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Introduction

I this talk is about methods aiming at improving the accuracy of “LO” Monte Carlo event
generators:

F when is this really important / needed?

I “matching” and “merging” are the keywords used to identify developments that took place
in the last ∼ 10 years:

F overview, with some details, of (some of) these methods
- not enough time to discuss all possible approaches. I’ve made a selection.

I event generators: simulate BSM signals and SM backgrounds:

I so far “matching” and “merging” applied mostly to SM processes:
- the theory uncertainty of SM predictions is (or will soon be) a limiting factor for “precision

Physics”, i.e. find a significant deviation from a very precise experimental measure.

I (part of) current effort is to apply/automatise these methods also to BSM processes.
I will show some examples. Some MC developers heavily involved in this task are at
this workshop!

- I’m here till Friday evening: any question, don’t hesitate!

- if you want to contact me by email: emanuele.re AT lapth.cnrs.fr

- Later today I’ll add a slide with a list of references.
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I matching and merging: when and why ?
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Introduction: bump search
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I s-channel resonance “easy” to discover:

- Higgs discovery in γγ and ZZ
- the “750 GeV diphoton bump”

I for discovery, one needs denough ata (possibly on both side of the bump) and (maybe) a
fixed-order (N)LO prediction for the background.

I after discovery, characterization requires more theory input (rates, shapes, jet-binned
x-sections), hence also more precise tools:

...let’s see this with an example...
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Introduction: Higgs characterization
I need to know expected signal events, precisely and with an associated theory

uncertainty:

- higher-order corrections

I S/B optimized using cuts/BDT: at times this implies probing phase space regions with
widely separated scales:

- large logs arise, need to resum them. PS do this in a fully differential way.

W

W

⇒ NLO+PS “matching” methods include both effects and allow for flexible and fully
differential simulations.

⇒ for Higgs studies, NNLO+PS would be desirable, and it is available
...to this end merging NLO+PS computations for different multipicities is necessary...
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Introduction: excess in pT tail
I ME+PS merging is particularly important to model “S+jets” processes, where:

I S = hard system = {`,ν,V ,t}
I jets are from QCD emissions (as opposed to jets from SUSY cascades)

I it becomes crucial to model kinematics regions characterized by variable number of jets:
I cuts on HT = ...+

∑
all jets

|~pT,j | and/or tails of pT distributions

LO+PS NLO+PS merging

plot from [Gianotti,Mangano 0504221] tt̄+jets:Sherpa+OpenLoops [Hoeche,Krauss et al. 1402.6293]
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I NLO+PS matching
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LO+PS in a nutshell

dσSMC = B(Φn) dΦn︸ ︷︷ ︸
dσB

{

∆(tmax, t0) + ∆(tmax, t)dPemis(t){∆(t, t0) + ∆(t, t′)dPemis(t
′)︸ ︷︷ ︸

t′<t

}

}

∆(tmax, t) = exp

{
−
∫ tmax

t
dΦ′r

αs

2π

1

t′
P (z′)

}
SMC Sudakov form factor

dPemis(t) =
αs

2π

1

t
P (z) dΦr

emission probability at scale t

This is “LOPS”

- shapes change (all-order effect!), but overall normalization fixed: it stays LO (unitarity)

- they are only LO+LL accurate (whereas we want (N)NLO QCD corrections)
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Next-to-Leading Order in a nutshell

αS ∼ 0.1⇒ to improve the accuracy, use exact perturbative expansion

dσ = dσLO +
(αS

2π

)
dσNLO +

(αS

2π

)2
dσNNLO + ...

LO: Leading Order
NLO: Next-to-Leading Order
...

dσ = dΦn
{

B(Φn)︸ ︷︷ ︸
LO

+
αs

2π

[
V (Φn) + R(Φn+1) dΦr︸ ︷︷ ︸

NLO

] }

I in reality, the above equation is implemented as follows:

dσ = dΦn

{
B(Φn) +

αs

2π

[
V (Φn) +

∫
dΦrC(Φn,Φr)

]}
+

αs

2π
dΦn+1

[
R(Φn+1)− C(Φn,Φr)

]
where C(Φn,Φr) has the same soft/collinear singular behaviour of R, and it can be integrated explicitly over Φr .

� Why NLO is important?

I first order where rates are reliable
I shapes are, in general, better described
I possible to attach sensible theoretical

uncertainties [ done typically by changing
ren. and fac. scales ]

� When NNLO is needed?
I NLO corrections large
I very high-precision needed

⇒ Drell-Yan, Higgs, tt̄ production

plot from [Anastasiou et al., ’03]
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PS vs. NLO

NLO

! precision

! nowadays this is the standard

% limited multiplicity

% (fail when resummation needed)

parton showers

! realistic + flexible tools

! widely used by experimental coll’s

% limited precision (LO)

% (fail when multiple hard jets)
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PS vs. NLO

� can we match them and build an NLOPS generator?

Problem:

- overlapping regions!

NLO:

⊗

PS:

- double-counting also for virtual corrections: first order expansion
of Sudakov FF for fully unresolved emission ∆(t, t0)

! many proposals, 2 well-established methods available to solve this problem:
MC@NLO and POWHEG [Frixione-Webber ’03, Nason ’04]
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NLOPS: MC@NLO

dσS,n = dΦn
{
B(Φn) +

αs
2π

[
V (Φn) +

∫
RMC(Φn+1) dΦr

]}

dσLOPS = dΦn B(Φn)

{
∆(tmax, t0) + ∆(tmax, t)

αs
2π

1

t
P (z) dΦr

}

dσMC@NLO = dσS,n(Φn)⊗ PS(Φn) + dσH,n(Φn+1)⊗ PS(Φn+1)

dσH,n = dΦn+1
αs
2π

[
R(Φn+1)−RMC(Φn+1)

]

RMC dΦn+1 ' B(Φn)
1

t
P (z) dΦn dΦr
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NLOPS: POWHEG

B(Φn)⇒ B̄(Φn) = B(Φn) +
αs
2π

[
V (Φn) +

∫
R(Φn+1) dΦr

]

+

dσLOPS = dΦn B(Φn)

{
∆(tmax, t0) + ∆(tmax, t)

αs
2π

1

t
P (z) dΦr

}

dσPOW = dΦn B̄(Φn)

{
∆(Φn; kmin

T ) + ∆(Φn; kT)
αs
2π

R(Φn,Φr)

B(Φn)
dΦr ⊗PS(Φn+1)

}

[+ pT-vetoing subsequent emissions, to avoid double-counting]

↔

∆(tm, t)⇒ ∆(Φn; kT) = exp
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−αs

2π

∫
R(Φn,Φ

′
r)

B(Φn)
θ(k′T − kT) dΦ′r
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NLOPS: summary

- inclusive observables: @NLO

- first hard emission: full tree level ME

- (N)LL resummation of collinear/soft logs

- extra jets in the shower approximation (LL)

This is “NLOPS”
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NLOPS: summary
By now NLO+PS tools are well established:

I POWHEG and MC@NLO usually agree well. When differences arise, they are usually
understood, and they are typically due to terms beyond the nominal accuracy.

I NLO+PS is not yet a closed chapter; some important issues are still being addressed
- W+W−bb̄ @ NLOPS [Jezo,Nason, et al, this week!]

I in general, however, any process pp→ X can be simulated at NLO+PS accuracy
I X can contain jets. If it contains N jets, it’s not possible to describe observables

with n < N jets.

I available tools:
I POWHEG based: POWHEG-BOX, PowHel, Matchbox/Herwig++
I MC@NLO based: MG5 aMC@NLO, Sherpa-MC@NLO, Matchbox/Herwig++
I other methods: Geneva, KrK-NLO

monojet / DM@LHC

gluino pair productiongluino pair production [Degrande,Fuks et al. ’15]
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I multijet merging [ (N)LO+PS merging ]
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multijet merging
I typical background for many BSM signatures is “heavy object” + many jets

[Gianotti,Mangano hep-ph/0504221]

I relying on PS for tail of distributions is very
dangerous, especially in a multijet environment

I CKKW(-L) and MLM methods address this
issue at LO:
- merge exact LO matrix elements for different
multiplicities
- very important for observables like HT

especially when not possible to use data-driven methods

I ME generators: Alpgen, MadGraph, Sherpa

- for at least one of them (typically both),
interface/implementation available in
general-purpose parton-shower program

I suppose LHC finds a small excess in HT for some SUSY search (e.g. /ET + jets)
- what is the theoretical uncertainty of backgrounds?
- extending merging to NLO becomes important...
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multijet merging at LO: CKKW in a nutshell
Fix a merging scale QMS, to separate ME and PS domains.

I start from ME weight
B(Φn), respecting
QMS constraint

I find “most-likely”
shower history (via
kT -algo)

I clustering scale
q1 = kT

I clustering scale
q2 = kT

I clustering scale
q3 = kT

I Hard process
scale Q

I most-likely shower
history
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CKKW in a nutshell II
I original weight B(Φn)⇒ “most-likely” shower history (via kT -algo): Q > q3 > q2 > q1

q1

q2

q3

Q

I New weight:

α5
S(Q)B(Φ3) → α2

S(Q)B(Φ3)
∆g(Q0, Q)

∆g(Q0, q2)

∆g(Q0, Q)

∆g(Q0, q3)

∆g(Q0, q3)

∆g(Q0, q1)

∆g(Q0, q2)∆g(Q0, q2)∆g(Q0, q3)∆g(Q0, q1)∆g(Q0, q1)

αS(q1)αS(q2)αS(q3)

where Q0 ≡ QMS and typically

log ∆f(qT , Q) = −
∫ Q2

q2
T

dq2

q2

αS(q2)

2π

[
A1,f log

Q2

q2
+B1,f

]
I Fill phase space below Q0 with vetoed shower

(for highest multiplicity sample Q0 = q1 ; PS initial scale should be nodal scale at which parton was “created”)

I This procedure guarantees that dependence upon QMS is beyond NLL (proved for e+e−)
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LO+PS merging: a BSM example
I DM production at the LHC: scalar/pseudoscalar mediator. Usually: monojet search.
� these are “QCD” jets !

I analysis based on variable number of jets (HT based) are potentially very powerful

[Buchmueller,Malik,McCabe,Penning ’15]

I for loop-induced processes: automation is now available
[Hirschi,Mattelaer ’15, Mattelaer,Vryonidou ’15 - also earlier studies with Sherpa]

. the formal accuracy is leading-order

. theoretical uncertainties will not be in general very small

. however, shapes will be modelled properly!

I a-priori, dangerous to rely on a description mostly done by parton-shower
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multijet merging at NLO

I multijet merging at NLO is more complicated than at LO, and more subtle:
the matrix element “pp→ S + (n+ 1) partons” enters in

- real emission for “pp→ S + n partons” @ NLO

- Born contribution for “pp→ S + (n+ 1) partons” @ NLO

I methods: MEPS@NLO, FxFx, UNLOPS, Geneva, POWHEG+MiNLO, Vincia

I similarly to LO, many of these methods use a merging scale (QMS):
a bad choice of merging scale can spoil the formal accuracy

- typically this can happen if αS log
2
(QMS/Q) ' 1:

when L ' 1/
√
αS, uncontrolled NNLL logs α2

SL scale as α1.5
S (and not as α2

S).

- to avoid any formal issue, one needs either to not have QMS at all, or have a very precise control
of logarithmic structure (beyond the PS accuracy)

- not having QMS requires control of NNLL terms (or at least part thereof)

- if QMS is present, include the uncertainty due to its choice

I for simple processes (color-singlet production), the development of these techniques lead
to match PS with NNLO computations (NNLO+PS)
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“FxFx” method
[Frixione,Frederix, ’12]

dσ̄S,0 = B0 + V0 +B0KMCΘ(d1 < QMS)

dσ̄H,0 =
[
B1 −B0KMC

]
Θ(d1 < QMS)

dσ̄S,1 =
[
B1 + V1 +B1KMC

]
Θ(QMS < d1)

dσ̄H,1 =
[
B2 −B1KMC

]
Θ(QMS < d1)

I limit contribution of (H, 0) events to
region below QMS

I prescriptions for shower starting
scale

I possible to include Sudakov
reweighting á la CKKW

I “unitarity” not imposed
I possible to iterate

I fully inclusive result:
- differences typically . 1% among
different merging scales
- quite good agreement with
inclusive NLO+PS too

I when Sudakov reweighting applied:

dσ̂S,1 =
(
dσ̄S,1 + dσ

(∆)
1

)
∆(Φ1 → Φ0)

dσ̂H,1 = dσ̄H,1 ∆(Φ1 → Φ0)

where
dσ

(∆)
1 = −B1∆

(1)
(Φ1 → Φ0),

∆ are CKKW Sudakov factors, and ∆
(1) is the Sudakov expanded at 1st order.

I Above QMS the tail is NLO accurate. For not-too-small QMS, the integral is NLO accurate.

I merging NLO+PS for V production with MINLO for V + 1 jet, at “merging scale” QMS.
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MadGrapg5 aMC@NLO: FxFx merging
F V + 0,1,2,(3,4) jets: extensive phenomenological study published recently

[Frederix,Frixione,Papaefstathiou,Prestel,Torrielli ’15]

I estimation of perturbative uncertainty + shower “uncertainty”

1. QMS dependence is at most 1.5%. FxFx total typically 3-6% larger than exact inclusive
NLO+PS

2. once V + 2 jets at NLO+PS is included, also higher jet multiplicities are described
reasonably well

3. the inclusive NLO+PS result depends much more on the PS used
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Sherpa: MEPS@NLO
I similar to FxFx: generate MC@NLO samples, and separate their domain of validity using

merging scale QMS

I dΦn+1 receives contribution from Hn-events below QMS and from Sn+1 above QMS

I procedure can be iterated
Uncertainties

- µR and µF scale variation
- shower (“resummation”) scale: upper limit of parton evolution
- merging scale

F V + 0,1,2,(3,4) jets [Hoeche,Krauss,Schoenherr,Siegert ’12]
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MiNLO

Multiscale Improved NLO [Hamilton,Nason,Zanderighi ’12]

I original goal: method to a-priori choose scales in multijet NLO computation
I non-trivial task, since phase space is by construction probed also in presence of widely

separated energy scales

I how: correct weights of different NLO terms with CKKW-inspired approach (without
spoiling formal NLO accuracy)

- for each point sampled, build the “more-likely” shower history that would have
produced that kinematics (can be done by clustering kinematics with kT -algo, then,
by undoing the clustering, build “skeleton”)

- “correct” original NLO à la CKKW:
→ αS evaluated at nodal scales
→ Sudakov FFs

B̄NLO = α3
S(µR)

[
B + αSV (µR) + αS

∫
dΦrR

]
B̄MiNLO = α2

S(mh)αS(qT )∆2
g(qT ,mh)

[
B
(

1− 2∆
(1)
g (qT ,mh)

)
+ αS V (µ̄R) + αS

∫
dΦrR

]

. µ̄R = (m
2
hqT )

1/3

. log ∆f (qT ,mh) = −
∫ m2

h

q2
T

dq2

q2

αS(q2)

2π

[
Af log

m2
h

q2
+ Bf

]

. ∆
(1)
f

(qT ,mh) = −
αS

2π

[ 1

2
A1,f log

2 m
2
h

q2
T

+ B1,f log
m2

h

q2
T

]
. µF = qT

� Sudakov FF included on H+j
Born kinematics

I MiNLO-improved HJ yields finite results also when 1st jet is unresolved (qT → 0)
I B̄MiNLO ideal to extend validity of HJ-POWHEG [called “HJ-MiNLO” hereafter]
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I original goal: method to a-priori choose scales in multijet NLO computation

I non-trivial task, since phase space is by construction probed also in presence of widely
separated energy scales

I how: correct weights of different NLO terms with CKKW-inspired approach (without
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“Improved” MiNLO & NLOPS merging

I formal accuracy of HJ-MiNLO for inclusive observables carefully investigated
I HJ-MiNLO describes inclusive observables at order αS

I to reach genuine NLO when fully inclusive (NLO(0)), “spurious” terms must be of relative
order α2

S, i.e.

OHJ−MiNLO = OH@NLO +O(α2+2
S ) if O is inclusive

I “Original MiNLO” contains ambiguous “O(α2+1.5
S )” terms

I Possible to improve HJ-MiNLO such that inclusive NLO is recovered (NLO(0)), without
spoiling NLO accuracy of H+j (NLO(1)).

I accurate control of subleading NNLL small-pT logarithms is needed
(scaling in low-pT region is αSL

2 ∼ 1, i.e. L ∼ 1/
√
αS !)

Effectively as if we merged NLO(0) and NLO(1) samples, without merging different
samples (no merging scale used: there is just one sample).

I these terms are process dependent, and not known analytically for complex processes:

for non-color-singlet production, possible to effectively extract them numerically [Frederix,Hamilton ’15]
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MiNLO merging: results

[Hamilton et al., 1212.4504]
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I “H+Pythia”: standalone POWHEG (gg → H) + PYTHIA (PS level) [7pts band, µ = mH ]
I “HJ+Pythia”: HJ-MiNLO* + PYTHIA (PS level) [7pts band, µ from MiNLO]

I very good agreement (both value and band) [!]

� Notice: band is ∼ 20− 30%...this is Higgs at NLO!
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UNLOPS
I keyword: “unitarity” (preserve NLO inclusive cross section) [Lonnblad,Prestel ’12 , Platzer ’12]

I method: promote to NLO accuracy an “unitarised” CKKW approach, by carefully adding
higher order contributions, and removing the pre-existing approximate αS terms

1. start from UMEPS merging at LO
2. remove terms that will be included exactly, and add NLO (exclusive) computations
3. unitarise

I can be iterated to higher multiplicities
I by construction, essentially no dependence on merging scale on inclusive cross section

I full exploitation will also be the main focus in Herwig 7 in the near future [Platzer et al.]
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Geneva
I new approach, SCET inspired [Alioli,Bauer,Berggren,Hornig,Tackmann,Vermilion,Walsh,Zuberi ’12]

I idea: separate exclusive N -jet and inclusive (N + 1)-jet regions using variable whose
resummation is known at high order (“n-jettiness”)

where

I no “dangerous” merging scale dependence, thanks to higher-order resummation for τN
I to retain formal accuracy, PS evolution very constrained: τN has to stay ∼ unchanged
I can be extended to higher multiplicities

I implemented for e+e− and for Drell-Yan
I the method was also formulated to achieve NNLO+PS accuracy (results shown later)
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NNLO+PS
I some of the above approaches allow(ed) to achieve NNLO+PS matching!

I “just” NLO sometimes is not enough
I NNLO is the frontier

[Anastasiou et al., ’03] [Anastasiou et al., ’04-’05]

I these developments don’t have an immediate application for direct BSM searches
I however important for “indirect searches”, through precise measurements of SM and

Higgs processes:
I large NLO K-factors (Higgs production→ Higgs characterization)
I precision Physics (PDF extraction, W -mass measurement)
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NNLO+PS Higgs production [POWHEG+MiNLO]

[Hamilton,Nason,ER,Zanderighi, 1309.0017]
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I uncertainty band is 10% (at NLO it was ∼ 20-30% !)
I nice agreement also with NNLL jet-veto resummed result, differences never more than

5-6%
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NNLO+PS Drell-Yan [UNNLOPS]

I NNLOPS obtained also upgrading UNLOPS to UNNLOPS [Hoeche,Li,Prestel ’14]
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NNLO+PS Drell-Yan [Geneva]

[Alioli,Bauer,Berggren,Tackmann,Walsh, ’15]
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conclusions

I Monte Carlo tools play a major role for LHC searches

I especially if no “smoking gun” new-Physics around the corner, precision will be
the key to maximise impact of LHC results

I huge amount of improvements over the last few years in the community

I NLO+PS tools are by now well established and very mature
- by now they are basically automated also for BSM processes

I major developments in last 3-4 years: NLOPS multijet merging
- it might play a very important role in absence of smoking-gun BSM signal

I NNLO+PS is doable, at least for color-singlet production.

Thank you for your attention!
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Extra slides
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“Improved” MiNLO & NLOPS merging: details
I Resummation formula

dσ

dq2
T dy

= σ0
d

dq2
T

{
[Cga ⊗ fa](xA, qT )× [Cgb ⊗ fb](xB , qT )× expS(qT , Q)

}
+Rf

S(qT , Q) = −2

∫ Q2

q2
T

dq2

q2

αS(q2)

2π

[
Af log

Q2

q2
+Bf

]
I If C(1)

ij included and Rf is LO(1), then upon integration we get NLO(0)

I Take derivative, then compare with MiNLO :

∼ σ0
1

q2
T

[αS, α
2
S , α3

S, α
4
S, αSL,α

2
SL,α

3
SL,α

4
SL] expS(qT , Q) +Rf L = log(Q2/q2

T )

I highlighted terms are needed to reach NLO(0):∫ Q2
dq2
T

q2
T

LmαS
n(qT ) expS ∼

(
αS(Q2)

)n−(m+1)/2

(scaling in low-pT region is αSL
2 ∼ 1!)

I if I don’t include B2 in MiNLO ∆g , I miss a term (1/q2
T ) α2

S B2 expS

I upon integration, violate NLO(0) by a term of relative O(α
3/2
S )
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