WHIZARD

Wolfgang Kilian

University of Siegen

MC4BSM, IHEP, Beijing July 2016

W. Kilian (U Siegen)

WHIZARD: Overview

Scope

WHIZARD is a stand-alone program for elementary processes at high-energy colliders: scattering and particle decays

- integrate cross sections and decay widths (perturbative, partonic)
- amplitude code is generated and executed on the fly
- calculate observables, generate event samples
- hadronization via external code

Overview

Context

Program exists since 1999

Active authors and developers:

WK (U Siegen), T. OHL (Würzburg), J. REUTER (DESY)

S. Brass, B. Chokoufe, C. Fleper, M. Sekulla, S. Shim, C. Weiss, Z. Zhao

Current version:

 $2.2.8 \ (\Rightarrow 2.3.0)$

For the User

- Installation centrally or locally on any Linux or Mac (autotools)
 ./configure [options]
 make
 make install
- Look-and-feel like standard Linux/Unix apps
 ./whizard [options] FILE
- User works in directories at his choice, no structure imposed

Programming Languages

- Main program code is written in modern Fortran (F2008).
 Compilers: gfortran, ifort, nagfor
- Glue code uses Make, Makefiles generated on-the-fly
- Algebra is done in OCaml (compiler free for all platforms)
 ⇒ Sub-package OMega
- Some interface to external code in C/C++
- ► Can use precompiled libraries (LHAPDF, HepMC, ...)

Overview

Input

- Models precompiled or generated (FeynRules, SARAH, [UFO])
- User provides all other information via input file, which is actually a script
 - Model selection, data, parameters, process setup
 - Compute observables for in/out particles: cuts, weight for integration
 - Integrate once, or loop and scan over parameters
 - Generate and write event samples, select format
 - Analyze event samples and plot results

Programming language (DSL): Sindarin

Output

- 1. Numbers (cross sections, decay widths, other observables)
- 2. Distributions (plots)
- 3. Event samples in various formats (fixed-order or showered, partonic or hadronic)

W. Kilian (U Siegen)

Overview

Variants

- Docker package (VM) with all prerequisites
- Library version (C-compatible API) for inclusion in other programs
- Interactive mode for simple tasks
- GUI (Javascript/node.js) as server/client model version via Web browser
 - \Rightarrow end of this talk

Collider Setup

WHIZARD Details: Collider Setup

Initial state: just look at process definition

process foo = "e+", "e-" \Rightarrow "mu+", "mu-"

... or write explicitly

Decay = single beam Scattering = pair of beams Explicit definition is useful if there is some beam structure Decay:

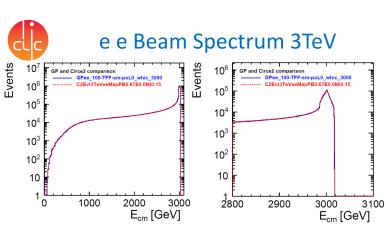
```
beams_pol_density = @(-1)
beams = Z
```

Scattering:

 $lhapdf_file = "CT14nlo"$ beams = p, p \Rightarrow lhapdf

Supported: polarization, momentum, angle, any (meaningful) convolution of beam spectra and structure functions

e^+e^- Collider Beam Structure


ILC, CLIC, CEPC, FCC-ee

- 1. Beamstrahlung = classical beam-beam interaction, collective effect
- 2. ISR = resummed soft/collinear QED bremsstrahlung for initial-state electron-electron interaction

e⁺e⁻ Collider: Beamstrahlung

Options for handling beamstrahlung (as supported by WHIZARD)

- 1. Beam-energy spread
 - \Rightarrow Gaussian distribution
- 2. CIRCE1: parameterized beam spectrum
 - \Rightarrow Factorized, few parameters in fit
- 3. Beam-events file: use result of GuineaPig simulation directly
 - ⇒ Finite number of pre-simulated beam events
- 4. CIRCE2: generator takes binned and interpolated result of detailed GuineaPig simulation
 - \Rightarrow Precise description

Collider Setup

Left: dN/dVs distribution Guineapig events (blue) and Circe2 generated events using a power function mapping (red); 20 GeV bins. Right: zoom into the high Vs region; 1 GeV bins; looks good. Check the distribution ratios.

July 2016

J-J.Blaising, LAPP/IN2P3

4

Models

MODEL TYPE	with CKM matrix	trivial CKM
QED with e, μ, τ, γ	-	QED
QCD with d, u, s, c, b, t, g	-	QCD
Standard Model	SM_CKM	SM
SM with anomalous gauge couplings	SM_ac_CKM	SM_ac
SM with anomalous top couplings	SMtop_CKM	SMtop
SM for e^+e^- top threshold	-	$SM_tt_threshold$
SM ext. for VV scattering	—	SSC / SSC2
SM ext. for unitarity limits in VV	—	SM_ul
SM with Higgs singlet	—	HSExt
2HDM	2HDM_CKM	2HDM
MSSM	MSSM_CKM	MSSM
MSSM with gravitinos	—	MSSM_Grav
NMSSM	NMSSM_CKM	NMSSM
extended SUSY models	—	PS/E/SSM
Littlest Higgs	—	Littlest
Littlest Higgs with ungauged $U(1)$	—	Littlest_Eta
Littlest Higgs with T parity	—	$Littlest_Tpar$
Simplest Little Higgs (anomaly-free)	—	Simplest
Simplest Little Higgs (universal)	—	Simplest_univ
3-site model	—	Threeshl
UED	—	UED
SM with Z'	—	Zprime
SM with gravitino and photino	—	GravTest
Augmentable SM template	—	Template

W. Kilian (U Siegen)

New additions to the Model list

- EFT for the SM: complete D = 6 Lagrangian (Warsaw Basis)
 S. SHIM
- General UFO File Support (OMega): now available for MC4BSM
 T. OHL
- ▶ Beyond EFT: electroweak interactions at high energy ⇒ (Super)LHC/FCC-pp, ILC and CLIC

C. FLEPER, M. SEKULLA

Models

Electroweak Interations Beyond the SM

Genuine Higgs and Anomalous Gauge (Self-)Interactions

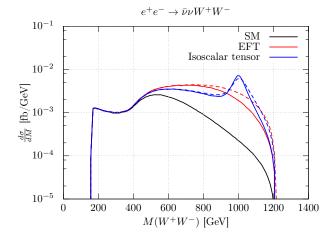
• Leading effects of New Physics expected in D = 8 operators

Energy dependence of EFT (with D = 8):

- $\Rightarrow\,$ EFT must be extrapolated \Rightarrow model of strong EW asymptotics
- \Rightarrow Meaningful only if unitarity is imposed: smooth transition

T-matrix unitarization scheme with off-shell continuation: not handled by standard (automatic) Feynman rules approach

 \Rightarrow Implemented manually in WHIZARD model


Extrapolated EFT is just one strongly interacting model.

Add in More:

- \Rightarrow Incorporate resonances in $\mathit{VV} \rightarrow \mathit{VV}$ topology (S = 0,2)
- \Rightarrow Spin-2 required some theoretical work to do it right (and generic)
- \Rightarrow Includes weakly interacting models (2HDM, ...)
- \Rightarrow Also requires unitarity restoration

Models

CLIC @ 1.4 TeV: Resonance with M = 1.0 TeV

Models

CLIC @ 3.0 TeV: Resonance with M = 1.0 TeV

Processes

```
process foobar =
   "e+", "e-" => nue, nuebar, b, bbar, q, qbar, "mu+", "mu-"
```

- Explicit, exclusive
- optionally constrained
- optionally with sum over flavors alias q = u:d:s:c
- ▶ optionally sum over subprocesses ⇒ inclusive, e.g. decays

Generator: OMega (automatic recursive tree-level amplitudes) NLO \Rightarrow J. Reuter's talk

Phase Space and Integration

Phase Space

Multi-Channel: Select dominant singularity structures, parameterize via resonance mappings etc.

(Selection is automatic, heuristics for determining channel importance)

Integration

Twofold adaptive: VAMP

- 1. Each channel gets a weight which is iteratively adapted
- 2. Each channel is binned (VEGAS-like), binning is iteratively adapted Warmup iterations yield integration grid and channel-weight distribution optimized for the particular process, to be used in event generation

Parallel Integration

OpenMP

Make use of multi-core processors: parallel evaluation of helicity configurations

MPI

Make use of multi-processor clusters: parallel sampling of phase space MPI 3.0 asynchronous message passing \Rightarrow under validation S. BRASS

Event Handlers

WHIZARD uses the twofold-adapted phase space to generate unweighted event samples. Further processing:

- 1. Particle decays (cascades):
 - using WHIZARD's own decay processes (explicit or automatic)
 - full control over polarization transfer (uncorrelated, classical, quantum correlation)
- 2. Shower and Matching \Rightarrow Jürgen's talk
- 3. Hadronization: optionally call PYTHIA internally
- 4. Event output: file formats StdHEP, LHEF, HepMC, LCIO, ASCII

Events

Example

```
model = QCD
alias q = u:d
alias Q = U:D
process twojet = g, g => q, Q
sqrts = 13 \text{ TeV}
beams = p, p => pdf_builtin
cuts =
  all Pt > 100 \text{ GeV} [q:Q]
simulate (twojet) {
   n_{events} = 10000
   sample_format = lhef
}
```

```
Plots, observables
```

```
histogram ptplot (0 GeV, 100 GeV, 5 GeV)
```

```
simulate (twojets) {
  n_events = 10000
  analysis =
    record ptplot (eval Pt [q])
}
compile_analysis
```

More Analysis

SINDARIN

- unified syntax for cuts, observables, histograms, plots embedded in steering code
- Can work on own event samples or on event files
- Resulting plots use MetaPost \Rightarrow integrates seamlessly with $\[Mathebaar]$
- FastJet for jet algorithms in cuts/analysis

Also in Sindarin:

- Logicals, strings, integers, reals, complex
- If-then-else branching
- Parameter scans/loops (also nested)
- ... more to come.

Events

WHIZARD GUI

Whizard GUI														
W	hiza	r d gui	$ \mathbf{A} $											

ing the effect of the sector o	 Integrate NLO CM sensity Soo Number of Iterations 6 Number of Calls per Iteration 10000 	Beam structure: [any particles] Beam structure: [any particles] Beam Structure: [any particles] Beam Structure: Structure Structure (structure structure) e (mass = 5.18997MERC Structure) Phase space: scructure (structure) Phase space: scructure) Phase space: scructure for the "proc_lil.phs" Phase space: scructure for the "proc_lil.phs" Phase space: scructure for the structure for the structure Phase space: scructure for the structure for structure for the structure for the structure for structure fo
New process is added.		It Calls Integral[fb] Error[fb] Err[%] Acc Eff[%] Chi2 N[It]
		VAMP: parameter mismatch, discarding grid file 'proc_1_m1.vg' 1 8192 5.48372895+02 4.965-02 0.01 0.01* 40.24 2 8192 5.48372892 4.446-02 0.01 0.01* 80.29
Seved Succesfully.		3 8192 5.4839731E+62 4.36E-62 0.01 0.01* 58.30 4 8192 5.4834323E+62 4.29E-62 0.01 0.01* 75.55 5 8192 5.483320E+62 4.26E-62 0.01 0.01* 62.32

Events

Summary: Recent Developments in WHIZARD

- ► Further refinements for ILC/CLIC beam spectra
- UFO support
- Models: EFT, unitary extrapolation, resonances, $t\bar{t}$ threshold
- Parallel evaluation
- GUI
- \blacktriangleright NLO, threshold resummation and matching: \Rightarrow Jürgen's talk

whizard.hepforge.org

