Jet Substructure at NNLL Accuracy

Andrew Larkoski Harvard University (Soon: Reed College)

MC4BSM 2016, July 24, 2016

Motivation for Precision Jet Substructure

Ever increasing set of experimental measurements

Probing orthogonal regime of QCD

New α_s extractions using resummation-sensitive observables

Quark and gluon jet definitions important for new physics and pdf constraints

Measure m_J^2 on the jet in pp \rightarrow Z + j events

Measure m_J^2 on the jet in pp \rightarrow Z + j events

Experimental Challenge: Contamination captured in the jet

Measure m_J^2 on the jet in pp \rightarrow Z + j events

Experimental Challenge: Contamination captured in the jet

Measure m_J^2 on the jet in pp \rightarrow Z + j events

Experimental Challenge: Contamination captured in the jet

Theoretical Challenge: Non-Global Logarithms

Dasgupta, Salam 2001

Measure m_J^2 on the jet in pp \rightarrow Z + j events

Can eliminate these problems by grooming the jet!

Measure m_J^2 on the jet in pp \rightarrow Z + j events

What has been done: NLL resummation

Trimming: Krohn, Thaler, Wang 2009

What has been done: NLL resummation

	highest logs	$\operatorname{transition}(s)$	Sudakov peak	NGLs	NP: $m^2 \lesssim$
plain mass	$\alpha_s^n L^{2n}$		$L \simeq 1/\sqrt{\bar{\alpha}_s}$	yes	$\mu_{\rm NP} p_t R$
trimming pruning MDT	$\begin{array}{c} \alpha_s^n L^{2n} \\ \alpha_s^n L^{2n} \\ \alpha_s^n L^{2n-1} \end{array}$	$egin{array}{l} z_{ m cut},r^2 z_{ m cut}\ z_{ m cut},z_{ m cut}^2\ y_{ m cut},rac{1}{4}y_{ m cut}^2,y_{ m cut}^3 \end{array}$	$\begin{split} L \simeq 1/\sqrt{\bar{\alpha}_s} - 2\ln r \\ L \simeq 2.3/\sqrt{\bar{\alpha}_s} \\ - \end{split}$	yes yes yes	$\mu_{ m NP} p_t R_{ m sub} \ \mu_{ m NP} p_t R \ \mu_{ m NP} p_t R$
Y-pruning mMDT	$\frac{\alpha_s^n L^{2n-1}}{\alpha_s^n L^n}$	$z_{ m cut} \ y_{ m cut}$	(Sudakov tail)	yes no	$\mu_{ m NP} p_t R \ \mu_{ m NP}^2 / y_{ m cut}$

Explicit calculations suggest better techniques!

What has been done: NLL resummation

Procedure to get NNLL Resummation

All remaining particles in the jet must be collinear!

Factorization for NNLL Resummation

Matching NNLL to α_s^2

Use MCFM to generate relative α_s^2 cross section Campbell, Ellis 2002 Campbell, Ellis, Rainwater 2003

pp→Z + j at NNLO with
$$m_J^2 > 0 = pp \rightarrow Z + 2j$$
 at NLO

Required extreme computing power: To make the following plots required centuries of CPU time

The very first jet substructure calculation at high precision!

Significant decrease in residual scale uncertainty at NNLL+ α_s^2 !

Frye, AJL, Schwartz, Yan 2016

<10%-level residual scale uncertainties in normalized distributions!

Frye, AJL, Schwartz, Yan 2016

Comparison with Pythia8 Monte Carlo

Hadronization and underlying event only dominate for $m_J^2/p_T^2 \lesssim 10^{-3}$

Almost three decades of perturbative control in a single jet distribution!

Almost three decades of perturbative control in a single jet distribution!

Summary

Precision calculations for jet substructure requires jet grooming

Only mMDT/soft drop remove contamination and eliminate NGLs

All radiation that remains in the jet is collinear

NNLL resummation of groomed jet mass is accomplished

Looking Ahead

mMDT/soft drop also makes quark/gluon jet flavor IRC safe

Improved input into pdfs? Monte Carlo tuning to gluon jets? Tuning Monte Carlos to precision calculations?

Precision jet substructure measurements?

Motivation for ATLAS and CMS to make identical jet measurements? Possible for systematics at %-level?

Feedback to Fixed-Order/Monte Carlo Community

Jet substructure observables are sensitive to infrared phase space region Need very efficient methods to sample deep infrared Generic phase space reweighting à la EVENT2?

Bonus Slides

Aside: Getting Collinear-Soft Function to NNLL

Factorization theorem in e^+e^- collisions:

 $\frac{d^2\sigma}{dm_{J,L}^2 dm_{J,R}^2} = H(Q^2) S_G(z_{\text{cut}}Q^2) \left[S_C(z_{\text{cut}}m_{J,L}^2) J(m_{J,L}^2) \right] \left[S_C(z_{\text{cut}}m_{J,R}^2) J(m_{J,R}^2) \right]$

Aside: Getting Collinear-Soft Function to NNLL

Factorization theorem in e^+e^- collisions:

 $\frac{d^2\sigma}{dm_{IL}^2 dm_{IR}^2} = H(Q^2) S_G(z_{\rm cut}Q^2) \left[S_C(z_{\rm cut}m_{J,L}^2) J(m_{J,L}^2) \right] \left[S_C(z_{\rm cut}m_{J,R}^2) J(m_{J,R}^2) \right]$ $H(Q^2)$: Hard function for e⁺e⁻ \rightarrow qq. Known beyond two-loops. van Neerven 1986 Matsuura, van der Marck, van Neerven 1989 $J(m_J^2)$: Jet function. Known at two-loops for quarks and gluons. Bauer, Manohar 2003 Becher, Neubert 2006 Global soft function. Related to two-loop soft function $S_G(z_{\rm cut}Q^2)$: with energy veto (up to calculable clustering effects). von Manteuffel, Schabinger, Zhu 2013 Chien, Hornig, Lee 2015 $S_C(z_{\rm cut}m_J^2)$: Collinear-soft function. New, no two-loop calculation exists.

Can get everything from literature and by exploiting RG invariance!

$$0 = \gamma_H + \gamma_{S_G} + 2\gamma_J + 2\gamma_{S_C}$$