↵ect from the Sudakov shoulder at m`+`�/2. Since
the cross section above is much lower, any spillover from
below m`+`�/2 caused by the resummation can have a
large relative e↵ect.

C. 0-Jet Observables with Resummation

Since we resum our 0-jet resolution variable T0 to
NNLL0, it is interesting to study how accurately Geneva
is able to predict other observables sensitive to the
0/1�jet separation. Since the distribution for other
0�jet resolution variables is only obtained indirectly, via
the T0 spectrum made fully di↵erential by using split-
ting functions and a parton shower that are only correct
to LL, we cannot formally claim the same NNLL0 accu-
racy for these observables. However, since the overall
distribution of events in the 0/1-jet region of phase space
is clearly improved, we expect some of this accuracy to
carry over to other observables as well. Hence, we expect
to get predictions that are numerically much closer to

FIG. 8. Comparison of Geneva with the qT distribution from
DYqT. The NNLL+NLO1 (NLL+LO1) results from DYqT
are shown in blue (green), and the Geneva results are shown
in black. The Geneva results are much closer to DYqT’s
NNLL results than NLL results.

NNLL resummed results also for other 0-jet observables.
The same behaviour was already observed for e+e� [24].
In Fig. 8 we show the transverse momentum distribu-

tion of the vector boson compared to its analytic NNLL
resummation from DYqT. The predictions of DYqT
have been manually switched to agree with the FO re-
sults in the tail, according to the procedure outlined in
Ref. [82]. We see that Geneva agrees reasonably well
within the perturbative uncertainties with the NNLL re-
summed result.2 The NLL result from DYqT has a sig-
nificantly di↵erent shape, and the Geneva prediction is
certainly in much better agreement with the NNLL pre-
dictions than the NLL ones.
A similar prediction for the transverse momentum dis-

tribution, but fully di↵erential on the momenta of vector
boson decay products has been presented in Ref. [80].
This allows the direct comparison including the accep-

2 Although Geneva’s perturbative uncertainties appear smaller
than DYqT’s at very low qT , this should not be misinterpreted as
Geneva being more accurate here. This is mostly an artifact of
smearing out the uncertainties from a range of T0 values, which
tends to reduce their numerical impact. In addition, we have not
included here any uncertainties associated with the interface to
the parton shower and the showering itself. Such uncertainties
should eventually also be included as an additional part of the
(resummation) uncertainties. As this will require a dedicated
study, we leave this for future work.



Summary
NLO+PS now standard in MC community (thanks in 
part to advances in loop calculations) 

NNLO+PS for simple processes emerging 

Still far from general-purpose tools (requires major 
breakthroughs in loop calculations!) 

In certain cases it is necessary to go beyond LL: analytic 
resummation (boosted tops as an example) 

Possible to combine high-accuracy resummation and 
parton shower!



Thank you!


