Matching and Merging

Emanuele Re

LAPTh Annecy

MC4BSM 2016, UCAS, Beijing, 20 July 2016

Introduction

- this talk is about methods aiming at improving the accuracy of "LO" Monte Carlo event generators:
\star when is this really important / needed?
- "matching" and "merging" are the keywords used to identify developments that took place in the last ~ 10 years:
\star overview, with some details, of (some of) these methods
- not enough time to discuss all possible approaches. I've made a selection.
- event generators: simulate BSM signals and SM backgrounds:
- so far "matching" and "merging" applied mostly to SM processes:
- the theory uncertainty of SM predictions is (or will soon be) a limiting factor for "precision Physics", i.e. find a significant deviation from a very precise experimental measure.
- (part of) current effort is to apply/automatise these methods also to BSM processes. I will show some examples. Some MC developers heavily involved in this task are at this workshop!
- I'm here till Friday evening: any question, don't hesitate!
- if you want to contact me by email: emanuele.re AT lapth.cnrs.fr
- Later today I'll add a slide with a list of references.
- matching and merging: when and why ?

Introduction: bump search

- s-channel resonance "easy" to discover:
- Higgs discovery in $\gamma \gamma$ and $Z Z$
- the " 750 GeV diphoton bump"
- for discovery, one needs denough ata (possibly on both side of the bump) and (maybe) a fixed-order (N)LO prediction for the background.
- after discovery, characterization requires more theory input (rates, shapes, jet-binned x-sections), hence also more precise tools:
...let's see this with an example...

Introduction: Higgs characterization

- need to know expected signal events, precisely and with an associated theory uncertainty:
- higher-order corrections

Introduction: Higgs characterization

- need to know expected signal events, precisely and with an associated theory uncertainty:
- higher-order corrections
- S/B optimized using cuts/BDT: at times this implies probing phase space regions with widely separated scales:
- large logs arise, need to resum them. PS do this in a fully differential way.

Introduction: Higgs characterization

- need to know expected signal events, precisely and with an associated theory uncertainty:
- higher-order corrections
- S/B optimized using cuts/BDT: at times this implies probing phase space regions with widely separated scales:
- large logs arise, need to resum them. PS do this in a fully differential way.

Introduction: Higgs characterization

- need to know expected signal events, precisely and with an associated theory uncertainty:
- higher-order corrections
- S/B optimized using cuts/BDT: at times this implies probing phase space regions with widely separated scales:
- large logs arise, need to resum them. PS do this in a fully differential way.

\Rightarrow NLO + PS "matching" methods include both effects and allow for flexible and fully ${ }^{N_{\text {jets }}}$ differential simulations.

Introduction: Higgs characterization

- need to know expected signal events, precisely and with an associated theory uncertainty:
- higher-order corrections
- S/B optimized using cuts/BDT: at times this implies probing phase space regions with widely separated scales:
- large logs arise, need to resum them. PS do this in a fully differential way.

\Rightarrow NLO + PS "matching" methods include both effects and allow for flexible and fully ${ }^{N_{\text {jets }}}$ differential simulations.
\Rightarrow for Higgs studies, NNLO+PS would be desirable, and it is available ...to this end merging NLO +PS computations for different multipicities is necessary...

Introduction: excess in p_{T} tail

- ME+PS merging is particularly important to model " $S+$ jets" processes, where:
- S = hard system $=\{\ell, \nu, V, t\}$
- jets are from QCD emissions (as opposed to jets from SUSY cascades)
- it becomes crucial to model kinematics regions characterized by variable number of jets:
- cuts on $H_{T}=\ldots+\sum_{\text {all jets }}\left|\vec{p}_{T, j}\right|$ and/or tails of p_{T} distributions

LO+PS

 plot from [Gianotti,Mangano 0504221]

NLO+PS merging

$t \bar{t}+$ jets:Sherpa+OpenLoops [Hoeche,Krauss et al. 1402.6293]

- NLO+PS matching

LO+PS in a nutshell

$$
d \sigma_{\mathrm{SMC}}=\underbrace{B\left(\Phi_{n}\right) d \Phi_{n}}_{d \sigma_{B}}\{
$$

LO+PS in a nutshell

$$
d \sigma_{\mathrm{SMC}}=\underbrace{B\left(\Phi_{n}\right) d \Phi_{n}}_{d \sigma_{B}}\left\{\Delta\left(t_{\max }, t_{0}\right)\right.
$$

$$
\Delta\left(t_{\max }, t\right)=\exp \left\{-\int_{t}^{t_{\max }} d \Phi_{r}^{\prime} \frac{\alpha_{s}}{2 \pi} \frac{1}{t^{\prime}} P\left(z^{\prime}\right)\right\}
$$

SMC Sudakov form factor

LO+PS in a nutshell

$$
d \sigma_{\mathrm{SMC}}=\underbrace{B\left(\Phi_{n}\right) d \Phi_{n}}_{d \sigma_{B}}\left\{\Delta\left(t_{\max }, t_{0}\right)+\Delta\left(t_{\mathrm{max}}, t\right) d \mathcal{P}_{\mathrm{emis}}(t)\right.
$$

$$
\Delta\left(t_{\max }, t\right)=\exp \left\{-\int_{t}^{t_{\max }} d \Phi_{r}^{\prime} \frac{\alpha_{s}}{2 \pi} \frac{1}{t^{\prime}} P\left(z^{\prime}\right)\right\}
$$

SMC Sudakov form factor

$$
\begin{aligned}
& d \mathcal{P}_{\mathrm{emis}}(t)=\frac{\alpha_{s}}{2 \pi} \frac{1}{t} P(z) d \Phi_{r} \\
& \text { emission probability at scale } t
\end{aligned}
$$

LO+PS in a nutshell

$d \sigma_{\mathrm{SMC}}=\underbrace{B\left(\Phi_{n}\right) d \Phi_{n}}_{d \sigma_{B}}\{\Delta\left(t_{\max }, t_{0}\right)+\Delta\left(t_{\max }, t\right) d \mathcal{P}_{\mathrm{emis}}(t)\{\underbrace{\Delta\left(t, t_{0}\right)+\Delta\left(t, t^{\prime}\right) d \mathcal{P}_{\mathrm{emis}}\left(t^{\prime}\right)}_{t^{\prime}<t}\}\}$

$$
\Delta\left(t_{\max }, t\right)=\exp \left\{-\int_{t}^{t_{\max }} d \Phi_{r}^{\prime} \frac{\alpha_{s}}{2 \pi} \frac{1}{t^{\prime}} P\left(z^{\prime}\right)\right\}
$$

SMC Sudakov form factor

$$
d \mathcal{P}_{\mathrm{emis}}(t)=\frac{\alpha_{s}}{2 \pi} \frac{1}{t} P(z) d \Phi_{r}
$$

$$
\text { emission probability at scale } t
$$

LO+PS in a nutshell

$d \sigma_{\mathrm{SMC}}=\underbrace{B\left(\Phi_{n}\right) d \Phi_{n}}_{d \sigma_{B}}\{\Delta\left(t_{\max }, t_{0}\right)+\Delta\left(t_{\max }, t\right) d \mathcal{P}_{\mathrm{emis}}(t)\{\underbrace{\Delta\left(t, t_{0}\right)+\Delta\left(t, t^{\prime}\right) d \mathcal{P}_{\mathrm{emis}}\left(t^{\prime}\right)}_{t^{\prime}<t}\}\}$

$$
\Delta\left(t_{\max }, t\right)=\exp \left\{-\int_{t}^{t_{\max }} d \Phi_{r}^{\prime} \frac{\alpha_{s}}{2 \pi} \frac{1}{t^{\prime}} P\left(z^{\prime}\right)\right\}
$$

SMC Sudakov form factor

$$
d \mathcal{P}_{\mathrm{emis}}(t)=\frac{\alpha_{s}}{2 \pi} \frac{1}{t} P(z) d \Phi_{r}
$$

$$
\text { emission probability at scale } t
$$

LO+PS in a nutshell

$d \sigma_{\mathrm{SMC}}=\underbrace{B\left(\Phi_{n}\right) d \Phi_{n}}_{d \sigma_{B}}\{\Delta\left(t_{\max }, t_{0}\right)+\Delta\left(t_{\max }, t\right) d \mathcal{P}_{\mathrm{emis}}(t)\{\underbrace{\Delta\left(t, t_{0}\right)+\Delta\left(t, t^{\prime}\right) d \mathcal{P}_{\mathrm{emis}}\left(t^{\prime}\right)}_{t^{\prime}<t}\}\}$

$$
\Delta\left(t_{\max }, t\right)=\exp \left\{-\int_{t}^{t_{\max }} d \Phi_{r}^{\prime} \frac{\alpha_{s}}{2 \pi} \frac{1}{t^{\prime}} P\left(z^{\prime}\right)\right\}
$$

SMC Sudakov form factor

$$
d \mathcal{P}_{\mathrm{emis}}(t)=\frac{\alpha_{s}}{2 \pi} \frac{1}{t} P(z) d \Phi_{r}
$$

$$
\text { emission probability at scale } t
$$

LO+PS in a nutshell

$d \sigma_{\mathrm{SMC}}=\underbrace{B\left(\Phi_{n}\right) d \Phi_{n}}_{d \sigma_{B}}\{\Delta\left(t_{\max }, t_{0}\right)+\Delta\left(t_{\max }, t\right) d \mathcal{P}_{\mathrm{emis}}(t)\{\underbrace{\Delta\left(t, t_{0}\right)+\Delta\left(t, t^{\prime}\right) d \mathcal{P}_{\mathrm{emis}}\left(t^{\prime}\right)}_{t^{\prime}<t}\}\}$

$$
\Delta\left(t_{\max }, t\right)=\exp \left\{-\int_{t}^{t_{\max }} d \Phi_{r}^{\prime} \frac{\alpha_{s}}{2 \pi} \frac{1}{t^{\prime}} P\left(z^{\prime}\right)\right\}
$$

SMC Sudakov form factor

This is "LOPS"

- shapes change (all-order effect!), but overall normalization fixed: it stays LO (unitarity)
- they are only LO+LL accurate (whereas we want (N)NLO QCD corrections)

Next-to-Leading Order in a nutshell

$\alpha_{\mathrm{S}} \sim 0.1 \Rightarrow$ to improve the accuracy, use exact perturbative expansion

$$
d \sigma=d \sigma_{\mathrm{LO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right) d \sigma_{\mathrm{NLO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{2} d \sigma_{\mathrm{NNLO}}+\ldots
$$

LO: Leading Order
NLO: Next-to-Leading Order

Next-to-Leading Order in a nutshell

$\alpha_{\mathrm{S}} \sim 0.1 \Rightarrow$ to improve the accuracy, use exact perturbative expansion

$$
d \sigma=d \sigma_{\mathrm{LO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right) d \sigma_{\mathrm{NLO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{2} d \sigma_{\mathrm{NNLO}}+\ldots
$$

LO: Leading Order
NLO: Next-to-Leading Order

Next-to-Leading Order in a nutshell

$\alpha_{\mathrm{S}} \sim 0.1 \Rightarrow$ to improve the accuracy, use exact perturbative expansion

$$
d \sigma=d \sigma_{\mathrm{LO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right) d \sigma_{\mathrm{NLO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{2} d \sigma_{\mathrm{NNLO}}+\ldots
$$

LO: Leading Order

NLO: Next-to-Leading Order
$d \sigma=d \sigma_{\mathrm{LO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right) d \sigma_{\mathrm{NLO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{2} d \sigma_{\mathrm{NNLO}}+\ldots$

$$
d \sigma=d \Phi_{n}\{\underbrace{B\left(\Phi_{n}\right)}_{\mathrm{LO}}+\quad \frac{\alpha_{s}}{2 \pi}[\underbrace{V\left(\Phi_{n}\right)+R\left(\Phi_{n+1}\right) d \Phi_{r}}_{\mathrm{NLO}}]
$$

- in reality, the above equation is implemented as follows:

$$
\begin{aligned}
d \sigma & =d \Phi_{n}\left\{B\left(\Phi_{n}\right)+\frac{\alpha_{s}}{2 \pi}\left[V\left(\Phi_{n}\right)+\int d \Phi_{r} C\left(\Phi_{n}, \Phi_{r}\right)\right]\right\} \\
& +\frac{\alpha_{s}}{2 \pi} d \Phi_{n+1}\left[R\left(\Phi_{n+1}\right)-C\left(\Phi_{n}, \Phi_{r}\right)\right]
\end{aligned}
$$

where $C\left(\Phi_{n}, \Phi_{r}\right)$ has the same soft/collinear singular behaviour of R, and it can be integrated explicitly over Φ_{r}.

Next-to-Leading Order in a nutshell

$\alpha_{\mathrm{S}} \sim 0.1 \Rightarrow$ to improve the accuracy, use exact perturbative expansion

$$
d \sigma=d \sigma_{\mathrm{LO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right) d \sigma_{\mathrm{NLO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{2} d \sigma_{\mathrm{NNLO}}+\ldots
$$

LO: Leading Order
NLO: Next-to-Leading Order

Why NLO is important?

- first order where rates are reliable
- shapes are, in general, better described
- possible to attach sensible theoretical uncertainties [done typically by changing ren. and fac. scales]

Next-to-Leading Order in a nutshell

$\alpha_{S} \sim 0.1 \Rightarrow$ to improve the accuracy, use exact perturbative expansion

$$
d \sigma=d \sigma_{\mathrm{LO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right) d \sigma_{\mathrm{NLO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{2} d \sigma_{\mathrm{NNLO}}+\ldots
$$

LO: Leading Order
NLO: Next-to-Leading Order

Why NLO is important?

- first order where rates are reliable
- shapes are, in general, better described
- possible to attach sensible theoretical uncertainties [done typically by changing o ren. and fac. scales]

When NNLO is needed?

- NLO corrections large
- very high-precision needed

plot from [Anastasiou et al., '03]
\Rightarrow Drell-Yan, Higgs, $t \bar{t}$ production

PS vs. NLO

NLO

\checkmark precision
\checkmark nowadays this is the standard
X limited multiplicity
X (fail when resummation needed)

parton showers

\checkmark realistic + flexible tools
\checkmark widely used by experimental coll's
X limited precision (LO)
X (fail when multiple hard jets)

NLO

\checkmark precision
\checkmark nowadays this is the standard
X limited multiplicity
X (fail when resummation needed)

parton showers

realistic + flexible tools
widely used by experimental coll's
X limited precision (LO)
X (fail when multiple hard jets)

PS vs. NLO

NLO

precision

nowadays this is the standard
X limited multiplicity
X (fail when resummation needed)

parton showers

\checkmark realistic + flexible tools
widely used by experimental coll's
X limited precision (LO)
X (fail when multiple hard jets)

傕 can we match them and build an NLOPS generator?
Problem:

傕 can we match them and build an NLOPS generator?
Problem: - overlapping regions!

㽣 can we match them and build an NLOPS generator?
Problem: - overlapping regions!

NLO:

傕 can we match them and build an NLOPS generator?
Problem: - overlapping regions!

- double-counting also for virtual corrections: first order expansion of Sudakov FF for fully unresolved emission $\Delta\left(t, t_{0}\right)$

傕 can we match them and build an NLOPS generator?
Problem: - overlapping regions!

- double-counting also for virtual corrections: first order expansion of Sudakov FF for fully unresolved emission $\Delta\left(t, t_{0}\right)$
\checkmark many proposals, 2 well-established methods available to solve this problem:

$$
d \sigma_{\mathrm{LOPS}}=d \Phi_{n} \quad B\left(\Phi_{n}\right) \quad\left\{\Delta\left(t_{\max }, t_{0}\right)+\Delta\left(t_{\max }, t\right) \frac{\alpha_{s}}{2 \pi} \frac{1}{t} P(z) d \Phi_{r}\right\}
$$

$$
d \sigma_{\mathrm{MC@NLO}}=d \sigma_{\mathrm{S}, n}\left(\Phi_{n}\right) \otimes P S\left(\Phi_{n}\right)+d \sigma_{H, n}\left(\Phi_{n+1}\right) \otimes P S\left(\Phi_{n+1}\right)
$$

NLOPS: MC@NLO

$$
\begin{aligned}
& d \sigma_{\mathbb{S}, n}=d \Phi_{n}\left\{B\left(\Phi_{n}\right)+\frac{\alpha_{s}}{2 \pi}\left[V\left(\Phi_{n}\right)+\int R_{M C}\left(\Phi_{n+1}\right) d \Phi_{r}\right]\right\} \\
& d \sigma_{\mathrm{MC} @ \mathrm{NLO}}=d \sigma_{\mathbb{S}, n}\left(\Phi_{n}\right) \otimes P S\left(\Phi_{n}\right)+d \sigma_{\uplus, n}\left(\Phi_{n+1}\right) \otimes P S\left(\Phi_{n+1}\right)
\end{aligned}
$$

$R_{M C} d \Phi_{n+1} \simeq B\left(\Phi_{n}\right) \frac{1}{t} P(z) d \Phi_{n} d \Phi_{r}$

NLOPS: MC@NLO

$$
\begin{aligned}
& d \sigma_{\mathbb{S}, n}=d \Phi_{n}\left\{B\left(\Phi_{n}\right)+\frac{\alpha_{s}}{2 \pi}\left[V\left(\Phi_{n}\right)+\int R_{M C}\left(\Phi_{n+1}\right) d \Phi_{r}\right]\right\} \\
& d \sigma_{\mathrm{MC} @ \mathrm{NLO}}=d \sigma_{\mathbb{S}, n}\left(\Phi_{n}\right) \otimes P S\left(\Phi_{n}\right)+d \sigma_{\mathbb{H}, n}\left(\Phi_{n+1}\right) \otimes P S\left(\Phi_{n+1}\right) \\
& d \sigma_{\mathbb{H}, n}=d \Phi_{n+1} \frac{\alpha_{s}}{2 \pi}\left[R\left(\Phi_{n+1}\right)-R_{M C}\left(\Phi_{n+1}\right)\right] \\
& R_{M C} d \Phi_{n+1} \simeq B\left(\Phi_{n}\right) \frac{1}{t} P(z) d \Phi_{n} d \Phi_{r}
\end{aligned}
$$

$$
d \sigma_{\mathrm{LOPS}}=d \Phi_{n} \quad B\left(\Phi_{n}\right) \quad\left\{\Delta\left(t_{\max }, t_{0}\right)+\Delta\left(t_{\max }, t\right) \frac{\alpha_{s}}{2 \pi} \frac{1}{t} P(z) d \Phi_{r}\right\}
$$

NLOPS: POWHEG

$$
d \sigma_{\mathrm{POW}}=d \Phi_{n} \bar{B}\left(\Phi_{n}\right) \quad\left\{\Delta\left(\Phi_{n} ; k_{\mathrm{T}}^{\min }\right)+\Delta\left(\Phi_{n} ; k_{\mathrm{T}} \frac{\alpha_{s}}{2 \pi} \frac{R\left(\Phi_{n}, \Phi_{r}\right)}{B\left(\Phi_{n}\right)} d \Phi_{r} \otimes P S\left(\Phi_{n+1}\right)\right\}\right.
$$

[+ p_{T}-vetoing subsequent emissions, to avoid double-counting]

NLOPS: POWHEG

$$
\begin{aligned}
& B\left(\Phi_{n}\right) \Rightarrow \bar{B}\left(\Phi_{n}\right)=B\left(\Phi_{n}\right)+\frac{\alpha_{s}}{2 \pi}\left[V\left(\Phi_{n}\right)+\int R\left(\Phi_{n+1}\right) d \Phi_{r}\right] \\
& d \sigma_{\mathrm{POW}}=d \Phi_{n} \bar{B}\left(\Phi_{n}\right)\left\{\Delta\left(\Phi_{n} ; k_{\mathrm{T}}^{\min }\right)+\Delta\left(\Phi_{n} ; k_{\mathrm{T}} \frac{\alpha_{s}}{2 \pi} \frac{R\left(\Phi_{n}, \Phi_{r}\right)}{B\left(\Phi_{n}\right)} d \Phi_{r} \otimes P S\left(\Phi_{n+1}\right)\right\}\right.
\end{aligned}
$$

[+ p_{T}-vetoing subsequent emissions, to avoid double-counting]

NLOPS: POWHEG

$$
\begin{aligned}
& B\left(\Phi_{n}\right) \Rightarrow \bar{B}\left(\Phi_{n}\right)=B\left(\Phi_{n}\right)+\frac{\alpha_{s}}{2 \pi}\left[V\left(\Phi_{n}\right)+\int R\left(\Phi_{n+1}\right) d \Phi_{r}\right] \\
& d \sigma_{\mathrm{POW}}=d \Phi_{n} \bar{B}\left(\Phi_{n}\right) \quad\left\{\Delta\left(\Phi_{n} ; k_{\mathrm{T}}^{\min }\right)+\Delta\left(\Phi_{n} ; k_{\mathrm{T}} \frac{\alpha_{s}}{2 \pi} \frac{R\left(\Phi_{n}, \Phi_{r}\right)}{B\left(\Phi_{n}\right)} d \Phi_{r} \otimes P S\left(\Phi_{n+1}\right)\right\}\right.
\end{aligned}
$$

$$
\Delta\left(t_{\mathrm{m}}, t\right) \Rightarrow \Delta\left(\Phi_{n} ; k_{\mathrm{T}}\right)=\exp \left\{-\frac{\alpha_{s}}{2 \pi} \int \frac{R\left(\Phi_{n}, \Phi_{r}^{\prime}\right)}{B\left(\Phi_{n}\right)} \theta\left(k_{\mathrm{T}}^{\prime}-k_{\mathrm{T}}\right) d \Phi_{r}^{\prime}\right\}
$$

NLOPS: summary

- inclusive observables: @NLO
- first hard emission: full tree level ME
- (N)LL resummation of collinear/soft logs
- extra jets in the shower approximation (LL)

This is "NLOPS"

NLOPS: summary

By now NLO+PS tools are well established:

- POWHEG and MC@NLO usually agree well. When differences arise, they are usually understood, and they are typically due to terms beyond the nominal accuracy.
- NLO+PS is not yet a closed chapter; some important issues are still being addressed - $W^{+} W^{-} b \bar{b} @$ NLOPS
- in general, however, any process $p p \rightarrow X$ can be simulated at NLO+PS accuracy
- X can contain jets. If it contains N jets, it's not possible to describe observables with $n<N$ jets.
- available tools:
- POWHEG based: POWHEG-BOX, PowHel, Matchbox/Herwig++
- MC@NLO based: MG5_aMC@NLO, Sherpa-MC@NLO, Matchbox/Herwig++
- other methods: Geneva, KrK-NLO

NLOPS: summary

By now NLO+PS tools are well established:

- POWHEG and MC@NLO usually agree well. When differences arise, they are usually understood, and they are typically due to terms beyond the nominal accuracy.
- NLO+PS is not yet a closed chapter; some important issues are still being addressed - $W^{+} W^{-} b \bar{b} @$ NLOPS
- in general, however, any process $p p \rightarrow X$ can be simulated at NLO+PS accuracy
- X can contain jets. If it contains N jets, it's not possible to describe observables with $n<N$ jets.

[Haisch, Kahlhoefer \& ER, 1310.4491]

- multijet merging [(N)LO+PS merging]

multijet merging

- typical background for many BSM signatures is "heavy object" + many jets

[Gianotti,Mangano hep-ph/0504221]
- relying on PS for tail of distributions is very dangerous, especially in a multijet environment
- CKKW(-L) and MLM methods address this issue at LO:
- merge exact LO matrix elements for different multiplicities
- very important for observables like H_{T} especially when not possible to use data-driven methods
- ME generators: Alpgen, MadGraph, Sherpa
- for at least one of them (typically both), interface/implementation available in general-purpose parton-shower program
- suppose LHC finds a small excess in H_{T} for some SUSY search (e.g. $\mathscr{E}_{T}+$ jets) - what is the theoretical uncertainty of backgrounds?
- extending merging to NLO becomes important...

multijet merging at LO: CKKW in a nutshell

Fix a merging scale Q_{MS}, to separate ME and PS domains.

- start from ME weight $B\left(\boldsymbol{\Phi}_{n}\right)$, respecting
$Q_{\text {MS }}$ constraint

multijet merging at LO: CKKW in a nutshell

Fix a merging scale Q_{MS}, to separate ME and PS domains.

multijet merging at LO: CKKW in a nutshell

Fix a merging scale Q_{MS}, to separate ME and PS domains.

- find "most-likely" shower history (via k_{T}-algo)
- clustering scale $q_{1}=k_{T}$

multijet merging at LO: CKKW in a nutshell

Fix a merging scale Q_{MS}, to separate ME and PS domains.

multijet merging at LO: CKKW in a nutshell

Fix a merging scale Q_{MS}, to separate ME and PS domains.

multijet merging at LO: CKKW in a nutshell

Fix a merging scale Q_{MS}, to separate ME and PS domains.

multijet merging at LO: CKKW in a nutshell

Fix a merging scale Q_{MS}, to separate ME and PS domains.

multijet merging at LO: CKKW in a nutshell

Fix a merging scale Q_{MS}, to separate ME and PS domains.

- Hard process scale Q

multijet merging at LO: CKKW in a nutshell

Fix a merging scale Q_{MS}, to separate ME and PS domains.

- most-likely shower history

CKKW in a nutshell II

- original weight $B\left(\mathbf{\Phi}_{n}\right) \Rightarrow$ "most-likely" shower history (via k_{T}-algo): $Q>q_{3}>q_{2}>q_{1}$

- New weight:

$$
\begin{aligned}
\alpha_{\mathrm{S}}^{5}(Q) B\left(\boldsymbol{\Phi}_{3}\right) \rightarrow & \alpha_{\mathrm{S}}^{2}(Q) B\left(\boldsymbol{\Phi}_{3}\right) \frac{\Delta_{g}\left(Q_{0}, Q\right)}{\Delta_{g}\left(Q_{0}, q_{2}\right)} \frac{\Delta_{g}\left(Q_{0}, Q\right)}{\Delta_{g}\left(Q_{0}, q_{3}\right)} \frac{\Delta_{g}\left(Q_{0}, q_{3}\right)}{\Delta_{g}\left(Q_{0}, q_{1}\right)} \\
& \Delta_{g}\left(Q_{0}, q_{2}\right) \Delta_{g}\left(Q_{0}, q_{2}\right) \Delta_{g}\left(Q_{0}, q_{3}\right) \Delta_{g}\left(Q_{0}, q_{1}\right) \Delta_{g}\left(Q_{0}, q_{1}\right) \\
& \alpha_{\mathrm{S}}\left(q_{1}\right) \alpha_{\mathrm{S}}\left(q_{2}\right) \alpha_{\mathrm{S}}\left(q_{3}\right)
\end{aligned}
$$

where $Q_{0} \equiv Q_{\mathrm{MS}}$ and typically

$$
\log \Delta_{\mathrm{f}}\left(q_{T}, Q\right)=-\int_{q_{T}^{2}}^{Q^{2}} \frac{d q^{2}}{q^{2}} \frac{\alpha_{\mathrm{S}}\left(q^{2}\right)}{2 \pi}\left[A_{1, \mathrm{f}} \log \frac{Q^{2}}{q^{2}}+B_{1, \mathrm{f}}\right]
$$

- Fill phase space below Q_{0} with vetoed shower
(for highest multiplicity sample $Q_{0}=q_{1}$; PS initial scale should be nodal scale at which parton was "created")
- This procedure guarantees that dependence upon Q_{MS} is beyond NLL (proved for $e^{+} e^{-}$)

LO+PS merging: a BSM example

- DM production at the LHC: scalar/pseudoscalar mediator. Usually: monojet search.

嗏 these are "QCD" jets !

- analysis based on variable number of jets (H_{T} based) are potentially very powerful

[Buchmueller,Malik,McCabe,Penning '15]

LO+PS merging: a BSM example

- DM production at the LHC: scalar/pseudoscalar mediator. Usually: monojet search.

```
䬷 these are "QCD" jets !
```

- analysis based on variable number of jets (H_{T} based) are potentially very powerful

LO＋PS merging：a BSM example

－DM production at the LHC：scalar／pseudoscalar mediator．Usually：monojet search．

```
|$>⿱夕夕卜攵 these are "QCD" jets !
```

－analysis based on variable number of jets（ H_{T} based）are potentially very powerful

－for loop－induced processes：automation is now available
［Hirschi，Mattelaer＇15，Mattelaer，Vryonidou＇15－also earlier studies with Sherpa］
．the formal accuracy is leading－order
．theoretical uncertainties will not be in general very small
．however，shapes will be modelled properly！
－a－priori，dangerous to rely on a description mostly done by parton－shower

multijet merging at NLO

- multijet merging at NLO is more complicated than at LO, and more subtle:
the matrix element " $p p \rightarrow S+(n+1)$ partons" enters in
- real emission for " $p p \rightarrow S+n$ partons" @ NLO
- Born contribution for "pp $\rightarrow S+(n+1)$ partons" @ NLO
- methods: MEPS@NLO, FxFx, UNLOPS, Geneva, POWHEG+MiNLO, Vincia
- similarly to LO, many of these methods use a merging scale (Q_{MS}):
a bad choice of merging scale can spoil the formal accuracy
- typically this can happen if $\alpha_{\mathrm{S}} \log ^{2}\left(Q_{\mathrm{MS}} / Q\right) \simeq 1$: when $L \simeq 1 / \sqrt{\alpha_{\mathrm{S}}}$, uncontrolled NNLL logs $\alpha_{\mathrm{S}}^{2} L$ scale as $\alpha_{\mathrm{S}}^{1.5}$ (and not as α_{S}^{2}).
- to avoid any formal issue, one needs either to not have Q_{MS} at all, or have a very precise control of logarithmic structure (beyond the PS accuracy)
- not having $Q_{\text {MS }}$ requires control of NNLL terms (or at least part thereof)
- if Q_{MS} is present, include the uncertainty due to its choice
- for simple processes (color-singlet production), the development of these techniques lead to match PS with NNLO computations (NNLO+PS)

$$
\begin{aligned}
d \bar{\sigma}_{\mathbb{S}, 0} & =B_{0}+V_{0}+B_{0} \mathcal{K}_{\mathrm{MC}} \Theta\left(d_{1}<Q_{\mathrm{MS}}\right) \\
d \bar{\sigma}_{H, 0} & =\left[B_{1}-B_{0} \mathcal{K}_{\mathrm{MC}}\right] \Theta\left(d_{1}<Q_{\mathrm{MS}}\right) \\
d \bar{\sigma}_{\mathrm{S}, 1} & =\left[B_{1}+V_{1}+B_{1} \mathcal{K}_{\mathrm{MC}}\right] \Theta\left(Q_{\mathrm{MS}}<d_{1}\right) \\
d \bar{\sigma}_{\mathbb{H}, 1} & =\left[B_{2}-B_{1} \mathcal{K}_{\mathrm{MC}}\right] \Theta\left(Q_{\mathrm{MS}}<d_{1}\right)
\end{aligned}
$$

- limit contribution of $(\mathbb{H}, 0)$ events to region below $Q_{\text {Ms }}$
- prescriptions for shower starting scale
- possible to include Sudakov reweighting á la CKKW
- "unitarity" not imposed
- possible to iterate

$$
\begin{aligned}
d \bar{\sigma}_{\mathbb{S}, 0} & =B_{0}+V_{0}+B_{0} \mathcal{K}_{\mathrm{MC}} \Theta\left(d_{1}<Q_{\mathrm{MS}}\right) \\
d \bar{\sigma}_{H, 0} & =\left[B_{1}-B_{0} \mathcal{K}_{\mathrm{MC}}\right] \Theta\left(d_{1}<Q_{\mathrm{MS}}\right) \\
d \bar{\sigma}_{\mathrm{S}, 1} & =\left[B_{1}+V_{1}+B_{1} \mathcal{K}_{\mathrm{MC}}\right] \Theta\left(Q_{\mathrm{MS}}<d_{1}\right) \\
d \bar{\sigma}_{\mathbb{H}, 1} & =\left[B_{2}-B_{1} \mathcal{K}_{\mathrm{MC}}\right] \Theta\left(Q_{\mathrm{MS}}<d_{1}\right)
\end{aligned}
$$

- limit contribution of $(\mathbb{H}, 0)$ events to region below $Q_{\text {Ms }}$
- prescriptions for shower starting scale
- possible to include Sudakov reweighting á la CKKW
- "unitarity" not imposed
- possible to iterate

- fully inclusive result:
- differences typically $\lesssim 1 \%$ among different merging scales
- quite good agreement with inclusive NLO + PS too

$$
\begin{aligned}
d \bar{\sigma}_{\mathbb{S}, 0} & =B_{0}+V_{0}+B_{0} \mathcal{K}_{\mathrm{MC}} \Theta\left(d_{1}<Q_{\mathrm{MS}}\right) \\
d \bar{\sigma}_{H, 0} & =\left[B_{1}-B_{0} \mathcal{K}_{\mathrm{MC}}\right] \Theta\left(d_{1}<Q_{\mathrm{MS}}\right) \\
d \bar{\sigma}_{\mathbb{S}, 1} & =\left[B_{1}+V_{1}+B_{1} \mathcal{K}_{\mathrm{MC}}\right] \Theta\left(Q_{\mathrm{MS}}<d_{1}\right) \\
d \bar{\sigma}_{H, 1} & =\left[B_{2}-B_{1} \mathcal{K}_{\mathrm{MC}}\right] \Theta\left(Q_{\mathrm{MS}}<d_{1}\right)
\end{aligned}
$$

- limit contribution of $(\mathbb{H}, 0)$ events to region below $Q_{\text {Ms }}$
- prescriptions for shower starting scale
- possible to include Sudakov reweighting á la CKKW
- "unitarity" not imposed
- possible to iterate
- when Sudakov reweighting applied:

$$
\begin{aligned}
d \hat{\sigma}_{\mathbb{S}, 1} & =\left(d \bar{\sigma}_{\mathbb{S}, 1}+d \sigma_{1}^{(\Delta)}\right) \Delta\left(\Phi_{1} \rightarrow \Phi_{0}\right) \\
d \hat{\sigma}_{\mathbb{H}, 1} & =d \bar{\sigma}_{\mathbb{H}, 1} \Delta\left(\Phi_{1} \rightarrow \Phi_{0}\right)
\end{aligned}
$$

where

$$
d \sigma_{1}^{(\Delta)}=-B_{1} \Delta^{(1)}\left(\Phi_{1} \rightarrow \Phi_{0}\right)
$$

Δ are CKKW Sudakov factors, and $\Delta^{(1)}$ is the Sudakov expanded at 1 st order.

- Above Q_{MS} the tail is NLO accurate. For not-too-small Q_{MS}, the integral is NLO accurate.
- merging NLO+PS for V production with MINLO for $V+1$ jet, at "merging scale" Q_{MS}.

MadGrapg5_aMC@NLO: FxFx merging

$\star \mathrm{V}+0,1,2,(3,4)$ jets: extensive phenomenological study published recently
[Frederix,Frixione,Papaefstathiou,Prestel,Torrielli '15]

- estimation of perturbative uncertainty + shower "uncertainty"

1. $Q_{\text {MS }}$ dependence is at most 1.5%. FxFx total typically 3-6\% larger than exact inclusive NLO+PS
2. once $V+2$ jets at NLO+PS is included, also higher jet multiplicities are described reasonably well
3. the inclusive NLO+PS result depends much more on the PS used

MadGrapg5_aMC@NLO: FxFx merging

$\star \underline{\mathrm{V}+0,1,2,(3,4)}$ jets: extensive phenomenological study published recently
[Frederix,Frixione,Papaefstathiou,Prestel,Torrielli '15]

- estimation of perturbative uncertainty + shower "uncertainty"

1. $Q_{\text {MS }}$ dependence is at most 1.5%. FxFx total typically $3-6 \%$ larger than exact inclusive $\mathrm{NLO}+\mathrm{PS}$
2. once $V+2$ jets at NLO+PS is included, also higher jet multiplicities are described reasonably well
3. the inclusive NLO+PS result depends much more on the PS used

Sherpa: MEPS@NLO

- similar to FxFx: generate MC@NLO samples, and separate their domain of validity using merging scale Q_{MS}
- $d \Phi_{n+1}$ receives contribution from H_{n}-events below Q_{MS} and from S_{n+1} above Q_{MS}
- procedure can be iterated

Uncertainties

- μ_{R} and μ_{F} scale variation
- shower ("resummation") scale: upper limit of parton evolution
- merging scale

Multiscale Improved NLO

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task, since phase space is by construction probed also in presence of widely separated energy scales
- original goal: method to a-priori choose scales in multijet NLO computation
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)
- for each point sampled, build the "more-likely" shower history that would have produced that kinematics (can be done by clustering kinematics with k_{T}-algo, then, by undoing the clustering, build "skeleton")
- "correct" original NLO à la CKKW:
$\rightarrow \alpha_{\mathrm{S}}$ evaluated at nodal scales
\rightarrow Sudakov FFs
- original goal: method to a-priori choose scales in multijet NLO computation
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$
\bar{B}_{\mathrm{NLO}}=\alpha_{\mathrm{S}}^{3}\left(\mu_{R}\right)\left[B+\alpha_{\mathrm{S}} V\left(\mu_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{r}} R\right]
$$

Multiscale Improved NLO

- original goal: method to a-priori choose scales in multijet NLO computation
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$
\begin{gathered}
\bar{B}_{\mathrm{NLO}}=\alpha_{\mathrm{S}}^{3}\left(\mu_{R}\right)\left[B+\alpha_{\mathrm{S}} V\left(\mu_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{r}} R\right] \\
\bar{B}_{\mathrm{MiNLO}}=\alpha_{\mathrm{S}}^{2}\left(m_{h}\right) \alpha_{\mathrm{S}}\left(q_{T}\right) \Delta_{g}^{2}\left(q_{T}, m_{h}\right)\left[B\left(1-2 \Delta_{g}^{(1)}\left(q_{T}, m_{h}\right)\right)+\alpha_{\mathrm{S}} V\left(\bar{\mu}_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{r}} R\right]
\end{gathered}
$$

Multiscale Improved NLO

- original goal: method to a-priori choose scales in multijet NLO computation
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$
\begin{gathered}
\bar{B}_{\mathrm{NLO}}=\alpha_{\mathrm{S}}^{3}\left(\mu_{R}\right)\left[B+\alpha_{\mathrm{S}} V\left(\mu_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{r}} R\right] \\
\bar{B}_{\mathrm{MiNLO}}=\alpha_{\mathrm{S}}^{2}\left(m_{h}\right) \alpha_{\mathrm{S}}\left(q_{T}\right) \Delta_{g}^{2}\left(q_{T}, m_{h}\right)\left[B\left(1-2 \Delta_{g}^{(1)}\left(q_{T}, m_{h}\right)\right)+\alpha_{\mathrm{S}} V\left(\bar{\mu}_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{r}} R\right]
\end{gathered}
$$

唤 Sudakov FF included on $H+j$ Born kinematics

- MiNLO-improved HJ yields finite results also when 1st jet is unresolved ($q_{T} \rightarrow 0$)
- $\bar{B}_{\text {MiNLO }}$ ideal to extend validity of HJ-POWHEG [called "HJ-MinLo" hereafter]

"Improved" MiNLO \& NLOPS merging

- formal accuracy of HJ-MiNLO for inclusive observables carefully investigated
- HJ-MinLO describes inclusive observables at order α_{S}
- to reach genuine NLO when fully inclusive ($\mathrm{NLO}^{(0)}$), "spurious" terms must be of relative order α_{S}^{2}, i.e.

$$
O_{\mathrm{HJ}-\mathrm{MiNLO}}=O_{\mathrm{H} @ \mathrm{NLO}}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{2+2}\right) \quad \text { if } O \text { is inclusive }
$$

- "Original MiNLO" contains ambiguous " $\mathcal{O}\left(\alpha_{\mathrm{S}}^{2+1.5}\right)$ " terms

"Improved" MiNLO \& NLOPS merging

- formal accuracy of HJ-MiNLO for inclusive observables carefully investigated
- HJ-MinLO describes inclusive observables at order α_{S}
- to reach genuine NLO when fully inclusive $\left(\mathrm{NLO}^{(0)}\right)$, "spurious" terms must be of relative order α_{S}^{2}, i.e.

$$
O_{\mathrm{HJ}-\mathrm{MiNLO}}=O_{\mathrm{H} @ \mathrm{NLO}}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{2+2}\right) \quad \text { if } O \text { is inclusive }
$$

- "Original MiNLO" contains ambiguous " $\mathcal{O}\left(\alpha_{\mathrm{S}}^{2+1.5}\right)$ " terms
- Possible to improve HJ-MinLO such that inclusive NLO is recovered ($\mathrm{NLO}^{(0)}$), without spoiling NLO accuracy of $H+j\left(\mathrm{NLO}^{(1)}\right)$.
- accurate control of subleading NNLL small- p_{T} logarithms is needed (scaling in low- p_{T} region is $\alpha_{\mathrm{S}} L^{2} \sim 1$, i.e. $L \sim 1 / \sqrt{\alpha_{\mathrm{S}}}$!)

Effectively as if we merged $\mathrm{NLO}^{(0)}$ and $\mathrm{NLO}^{(1)}$ samples, without merging different samples (no merging scale used: there is just one sample).

"Improved" MiNLO \& NLOPS merging

- formal accuracy of HJ-MiNLO for inclusive observables carefully investigated
- HJ-MinLO describes inclusive observables at order α_{S}
- to reach genuine NLO when fully inclusive $\left(\mathrm{NLO}^{(0)}\right)$, "spurious" terms must be of relative order α_{S}^{2}, i.e.

$$
O_{\mathrm{HJ}-\mathrm{MiNLO}}=O_{\mathrm{H} @ \mathrm{NLO}}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{2+2}\right) \quad \text { if } O \text { is inclusive }
$$

- "Original MiNLO" contains ambiguous " $\mathcal{O}\left(\alpha_{\mathrm{S}}^{2+1.5}\right)$ " terms
- Possible to improve HJ-MinLO such that inclusive NLO is recovered ($\mathrm{NLO}^{(0)}$), without spoiling NLO accuracy of $H+j\left(\mathrm{NLO}^{(1)}\right)$.
- accurate control of subleading NNLL small- p_{T} logarithms is needed (scaling in low- p_{T} region is $\alpha_{\mathrm{S}} L^{2} \sim 1$, i.e. $L \sim 1 / \sqrt{\alpha_{\mathrm{S}}}$!)

Effectively as if we merged $\mathrm{NLO}^{(0)}$ and $\mathrm{NLO}^{(1)}$ samples, without merging different samples (no merging scale used: there is just one sample).

- these terms are process dependent, and not known analytically for complex processes:

MiNLO merging: results

- "H+Pythia": standalone POWHEG $(g g \rightarrow H)+$ PYTHIA (PS level) [7pts band, $\mu=m_{H}$]
- "HJ+Pythia": HJ-MiNLO* + PYTHIA (PS level) [7pts band, μ from MiNLO]
- very good agreement (both value and band)

Notice: band is $\sim 20-30 \%$...this is Higgs at NLO!

- keyword: "unitarity" (preserve NLO inclusive cross section)
- method: promote to NLO accuracy an "unitarised" CKKW approach, by carefully adding higher order contributions, and removing the pre-existing approximate α_{S} terms

1. start from UMEPS merging at LO
2. remove terms that will be included exactly, and add NLO (exclusive) computations
3. unitarise

- can be iterated to higher multiplicities
- by construction, essentially no dependence on merging scale on inclusive cross section
- full exploitation will also be the main focus in Herwig 7 in the near future

Azimuthal Distance of Leading Jets

Geneva

- new approach, SCET inspired
- idea: separate exclusive N-jet and inclusive $(N+1)$-jet regions using variable whose resummation is known at high order ("n-jettiness")

$$
\sigma_{\geq N}=\int \mathrm{d} \Phi_{N} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)+\int \mathrm{d} \Phi_{N+1} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}\right) \theta\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)
$$

where

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right) & =\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)+\left[\frac{\mathrm{d} \sigma^{\mathrm{FO}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)-\left.\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)\right|_{\mathrm{FO}}\right] \\
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}\right) & =\frac{\mathrm{d} \sigma^{\mathrm{FO}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}\right)\left[\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N} \mathrm{~d} \mathcal{T}_{N}} /\left.\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N} \mathrm{~d} \mathcal{T}_{N}}\right|_{\mathrm{FO}}\right]
\end{aligned}
$$

- no "dangerous" merging scale dependence, thanks to higher-order resummation for τ_{N}
- to retain formal accuracy, PS evolution very constrained: τ_{N} has to stay \sim unchanged
- can be extended to higher multiplicities
- implemented for $e^{+} e^{-}$and for Drell-Yan
- the method was also formulated to achieve NNLO+PS accuracy (results shown later)

NNLO+PS

- some of the above approaches allow(ed) to achieve NNLO+PS matching!
- "just" NLO sometimes is not enough
- NNLO is the frontier

- these developments don't have an immediate application for direct BSM searches
- however important for "indirect searches", through precise measurements of SM and Higgs processes:
- large NLO K-factors (Higgs production \rightarrow Higgs characterization)
- precision Physics (PDF extraction, W-mass measurement)

NNLO+PS Higgs production [POWHEG+MiNLO]

[Hamilton,Nason,ER,Zanderighi, 1309.0017]

- uncertainty band is 10% (at NLO it was ~20-30\% !)
- nice agreement also with NNLL jet-veto resummed result, differences never more than 5-6\%

NNLO+PS Drell-Yan [UNNLOPS]

- NNLOPS obtained also upgrading UNLOPS to UNNLOPS

NNLO+PS Drell-Yan [Geneva]

[Alioli,Bauer,Berggren,Tackmann,Walsh, '15]

conclusions

- Monte Carlo tools play a major role for LHC searches
- especially if no "smoking gun" new-Physics around the corner, precision will be the key to maximise impact of LHC results
- huge amount of improvements over the last few years in the community
- NLO+PS tools are by now well established and very mature
- by now they are basically automated also for BSM processes
- major developments in last 3-4 years: NLOPS multijet merging
- it might play a very important role in absence of smoking-gun BSM signal
- NNLO+PS is doable, at least for color-singlet production.

conclusions

- Monte Carlo tools play a major role for LHC searches
- especially if no "smoking gun" new-Physics around the corner, precision will be the key to maximise impact of LHC results
- huge amount of improvements over the last few years in the community
- NLO+PS tools are by now well established and very mature
- by now they are basically automated also for BSM processes
- major developments in last 3-4 years: NLOPS multijet merging
- it might play a very important role in absence of smoking-gun BSM signal
- NNLO+PS is doable, at least for color-singlet production.

Extra slides

- Resummation formula

$$
\begin{gathered}
\frac{d \sigma}{d q_{T}^{2} d y}=\sigma_{0} \frac{d}{d q_{T}^{2}}\left\{\left[C_{g a} \otimes f_{a}\right]\left(x_{A}, q_{T}\right) \times\left[C_{g b} \otimes f_{b}\right]\left(x_{B}, q_{T}\right) \times \exp S\left(q_{T}, Q\right)\right\}+R_{f} \\
S\left(q_{T}, Q\right)=-2 \int_{q_{T}^{2}}^{Q^{2}} \frac{d q^{2}}{q^{2}} \frac{\alpha_{S}\left(q^{2}\right)}{2 \pi}\left[A_{f} \log \frac{Q^{2}}{q^{2}}+B_{f}\right]
\end{gathered}
$$

- If $C_{i j}^{(1)}$ included and R_{f} is $\mathrm{LO}^{(1)}$, then upon integration we get $\mathrm{NLO}^{(0)}$
- Take derivative, then compare with MinLo :

$$
\sim \sigma_{0} \frac{1}{q_{T}^{2}}\left[\alpha_{\mathrm{S}}, \boxed{\alpha_{\mathrm{S}}^{2}}, \alpha_{\mathrm{S}}^{3}, \alpha_{\mathrm{S}}^{4}, \alpha_{\mathrm{S}} L, \alpha_{\mathrm{S}}^{2} L, \alpha_{\mathrm{S}}^{3} L, \alpha_{\mathrm{S}}^{4} L\right] \exp S\left(q_{T}, Q\right)+R_{f} \quad L=\log \left(Q^{2} / q_{T}^{2}\right)
$$

- highlighted terms are needed to reach $\mathrm{NLO}^{(0)}$:

$$
\int^{Q^{2}} \frac{d q_{T}^{2}}{q_{T}^{2}} L^{m} \alpha_{\mathrm{S}}^{n}\left(q_{T}\right) \exp S \sim\left(\alpha_{\mathrm{S}}\left(Q^{2}\right)\right)^{n-(m+1) / 2}
$$

$$
\text { (scaling in low }-p_{T} \text { region is } \alpha_{S} L^{2} \sim 1 \text { !) }
$$

- if I don't include B_{2} in MinLO Δ_{g}, I miss a term $\left(1 / q_{T}^{2}\right) \alpha_{\mathrm{S}}^{2} B_{2} \exp S$
- upon integration, violate $\mathrm{NLO}^{(0)}$ by a term of relative $\mathcal{O}\left(\alpha_{\mathrm{S}}^{3 / 2}\right)$

