Dark Matter

Shao-Long Chen Central China Normal University

MC4BSM workshop 2016, Beijing

The Big Question

What is the Universe made of?

Dark matter dominates in Matter.

Evidence of dark matter

Dark matter

- 1. The existence of dark matter is well established (by gravitational effects).
- 2. The relic density of dark matter is known with precision:

 $\Omega_{\rm cdm} h^2 = 0.1198(26)$

- 3. The identity of dark matter is still a mystery.
- 4. Particle Dark Matter basic properties:
 - (Electrically) neutral or milli-charged;
 - Non-Baryonic;
 - Weakly interacting;
 - "Cold" or "Warm";
 - Stable on the cosmological scale.

Dark matter profile

From N-body simulations and rotation curves

DM density profile

Beyond the SM

• The relic abundance of active (massive) Neutrinos is:

$$\Omega_{\nu}h^2 \approx \frac{\sum m_{\nu}}{93 {\rm eV}} \lesssim 0.01$$

 Neutrinos are too "hot" to be dark matter.

Go beyond the Standard Model!

Dark matter zoo

7

WIMPs (Weakly interacting massive particles)

- Popular candidates: weakly interacting massive particles;
- Stabilization mechanism: an ad hoc Z2 symmetry, such as the R-parity in SUSY theories.
- Show up as byproducts in many models BSM addressing the hierarchy problem. (neutralinos in SUSY, ...)

The simplest DM model

• Real singlet scalar with Z2 odd symmetry added into SM.

Tools to generate interactions (Feynman rules) FeynRules, LanHEP, ...

'canonical' WIMPs: Thermal relics

 Thermal freeze-out: the relic density connects to the "annihilation" cross section

$$n_{\chi}^{eq} = g \left(\frac{mT}{2\pi}\right)^{3/2} e^{-m/T}$$

 Thermal freeze-out while annihilation rate comparable to the Hubble constant.

$$\Gamma_{\rm anni} = n_{\chi} \langle \sigma_A v \rangle \sim H(T_f)$$

$$\chi\bar{\chi} \stackrel{\leftarrow}{=} f\bar{f} \qquad \chi\bar{\chi} \rightarrow f\bar{f} \qquad \chi\bar{\chi} \not\rightarrow \dots$$

MC4BSM 2016

10

 $DM + DM \leftrightarrow SM + SM$

'canonical' WIMP relics

• For homogeneous and isotropic PDFs, the Boltzmann equation of self-conjugated particles is

$$\dot{n} + \underbrace{3Hn}_{\text{dilution}} = \langle \sigma_A v \rangle (\underbrace{n_{eq}^2}_{\text{creation}} - \underbrace{n^2}_{\text{annihilation}})$$
in terms of $x = m/T, Y \equiv n/s$

$$\frac{dY}{dx} = -\sqrt{\frac{\pi g_*}{45G_N}} \frac{m_{\chi}}{x^2} \langle \sigma_A v \rangle (Y^2 - Y_{eq}^2)$$

'canonical' WIMP relics

neglect Y_{eq} for $x \gg x_f$

$$rac{1}{Y_\infty}\sim rac{1}{Y(x_f)}+\sqrt{rac{\pi}{45G_N}}m_\chi\int_{x_f}^\infty dx\sqrt{g_*(x)}rac{\langle\sigma_Av
angle}{x^2}$$

neglect $1/Y(x_f)$ and assume $\langle \sigma_A v
angle pprox$ const.

$$Y_\infty \sim \sqrt{rac{45G_N}{\pi g_*(x_f)}}rac{x_f}{m_\chi}rac{1}{\langle \sigma_A v
angle}$$

The relic density is

$$\Omega_{\chi}h^2 = rac{s_0Y_\infty m_\chi h^2}{
ho_c} \sim rac{3 imes 10^{-38} ext{cm}^2}{\langle \sigma_A v
angle} rac{x_f}{\sqrt{g_*(x_f)}}$$

general WIMP relics

- For general case, the dark matter model may include multiple dark matter candidates.
- Hybrid freeze-out processes:
 - self-annihilation;
 - co-annihilation;
 - threshold effects;
 - resonance effects;
 - 2 to 2, 2 to 3, ...

general WIMP relics

- For general case, the dark matter model may include multiple dark matter candidates.
- Hybrid freeze-out processes:
 - self-annihilation;
 - co-annihilation;
 - threshold effects;
 - resonance effects;
 - 2 to 2, 2 to 3, ...

micrOMEGAs MadDM

Dark matter (WIMP) detections

•WIMPs: weakly interacting massive particles

1) direct detection: nuclear recoil

2) indirect detection: annihilation products

3) search at the colliders: Missing ET

Direct detection

• Searching for nuclear recoil of DM-nucleus (elastic) scattering

Recoil energy:
$$E_r = \frac{|\vec{q}|^2}{2m_N} = \frac{\mu^2 v^2 (1 - \cos \theta_{cm})}{m_N}$$

Interaction rate: $R = N_T n_\chi \sigma v$

Rate spectral: (counts/day/kg/keV)

$$v_{\min} = \sqrt{m_N E_r / (2\mu^2)}$$

 $\rho_0 \sim 0.3 \text{GeV/cm}^3$
 $f_{\oplus}(\vec{v}, t)$

minimal velocity to create recoil E_r local DM density velocity distribution

DM velocity distribution

 $f_{\oplus}(\vec{v},t)$: DM velocity distribution in earth frame. $f_{\oplus}(\vec{v},t) = f_{\mathrm{gal}}(\vec{v}+\vec{v}_{\odot}+\vec{v}_{\oplus}(t))$

• Maxwellian velocity distribution in dark halo frame

$$f_{\text{gal}}(\vec{v}) = \begin{cases} \propto e^{-v^2/v_0^2} & v < v_{esc} \\ 0 & v > v_{esc} \end{cases}$$

with $v_0 \simeq 220 \text{ km/s}, v_{esc} \sim 550 \text{ km/s}, v_{\oplus} = 30 \text{ km/s}$

Spin-independent (SI) and Spin-dependent (SD) interactions

In the NR limit, the DM-nucleus interactions:

• spin-independent interactions: $S \otimes S, V \otimes V$

coherent interactions: $\sigma \propto [Zf_p + (A - Z)f_n]^2$ $f_p = f_n \quad \Rightarrow \sigma \propto A^2 \quad (A^2 \text{ enhancement})$ $f_p \neq f_n$ isospin-violating dark matter

• spin-dependent interactons: $A\otimes A, T\otimes T$

couple to the nucleus with spin (unpaired proton and/or neutron)

elastic and inelastic scattering

DM is multiplet system

Inelastic

MC4BSM 2016 18

Spin-independent Xsection

Preliminary results

We don't 'see' dark matter yet from DM direct detection.

Spin-independent Xsection

20

Indirect detection

• Search for the products of DM annihilation in the region with high density.

- 1. gamma rays from galactic center, dwarf galaxies, ...
- 2. positron, electron, antiproton, proton cosmic ray signals
- 3. neutrinos from stellar objects, e.g. Sun, earth, ...

Indirect detection

Photon flux spectrum from annihilations

Fermi LAT, HESS, ...

• Charged products (electrons/protons) from annihilations

Solve the transportation equation

PAMELA, AMS02, ...

DM capture in the Sun

DM capture and self-annihilation in the Sun

$$\frac{dN}{dt} = C_{\odot} - C_A N^2 \implies N(t) = \sqrt{\frac{C_{\odot}}{C_A}} \tanh(\sqrt{C_{\odot}C_A} \cdot t)$$

Capture and self-annihilation in equilibrium:

 $\Gamma_A = C_\odot/2$

DM capture in the Sun

The Sun is a natural detector for DM direct detection.

The capture rate

$$C_{\odot,i} = \sum_{i} 4\pi \int_{0}^{R_{\odot}} r^{2} dr \frac{\rho_{\chi} \rho_{\odot,i}(r)}{2m_{\chi} \mu_{i}^{2}} \sigma_{i} \int_{0}^{\infty} du \frac{f(u)}{u} \times \int_{E_{R,\text{cap}}}^{E_{R,\text{max}}} dE_{R} F^{2}(E_{R})$$

Constraints/detection from Super-Kamionkande, IceCube from the neutrino signals.

Missing ET at the collider

- DM's stability enforced by Z2 symmetry: DM produced in pairs. (Z3 dark matter, ...)
- DM appears as missing transverse energy at the collider.
- Simplest case: Monojet/monophoton + missing ET;

• Multi-jets/leptons + missing ET;

Dark Matter models

- BSM theory with natural DM candidate;
- Alternative DM product mechanisms (freeze in, non-thermal...)
- DM and neutrino mass correlated (sterile neutrino, "scotogenic" neutrino mass, ...)
- Baryogenesis and darkogenesis (Asymmetric DM, ...)
- Phenomenology motivated (inelastic DM, isospin-violating DM, resonant DM, ...)
- Various mediator DM (Higgs portal, U(1)' portal, neutrino portal, ...)
- Various interactions DM (form factor, momentum dependent, ...)
- composite DM, ...

Simplified models

Start from a 'simple' Lagrangian

Effective field theories approach

Name	Operator	Coefficient
D1	$ar{\chi}\chiar{q}q$	m_q/M_*^3
D2	$ar{\chi}\gamma^5\chiar{q}q$	im_q/M_*^3
D3	$ar{\chi}\chiar{q}\gamma^5 q$	im_q/M_*^3
D4	$ar{\chi}\gamma^5\chiar{q}\gamma^5q$	m_q/M_*^3
D5	$ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu q$	$1/M_{*}^{2}$
D6	$ar{\chi}\gamma^{\mu}\gamma^{5}\chiar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D7	$ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu\gamma^5 q$	$1/M_{*}^{2}$
D8	$ar{\chi}\gamma^{\mu}\gamma^5\chiar{q}\gamma_{\mu}\gamma^5q$	$1/M_{*}^{2}$
D9	$\bar{\chi}\sigma^{\mu u}\chi\bar{q}\sigma_{\mu u}q$	$1/M_{*}^{2}$
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{\mu\nu}q$	i/M_*^2
D11	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^3$
D12	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i \alpha_s / 4 M_*^3$
D13	$\bar{\chi}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$i \alpha_s / 4 M_*^3$
D14	$\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$\alpha_s/4M_*^3$
D15	$\bar{\chi}\sigma^{\mu u}\chi F_{\mu u}$	M
D16	$ar{\chi}\sigma_{\mu u}\gamma^5\chi F_{\mu u}$	D
M1	$ar{\chi}\chiar{q}q$	$m_q/2M_*^3$
M2	$ar{\chi}\gamma^5\chiar{q}q$	$im_q/2M_*^3$

Name	Operator	Coefficient
M3	$ar{\chi}\chiar{q}\gamma^5 q$	$im_q/2M_*^3$
M4	$ar{\chi}\gamma^5\chiar{q}\gamma^5q$	$m_q/2M_*^3$
M5	$ar{\chi}\gamma^{\mu}\gamma^{5}\chiar{q}\gamma_{\mu}q$	$1/2M_{*}^{2}$
M6	$ar{\chi}\gamma^{\mu}\gamma^5\chiar{q}\gamma_{\mu}\gamma^5q$	$1/2M_*^2$
M7	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/8M_*^3$
M8	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i lpha_s / 8 M_*^3$
M9	$\bar{\chi}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$ilpha_s/8M_*^3$
M10	$\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$\alpha_s/8M_*^3$
C1	$\chi^\dagger\chiar q q$	m_q/M_*^2
C2	$\chi^\dagger \chi ar q \gamma^5 q$	im_q/M_*^2
C3	$\chi^\dagger \partial_\mu \chi ar q \gamma^\mu q$	$1/M_{*}^{2}$
C4	$\chi^\dagger \partial_\mu \chi ar q \gamma^\mu \gamma^5 q$	$1/M_*^2$
C5	$\chi^\dagger \chi G_{\mu u} G^{\mu u}$	$\alpha_s/4M_*^2$
C6	$\chi^{\dagger}\chi G_{\mu u} ilde{G}^{\mu u}$	$i \alpha_s / 4 M_*^2$
R1	$\chi^2 ar q q$	$m_q/2M_*^2$
R2	$\chi^2 ar q \gamma^5 q$	$im_q/2M_*^2$
R3	$\chi^2 G_{\mu\nu} G^{\mu\nu}$	$\alpha_s/8M_*^2$
R4	$\chi^2 G_{\mu\nu} \tilde{G}^{\mu\nu}$	$i lpha_s / 8 M_*^2$

- The mediator is integrated out.
- few parameters: DM mass, effective scale

EFT approach is useful for complementary analysis for various detection ways.

1009.0008

28

LHC monojet

LHC monojet

MC4BSM 2016

LHC monojet

MC4BSM 2016

31

Decoding the dark matter

Decoding the dark matter

MCTools play important roles in the studying of DM.

Thank you.