

PDF at LHC and 100 TeV Collider

C.-P. Yuan Michigan State University In collaboration with CTEQ-TEA

July 24, 2106

International Workshop on MC4BSM@ UCAS-YuQuan, Beijing, China

CTEQ-TEA group

 CTEQ – Tung et al. (TEA) in memory of Prof. Wu-Ki Tung, who established CTEQ Collaboration in early 90's The Coordinated Theoretical-Experimental project on QCD

Current members:
 Sayipjamal Dulat (Xinjiang U.),
 Tie-Jiun Hou, Pavel Nadolsky (Southern Methodist U.), Jun Gao (Argonne Nat. Lab.), Marco Guzzi (U. of Manchester), Joey Huston, Jon Pumplin, Dan Stump, Carl Schmidt, CPY (Michigan State U.)

New Physics Found (20 years ago)?

CTEQ

 $\mathbf{C} \mathbf{T} \mathbf{E} \mathbf{Q}$

Parton Distribution Functions

Needed for making theoretical calculations to compare with experimental data

Parton Distribution Functions (PDFs)

jet algorithms

C T E Q

Factorization Theorem (QCD improved parton model)

CTEQ

$$\frac{d f_a(x,\mu_{\rm F}^2)}{d \log \mu_{\rm F}^2} = \sum_{b=q,\bar{q},g} \int_x^1 \frac{dz}{z} P_{ab}\left(\frac{x}{z};\mu_{\rm F}^2\right) f_b(z,\mu_{\rm F}^2)$$

PDFs depend on energy scale: RG evolution (DGLAP)

$$\frac{d}{d} = \left(\frac{d}{d} \right) \left($$

Parton Distribution Functions (PDFs) of the proton map out the longitudinal momentum distribution of proton's constituent quarks and gluons.

Two trends in the modern PDF analysis

CTEQ

Proton PDFs

For general-purpose nucleon PDFs, the goal is to determine very precise parametrizations for pQCD calculations up to (N)(N)NLO in α_s . The focus is on the high-Q data that is not sensitive to nuclear (NUCL), target mass corrections (TMC) and higher twists (HT) effects.

\Rightarrow CT, MMHT, NNPDF PDFs for studying LHC physics.

Selected Experimental Data in Global analysis

C T E Q

For nucleon PDFs, experimental measurements are selected so as to reduce

dependence on theoretical input beyond the leading power in perturbative QCD

CT14:

only DIS data with $Q^2 > 4 \ GeV^2$, $W^2 > 12.5 \ GeV^2$ (above the red line) are accepted to ensure stable perturbative predictions

Still using data from DIS and DY on **nuclear targets. CT14HERA2** does not use NMC DIS **on deuteron**, will be replaced by comparable future LHC/Tevatron measurements on **the proton**

Precise knowledge of PDFs is important

Gluon-gluon channel for the production of a generic resonance X decaying to WW and ZZ diboson pairs.

Higgs boson production

SENSITIVITY TO GLUON PDFs

CT14 PDFs:1506.07443

CTEQ

LHC run 1 data have some impact in recent global analyses.

A lot of efforts in the past 2 years went into comparisons and benchmarking: "PDF4LHC recommendations for LHC run II", arXiv: 1510.03865

Comparison of PDFs at $Q^2 = 10^2 \text{ GeV}^2$ between the NNPDF3.0, CT14 and MMHT14 sets at NNLO, with $\alpha s (M_Z) = 0.118$.

From PDF4LHC arXiv: 1507.00556 (July 2015)

For example, δ_{PDF} on Higgs cross sections based on 3 **latest** global fits has reduced from 7% to within 3%, i.e., the PDF uncertainty is now of order of N3LO QCD scale uncertainty

This improvement is due to benchmarking of general-mass factorization schemes; but can there be hidden sources of uncertainties on $\sigma(gg \rightarrow H)$, e.g., associated with massive charm DIS contributions, cf. arXiv:1603.08906?

Which PDF set to be used for

Making central prediction and Estimating its uncertainty due to PDF and α_s

Estimation of PDF uncertainties on LHC observables

 $\mathbf{C} \mathbf{T} \mathbf{E} \mathbf{Q}$

The procedure for computing the PDF uncertainty must vary depending on the goals. The options may include

a) Using one individual set out of several similar ones (e.g., CT, MMHT, or NNPDF)

b) Using an envelope of all sets, including the outlier sets

c) New (arXiv:1510.03865): using a combined PDF4LHC15 set constructed from CT14, MMHT14, NNPDF3.0

- A statistical combination of 3 sets
- Reproduces the total uncertainty with only 30-100
 error sets
- Eliminates redundant comparisons of 3 global sets
- can be used in many (not all) cases.

PDF4LHC15 combined sets (900, 100, 30 replicas) vs. CT14, MMHT, NNPDF CTEQ

CT, MMHT, NNPDF

Provide the central set (giving the best fit to global analysis) of the PDFs

Provide eigensets (or replica sets) to allow estimation of uncertainty induced by PDF errors for predicting any experimental observable.

Provide information on (anti-) correlations among various parton flavors (quarks or gluon) at given x and Q values.
 Trying their best to estimate the PDF errors in the small and large x regions, where PDFs are not yet well determined.

Though they are generally in good agreement, some noticeable difference can appear in experimental observables, sensitive to some special combination of different parton flavors.

LHC Run 1 Data matters

Data is already more precise than CT10, NNPDF2.3 and MSTW2008 PDF uncertainties.

CTEQ

Will help to determine u,d,ubar and dbar PDFs.

Most useful for determining d/u and dbar/ubar.

MSTW2008 NNLO PDFs are disfavored by this data set

CT14 Global QCD Analysis

 $\mathbf{C} \mathbf{T} \mathbf{E} \mathbf{Q}$

Recent results CT14NNLO CT14NLO CT14LO CT14IC CT14HERA2 CT14MC CT14QED

CT14 PDFs

 $\mathbf{C} \mathbf{T} \mathbf{E} \mathbf{Q}$

Phenomenological parametrizations of PDFs are provided with estimated uncertainties of multiple origins (uncertainties of measurement, theoretical model, parametrization form, statistical analysis, ...)

The shape of PDFs is optimized w.r.t. hundreds of **nuisance parameters**

- CT10 includes only pre-LHC data
- CT14 is the first CT analysis including LHC Run 1 data
- CT14 also includes the new Tevatron D0 Run 2 data on W-electron charge asymmetry
- CT14 uses a more flexible parametrization in the nonperturbative PDFs.
- We have published its results at NNLO, NLO and LO.

Produce 90% C.L. error PDF sets from Hessian method, scaled by 1/1.645 to obtain 68% C.L. eigenvector sets. For NNLO, Chi^2/d.o.f is about 1.1 for about 3000 data points included in the fits.

E

- CT14 has 26 shape parameters, plus four extreme sets for describing s- and g-PDFs in small-x region. In comparison, CT10 has 24 shape parameters, plus two extreme sets for describing g-PDFs in small-x region.
- More flexible parametrization gluon, d/u at large x, and both d/u and dbar/ubar at small x, strangeness (assuming sbar = s)
- Non-perturbative parametrization form:

$$x f_a(x) = x^{a_1} (1 - x)^{a_2} P_a(x)$$

where $P_a(x)$ is expressed as a linear combination of Bernstein polynomials to reduce the correlation among its coefficients.

- Choose experimental data with $Q^2 > 4 \text{ GeV}^2$ and $W^2 > 12.5 \text{ GeV}^2$ to minimize high-twist, nuclear correction, etc., and focus on perturbative QCD predictions.
- PDFs are parametrized at Q=1.3 GeV.
- Take $\alpha_s(Mz) = 0.118$, but also provide α_s -series PDFs.
- Use s-ACOT- χ prescription for heavy quark partons, and take pole mass M_c =1.3 GeV and M_b =4.75 GeV
- NNLO calculations for DIS, DY, W, Z, except jet (at NLO).
- Correlated systematic errors are taken into account.
- Check Hessian method results by Lagrangian Multiplier method which does not assume quadratic approximation in chi-square.

What's new in CT14 NNLO PDFs

CT14 differs from CT10 PDFs in several respects: **new HERA data:** pre-LHC

- Combined HERA charm production measurements $(F_2^{(c)})$
- measurements of the longitudinal F_L(x, Q²) in DIS neutral currents

new Tevatron data:

- Tevatron Run 1 CDF and D0 inclusive jet data are dropped,
- old D0 data (0.75 fb⁻¹) superseded by the new D0 (9.7 fb⁻¹)
 W-electron rapidity asymmetry data.

LHC 7 TeV run I data included

- ATLAS and LHCb W and Z production,
- ► ATLAS, CMS and LHCb *W*-lepton charge asymmetry,
- ATLAS and CMS inclusive jet data.

CT14 has ≈3000 data points

CT14 Data sets ensemble I

ID#	Experimental data set	N _{pt}	χ^2_e	χ^2_e/N_{pt}	Sn
101	BCDMS F_2^p	337	384	1.14	1.74
102	BCDMS F_2^d	250	294	1.18	1.89
104	NMC F_2^d/F_2^p	123	133	1.08	0.68
106	NMC σ_{red}^{P}	201	372	1.85	6.89
108	CDHSW F_2^p	85	72	0.85	-0.99
109	CDHSW F_3^p	96	80	0.83	-1.18
110	CCFR F_2^p	69	70	1.02	0.15
111	$CCFR \times F_3^p$	86	31	0.36	-5.73
124	NuTeV $ u\mu\mu$ SIDIS	38	24	0.62	-1.83
125	NuTeV $ar{ u}\mu\mu$ SIDIS	33	39	1.18	0.78
126	CCFR $ u \mu \mu$ SIDIS	40	29	0.72	-1.32
127	CCFR $\bar{\nu}\mu\mu$ SIDIS	38	20	0.53	-2.46
145	H1 σ_r^b	10	6.8	0.68	-0.67
147	Combined HERA charm production	47	59	1.26	1.22
159	HERA1 Combined NC and CC DIS	579	591	1.02	0.37
169	H1 FL	9	17	1.92	1.7

Very important for PDF determination

CT14 Data sets ensemble II

	ID#	Experimental data set	N _{pt}	χ^2_e	χ^2_e/N_{pt}	S _n
	201	E605 Drell-Yan process	119	116	0.98	-0.15
	203	E866 Drell-Yan process, $\sigma_{pd}/(2\sigma_{pp})$	15	13	0.87	-0.25
	204	E866 Drell-Yan process, $Q^3 d^2 \sigma_{pp} / (dQ dx_F)$	184	252	1.37	3.19
	225	CDF Run-1 electron A_{ch} , $p_{T\ell} > 25$ GeV	11	8.9	0.81	-0.32
	227	CDF Run-2 electron A_{ch} , $p_{T\ell} > 25$ GeV	11	14	1.24	0.67
	234	DØ Run-2 muon A_{ch} , $p_{T\ell} > 20$ GeV	9	8.3	0.92	-0.02
	240	LHCb 7 TeV 35 pb ⁻¹ $W/Z d\sigma/dy_{\ell}$	14	9.9	0.71	-0.73
	241	LHCb 7 TeV 35 pb ⁻¹ A_{ch} , $p_{T\ell} > 20$ GeV	5	5.3	1.06	0.30
-	260	DØ Run-2 Z rapidity	28	17	0.59	-1.71
	261	CDF Run-2 Z rapidity	29	48	1.64	2.13
	266	CMS 7 TeV 4.7 fb ⁻¹ , muon A_{ch} , $p_{T\ell} > 35$ GeV	11	12.1	1.10	0.37
	267	CMS 7 TeV 840 pb ⁻¹ , elec. A_{ch} , $p_{T\ell} > 35$ GeV	11	10.1	0.92	-0.06
	268	ATLAS 7 TeV 35 $pb^{-1} W/Z$ cross sec., A_{ch}	41	51	1.25	1.11
	281	DØ Run-2 9.7 fb ⁻¹ elec. A_{ch} , $p_{T\ell} > 25$ GeV	13	35	2.67	3.11
	504	CDF Run-2 inclusive jet production	72	105	1.45	2.45
	514	DØ Run-2 inclusive jet production	110	120	1.09	0.67
	535	ATLAS 7 TeV 35 pb^{-1} incl. jet production	90	50	0.55	-3.59
	538	CMS 7 TeV 5 fb ⁻¹ incl. jet production	133	177	1.33	2.51

Aspects of the CT14 analysis: $\alpha_s(M_Z)$

- ► central value of \(\alpha_s(M_Z) = 0.118\) has been assumed in the global fits at NLO and NNLO, but
- ▶ PDF sets at alternative values of $\alpha_s(M_Z)$ are provided.
- CT14 prefers $\alpha_s(M_Z) = 0.115^{+0.006}_{-0.004}$ at NNLO (0.117 ± 0.005 at NLO) at 90 % confidence level (C.L.).

Uncertainties from the global QCD fits are larger than those of the data from LEP and other experiments included into the world average *Chin.Phys.C* (2014).

CT14 $\alpha_s(M_Z)$ central is consistent with the world average value.

CT14 vs CT10 at NNLO 90% C.L.

D0 ele charge asy data $\Rightarrow d$ highly reduced at $x \ge 0.1$ and u moderately increased.

CT14 d(x,Q)/u(x,Q) ratios

CT14 NNLO: agreement with data

Total of 2947 data points from 33 experiments $\chi^2 = 3252$ at the best fit CT14 NNLO, $\chi^2/N_{pt} = 1.10$.

Data and theory are in reasonable good agreement for most experiments (next slides)

CT14 NNLO: agreement with data

Inclusive jet production and W lepton charge asymmetry at the LHC 7 TeV

CT14 NNLO: agreement with data

Total inclusive tt cross section at NNLO in QCD with $10P++$, (CZakon, Miltov, CPC 2014)					
$pp ightarrow t \overline{t}$ (pb), PDF unc., $\alpha_s = 0.118$	7 TeV	8 TeV	13 TeV		
68% C.L. (Hessian)	177 + 4.8% - 3.9%	250 + 3.9% - 3.5%	820 + 2.6% - 2.7%		
68% C.L. (LM)		+4.8% - 4.6%	+2.9% - 2.9%		
$pp \rightarrow t\bar{t}$ (pb), PDF+ α_s	7 TeV	8 TeV	13 TeV		
68% C.L. (Hessian)	+5.5% - 4.6%	+5.2% - 4.4%	+3.6% - 3.5%		
68% C.L. (LM)		+5.1% - 4.7%	+3.6% - 3.5%		

Total inclusive $t\bar{t}$ cross section at NNLO in OCD with TOD 1.1. (Croken Mitov CPC 2014)

Approx NNLO p_T spectrum for the final state top-quark with DIFFTOP (M.G., Lipka, Moch, JHEP 2015)

Story about D0 Run 2 W-electron rapidity asymmetry data

CTEQ

CT10 was produced by fitting to old D0 data. CT14 uses new D0 data, closer to CTEQ6.6 than CT10 predictions in large rapidity.

Old D0 data disfavor CTEQ6.6 and requires CT10. New D0 data disfavor CT10 and requires CT14.

CT14IC

Intrinsic Charm PDFs

Intrinsic Charm: CT10IC and CT14IC

- Update of CTEQ6.5 IC study from 2007 to CT14NNLO
 - includes combined H1 and ZEUS data, HERA inclusive charm.

 $\mathbf{C} \mathbf{T} \mathbf{E}$

- include LHC RUN I data.
- CT10 global analysis study of charm quark mass: $m_c(m_c) = 1.15^{+0.18}_{-0.12}$ GeV (Gao et al. Eur.Phys.J C73 (2013) 2541) Use $m_c(pole) = 1.3$ GeV for this study
 - some correlation between m_c and IC.
- Two model Intrinsic Charm distributions at Q₀ = 1.3GeV
 BHPS valence-like model (Brodsky et al. Phys. Lett. 93B, 451(1980))
 - SEA-like model

$$\langle x \rangle_{IC} = \int_0^1 x [c(x, Q) + \bar{c}(x, Q)] dx$$

CT10IC PDFs

STATE

arXiv:1309.0025

500

CT10

BHPS1

BHPS2

SEA1 SEA2

CT14IC PDFs

Charm PDFs

Gluon PDFs

CT14HERA2

Impact of HERA combined Run 1 and Run 2 data to CT14 PDFs

ה.

Impact of the new HERA run I+II measurements

 $\mathbf{C} \mathbf{T} \mathbf{E} \mathbf{Q}$

H1 and ZEUS • HERA NC e⁻p 0.4 fb⁻¹ $\sigma_{r,NC} X$ 10⁷ **HERA NC e^+p 0.5 fb^{-1}** $\sqrt{s} = 318 \text{ GeV}$ □ Fixed Target HERAPDF2.0 e⁻p NNLO 0032. i=17 HERAPDF2.0 e⁺p NNLO 0.0013. i=14 10 4 10³ 10^{2} 10 x_{Bi} = 0.18, i=3 x_{pi} = 0.25, i=2 1 = 0.40, i=1 10 -2 x_{pi} = 0.65, i=0 10 10 10⁵ 10^{2} 10^{3} 10⁴ 10 O^2/GeV^2

CT14HERA2

H1 and ZEUS combination of DIS cross sections for NC and CC H1 and ZEUS Coll. 1506.06042 EPJ2015

So far, the most important measurements for PDF determination

Neutral Current

|Charged

Current

[Ep=920 GeV] | [Ep=920 GeV] e-p [Ep=920 GeV] | [Ep=920 GeV] e+p [Ep=460 GeV] e+p [Ep=575 GeV] e+p [Ep=820 GeV] e+p

 $\chi^2_{\rm CT14_{\rm HEBA2}, NNLO}/N_{pts} = 3596/3287 = 1.09$

 $\chi^{\rm Z}_{\rm CT14,NNLO}/N_{pts} = 3250/2947 = 1.10$

Most relevant changes due to HERA2 data in the PDFs and their ratios

CT14MC

Replica sets for CT14 PDFs

CT14 Monte-Carlo replica PDFs

Tie-Jiun Hou, et al., arXiv:1607.06066

mcgen: a public code to convert Hessian eigenvector ensembles into Monte-Carlo replica ensembles with several methods (http://metapdf.hepforge.org/mcgen/)

CT14 MC1 and MC2: ensembles of PDF replicas ($N_{rep} = 1000$) generated from CT14 Hessian ensemble

g (x,Q) at Q=1.3 GeV, CT14 NNLO, asym. std. dev. Hessian, MC1, MC2: solid, short-dashed, long-dashed

Asymmetric standard deviations of CT14 MC ensembles reproduce **asymmetric** CT14 Hessian uncertainties

CT14 MC2 replicas are nonnegative: lead to positive physical cross sections

Can be used for combinations of PDF ensembles and PDF reweighting

FIG. 3: The mean values and asymmetric standard deviations (20), (21) of the CT14 NNLO MC1 (short-dashed) and MC2 (long-dashed) PDFs, compared to the mean and 68% c.l. uncertainty (Eq. (10), solid) of the CT14 NNLO Hessian PDF. The PDFs are shown as ratios to the central CT14 fit. Upper panel: $g(x, Q_0)$ and $d(x, Q_0)$. Lower panel: $\bar{u}(x, Q_0)$ and $\bar{s}(x, Q_0)$.

CT14 MC2 replicas satisfy positivity

FIG. 2: Distributions of individual replicas for MC1 (linear MC, shifted) and MC2 (log MC, shifted) ensembles.

Large χ^2 in replicas

CTEQ

Typical CT14MC replicas sets have large χ^2 . Here, we show χ^2 distributions for 1000 replicas, with about 3000 data points (579 for HERA-I) included in the CT14 fit.

CT14QED and CT14QED_inc

- Photon as a parton inside proton
- Evolved at the NLO QED plus LO QED
- CT14QED for inelastic contribution
- CT14QED_inc for inclusive contribution

Photon PDFs CT14QED

- 1) Previous studies
 - a) MRST Martin et al., EPJC 39 (2005) 155
 - Radiation off "primordial current quark" distributions
 - b) NNPDF Ball et al., Nuc. Phys. B 877 (2013) 290
 - parametrized fit, predominantly constrained by W, Z, γ^* Drell-Yan
 - c) Sadykov arXiv:1401.1133
 - photon evolution in QCDNum
- 2) Photon evolution at LO in α and NLO in α_S currently implemented in CTEQ-TEA global analysis package
 - a) Alternative parametrization approach
 - b) Constrain with DIS + photon data

arXiv:1509.02905

CT14QED Photon PDFs (in proton)

γ momentum fraction:

$p^{g}(Q)$	$\mathcal{G}(x,Q_0)=0$	$g(x,Q_0)_{\rm CM}$
Q = 3.2 GeV	0.05%	0.34%
Q = 85 GeV	0.22%	0.51%

Photon PDF can be larger than sea quarks at large x!

Initial Photon PDF still \leftarrow significant at large Q.

arXiv:1509.02905

u

Photon-Photon Luminosity CT14QED_inc PDFs

arXiv:1603.04874

 $\mathbf{C} \mathbf{T} \mathbf{E} \mathbf{Q}$

FIG. 5: Photon-photon luminosity for an invariant mass of 20 GeV to 500 GeV for 13 TeV collider energy

FIG. 6: Photon-photon luminosity for and invariant mass of 500 GeV to 6000 GeV for 13 TeV collider energy

Some useful information for PDF users

For LHC and 100 TeV Collider

CT14 NNLO PDFs

- PDF error bands
 - u and d PDFs are best known
 - currently no constraint for x below 1E-4
 - large error for x above 0.3
 - larger sea (e.g., ubar and dbar) quark uncertainties in large x region
 - with non-perturbative parametrization form dependence in small and large x regions
- PDF eigensets
 - useful for calculating PDF induced uncertainty
 - sensitive to some special (combination of) parton flavor(s).

When is LO PDFs to be used?

 $\mathbf{C} \mathbf{T} \mathbf{E} \mathbf{Q}$

- LO PDFs were obtained in the global fits by using LO hard part cross sections. Hence, if you want to describe the fitted data using the LO calculation, you have to use LO PDFs. Similar arguments apply to NLO and NNLO PDFs.
- However, if you are studying a new physics process, or some process not been included in our global fits, you might argue to use NLO or NNLO PDFs in the LO calculation by noting that whatever the difference is at higher order (than LO prediction).
- CT14LO PDFs were obtained by fitting to the same set of LHC run-1 data as done for CT14NLO and CT14NNLO.
- LO PDFs have much worse χ^2 in global fits than NLO and NNLO fits which have about the same χ^2 . Also, with much larger PDF errors.

Figure 2:

2

Impact of PDF uncertainty to New Physics Search

For LHC and 100 TeV Collider

- Parton Distribution Function f(x, Q)
- Given a heavy resonance with mass Q produced at hadron collider with c.m. energy \sqrt{s}
- What's the typical x value?

$$\langle x \rangle = \frac{Q}{\sqrt{S}}$$

at central rapidity (y=0)

• Generally, $x_1 = \frac{Q}{\sqrt{S}}e^y$ and $x_2 = \frac{Q}{\sqrt{S}}e^{-y}$

$$x_1 + x_2 = 2 \frac{Q}{\sqrt{S}} \cosh(y)$$
 \longrightarrow $y_{\text{max}}: x_1 + x_2 = 1$

Kinematics of a 100 TeV SppC

Kinematics of a 100 TeV FCC

Plot by J. Rojo, Dec 2013

CTEQ

On to a 100 TeV FCC

PDF Iuminosities

 $\mathbf{C} \mathbf{T}$

 \mathbf{E}

Uncertainties in physical cross sections induced by PDFs also vary.

Conclusions

CTEQ

- LHC unprecedented energies brought us in a new precision era.
- Massive efforts are going on to constrain proton structure:
- PDF uncertainties still remain a limiting factor for precision at the LHC.
- Finding new, highly sensitive measurements for constraining PDFs:
 - Less inclusive, yet clean, processes (e.g. Z pT at NNLO...etc.)
 - Better constraints at x > 0.3
 - Reliable flavor separation
- High precision data ⇒ control on subleading effects (NLO EM corrections, photon PDFs, off-shell resonant production...) and theoretical uncertainties (scale dependence, heavy-quark schemes)