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FeynRules

cp3

Introduction
From FeynRules to FeynArts so far

The new FeynRules interface to FeynArts
Conclusion

Welcome in the FeynRules era

C. Degrande The new FeynRules interface

Interfaces coming with current public version 
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FeynRules in a nutshell

Donnerstag, 14. Oktober 2010

Input : model.fr

Output : vertices
A. Alloul, N. D. Christensen, CD, C. Duhr 

and B. Fuks, CPC185 (2014) 2250
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FeynRules outputs

cp3

Introduction
From FeynRules to FeynArts so far

The new FeynRules interface to FeynArts
Conclusion

For each tool, the right input

C. Degrande The new FeynRules interface

CalcHep / CompHep

FeynArts / FormCalc

FeynRules in a nutshell

Donnerstag, 14. Oktober 2010

FeynRules outputs  
can be used 

directly by event 
generators

UFO : output with the 
full information	
used by several 

generators

(      )

CD, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, CPC 183 (2012) 1201
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UFO
• Generator independent output with full model 

information	

• Contains the list of particles, parameters,  
vertices, decays (1 to 2), coupling orders	

• vertices are split into Lorentz structures, colours 
and couplings and all are included in the model!

�igs T a
ij �µ

• Used in MG5, Herwig, Gosam, Sherpa
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Why NLO/Loop BSM?
• Discovery : 	

• Loop-induced production/decay	

• NLO : Refine search strategies	

• Measurement of properties/couplings : NLO 
corrections	

• QCD corrections are large at the LHC	

• Quantification of the constraints NP should not 
be limited by the th. error on EFT
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Madgraph5_aMC@NLO

• Computation of the born	

• Computation of the real	

• Computation of the loop	

• Matching with parton 
shower ‘à la’ MC@NLO

Wide BSM support	
+	

Automated NLO computation MG5

MadFKS (IR)

MadLoop
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MadLoop

• Box, Triangle, Bubble and Tadpole are known 
scalar integrals	

• Loop computation = find the coefficients	

• Tensor reduction (OPP)	

• R : rational terms should be partially provided	

• UV counterterm vertices have to be provided

Prelims History Present

Tensor Reduction 2

A1−loop =
∑

i

di Boxi +
∑

i

ci Trianglei +
∑

i

bi Bubblei

+
∑

i

ai Tadpolei + R

where

Tadpolei =
∫

dnq̄ 1

D̄0
Bubblei =

∫

dnq̄ 1

D̄0D̄1

Trianglei =
∫

dnq̄ 1

D̄0D̄1D̄2

Boxi =
∫

dnq̄ 1

D̄0D̄1D̄2D̄3

analytic work is necessary

Roberto Pittau Automatizing 1-loop multi-leg calculations for LHC (and ILC)
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To be provided : R2 

Finite set of vertices that can be computed once 
for all

What are the R2 rational terms?

Ā (q̄) =
1

(2⇥)4

�
dd q̄

N̄ (q̄)
D̄0D̄1 . . . D̄m�1

, D̄i = (q̄ + pi)
2 � m2

i

N̄ (q̄) = N (q) + ⇥N (q̃, q, �)

where X̄ lives in d dimension, X in 4, ⇥X in �.

R2 definition

R2 ⇥ lim
�⇥0

1
(2⇥)4

�
dd q̄

⇥N (q̃, q, �)
D̄0D̄1 . . . D̄m�1

Finite (⇤ 4 legs) set of vertices computed once for all!

C. Degrande (UIUC) 5 October 2012 18 / 30
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d 4 ε

in MadLoop [4] available in the MadGraph5 aMC@NLO framework leading to a complete
automated tool for NLO computation. So far only the SM model has been implemented despite
that MadLoop is based on MadGraph5[5] for which many BSM models are available. As a
matter of fact, the evaluation of the loop corrections requires two extra ingredients that so far
have been added by hand in the model. The first one is the counterterms introduced by the
renormalization procedure to absorb all the UV divergences arising at the one-loop level. While
the divergences can be extracted from the scalar integrals, any renormalization scheme with a
non-trivial finite part in the counterterms requires a careful redefinition of the fields and of the
independent parameters of the model and the resolution of the renormalization conditions. The
second missing element depends on the actual method used to perform the tensor decomposition
of the loop amplitudes. In the case of OPP, it is a part of the rational term. In d dimensions,
any one-loop amplitude can be written as

A (q) =
1

(2⇡)4

Z
ddq

N (q)

D0D1 . . . Dm�1
, (2)

with the propagator denominators given by Di ⌘ (q + pi)
2 �m2

i and where mi are the masses
of the particles in the loop, q is the loop momentum and pi are linear combinations of external
momenta. All the quantities written with a bar live in d dimensions and can therefore be split in
a four dimensional part x and a d�4 dimensional part x̃ as follow x ⌘ x+ x̃. Rational terms are
finite contributions generated by the part of the integrand linear in d � 4. One then organizes
the rational part in two terms, R1 and R2. The rational term R1 is due to the d� 4 component
of the integrand denominators and can be computed as the four-dimensional piece but using a
di↵erent set of scalar integrals [6]. The R2 terms are defined as the finite part due to the d� 4
component of the numerator

R2 ⌘ lim
✏�0

1

(2⇡)4

Z
ddq

Ñ (q̃, q, ✏)

D0D1 . . . Dm�1
, (3)

where ✏ is defined by d ⌘ 4 � 2✏. We use here the ’t Hooft-Veltman scheme [7] such that all
the quantities in the loop, i.e. the loop momentum, the metric and the Dirac matrices live in d
dimensions:

⌘µ ⌫⌘µ ⌫ = d, (4)

�µ�µ = d 1, (5)

where 1 is the identity matrix in Dirac space. The external momenta and polarization vectors
have only four dimensional components. The Dirac matrices in d dimensions �u are chosen to
anti-commute with �5 [8, 9, 10]. Therefore, the cyclic property of Dirac trace has to be dropped
to avoid algebraic inconsistency. The result of the evaluation of the integral in (3) is a set of
process independent Feynman rules. As a consequence, they should only be computed once for
each model. The R2 term are the second missing ingredient as they had to be computed so far by
hand for each model. The R2 terms are known for the full SM [11][12] and for QCD corrections
to the MSSM [13]. A package for the automatic computation of the R2 terms for the SM has
also been developed [14].

The purpose of this paper is to show that the procedure of determining the UV counterterms
and the R2 terms can be automated for any Lagrangian. The computation of the missing ele-
ments is done by three Mathematica packages, FeynRules [15], NLOCT and FeynArts [16].
NLOCT is a completely new package, new functionalities have been added to FeynRules to
renormalize models and output the NLO vertices in the UFO format [17] while FeynArts has
not been altered. The only requirement is that the model should be written in the Feynman
gauge. At this stage, the package is restricted to renormalizable theories. Renormalizability
is here understood strictly and not order by order like for e↵ective field theories. Namely, the
dimension of the operators in the Lagrangian should be equal to or lower than four. Although
the R2 terms are not always required, the UV counterterms are needed for any one-loop com-
putation. Therefore, the automatically generated models can be used to provide the necessary

2
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Computed in MadLoop :R1

R1

q̃2

d, c, b, a

n R1

R1

q̃2 d, c, b

q̃2

m2
i → m2

i − q̃2 .

n

n

q̃2

q̃2 d, c, b

∫

dnq̄
q̃2

D̄iD̄j

= −
iπ2

2

[

m2
i + m2

j −
(pi − pj)2

3

]

+ O(ϵ) ,

∫

dnq̄
q̃2

D̄iD̄jD̄k

= −
iπ2

2
+ O(ϵ) ,

∫

dnq̄
q̃4

D̄iD̄jD̄kD̄l

= −
iπ2

6
+ O(ϵ) .

b(ij; q̃2) = b(ij) + q̃2b(2)(ij) ,

c(ijk; q̃2) = c(ijk) + q̃2c(2)(ijk) .

Z̄i

Like for the 4 dimensional part but with a different set of 
integrals

Due to the ℇ dimensional parts of the denominators 

Only R = R1+R2 is gauge invariant Check
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UV
What are the UV counterterms?

Ā (q̄) =
1

(2⇥)4

⌥
dd q̄

N̄ (q̄)
D̄0D̄1 . . . D̄m�1

= K
1
�
+O

⇤
�0
⌅

m ⇥ m
⇧

1 + cm
1
�

⌃
, � ⇥

⇧
1 + c�

1
�

⌃
�, g ⇥ g

⇧
1 + cg

1
�

⌃

. . . . . . = 01
� +O

�
�0⇥

Finite (� 4 legs) set of vertices computed once for all!

C. Degrande (UIUC) 5 October 2012 21 / 30

What are the UV counterterms?

Ā (q̄) =
1

(2⇥)4

⌥
dd q̄

N̄ (q̄)
D̄0D̄1 . . . D̄m�1

= K
1
�
+O

⇤
�0
⌅

m ⇥ m
⇧

1 + cm
1
�

⌃
, � ⇥

⇧
1 + c�

1
�

⌃
�, g ⇥ g

⇧
1 + cg

1
�

⌃

. . . . . . = 01
� +O

�
�0⇥

Finite (� 4 legs) set of vertices computed once for all!

C. Degrande (UIUC) 5 October 2012 21 / 30Finite set of vertices that can be computed once 
for all

Relations fixed by the Lagrangian (finite part)
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Renormalization
External parameters

Same for the conjugate field

Internal parameters are renormalised by replacing the 
external parameters in their expressions

one-loop ingredients for other NLO tools than MadGraph5 aMC@NLO like GoSam [18] for
example which is already using the UFO format. As an explicit example, we consider the Two
Higgs Doublet Model (2DHM). The 2HDM is a simple but important extension of the SM since
it provides a well defined model to search for extra scalar particles.

The paper is organized as follows. The second section focuses on the renormalization of the
Lagrangian and introduces the renormalization conditions for the on-shell scheme. This scheme
is easily extended to complex mass scheme to provide an appropriate treatment of the widths.
The main advantage of those schemes is to avoid the evaluation of the loops on the external legs
and it is used, for example, in MadLoop to make the computation faster. The third section
discusses the algorithm for the computation of the counterterms from the amplitudes. This
section ends with the validation of the algorithm. The 2HDM is briefly introduced in Sect. 4 to
fix the notation. The R2 and UV counterterm vertices for the 2HDM are given in Sect. 5 and 6
respectively. Finally, the conclusion is given in the last section.

2 Renormalization

2.1 The renormalization constants

In dimensional regularization UV-divergences appear as poles in 1/✏ where d ⌘ 4 � 2✏. In a
renormalizable theory, they can absorbed by a redefinition of the free parameters and of the
fields

x0 � x+ �x,

�0 � (1 +
1

2
�Z��)�+

X

�

1

2
�Z���, (6)

where x is an external parameter and � and � are fields with the same quantum numbers, the
bare quantities are denoted by an additional zero subscript compared to the renormalized fields or
parameters, the renormalization constant are preceded by a �. For the fermions, each chirality is
renormalized independently. The external parameters are independent parameters which values
should be fixed by experiments. On the contrary, internal parameters are functions of the external
parameters. Internal parameters are also renormalized. However, their renormalization does not
require the introduction of new renormalization constants and is fixed by their dependence on
the external parameters. The same self renormalization constants Z�� are used for both the
fields and their hermitian conjugates and not its conjugate as required by the complex mass
scheme [19]. Their imaginary parts would otherwise disappear form the hermitian Lagrangian.
For example, the kinetic term of a scalar has an imaginary part if

�0 � (1 + 1
2�Z��)�

�†
0 � (1 + 1

2�Z��)�†

�
) @µ�0@µ�

†
0 � (1 + �Z��)@

µ�@µ�
† (7)

to absorb the imaginary part coming from the corresponding term of the two point loop ampli-
tude. On the contrary, they would be no imaginary part if the conjugated field is renormalized
with the conjugate of the renormalization constant, i.e.

�0 � (1 + 1
2�Z��)�

�†
0 � (1 + 1

2�Z
⇤
��)�

†

�
) @µ�0@µ�

†
0 � (1 + <�Z��)@

µ�@µ�
†. (8)

In the on-shell scheme, those constants are real and therefore also identical for both the fields
and their conjugates. Similarly, external parameters in FeynRules are real and therefore renor-
malized by the same constants as their conjugates. Again, this is valid for both schemes even if
the external parameters have complex renormalization constants as in the complex mass scheme.
The renormalization is therefore identical for those two renormalization schemes but only the
bare Lagrangian is hermitian in the complex mass scheme since the renormalization constants
are complex in this scheme. The bare Lagrangian can also be split into the renormalized one

3

gg (1 + �Zgg)TL
ggg

�
1 + 1

2�↵s +
3
2�Zgg

�
TL

gggg (1 + �↵s + 2�Zgg)TL
Fixed by
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Renormalization conditionsThe renormalization conditions should be chosen to ease as much as possible the problem at
hand or to make the physics transparent. In this respect, the renormalized mass is identified to
the physical one, the real part of the pole of the propagator in the on-shell scheme such that its
value is given by the mass measurement. Furthermore it allows to get rid of the corrections on
the external legs of the amplitudes by forcing the two-point functions to vanish on-shell. More
details on the on-shell scheme can be found in Ref. [21]. In the following, we will given the
renormalization conditions as they are implemented in the NLOCT package.

First, the tadpole counterterms are chosen to cancel the loop corrections such that no tadpole
should be included in any computation. Secondly, the mass and the wave functions renormaliza-
tion constants are fixed by the conditions on the two-point functions. Writing the renormalized
fermion two-point function as

i�ij (�p�mi) + i
⇥
fL
ij

�
p2
�
�p�� + fR

ij

�
p2
�
�p�+ + fSL

ij

�
p2
�
�� + fSR

ij

�
p2
�
�+

⇤
, (10)

where �± = 1±�5

2 and the f functions contain both the loop and counterterm contributions, the
renormalization conditions in the on-shell scheme for the fermions are

<̃
⇥
fL
ij

�
p2
�
mi + fSR

ij

�
p2
�⇤ ���

p2=m2
i

= 0,

<̃
⇥
fR
ij

�
p2
�
mi + fSL

ij

�
p2
�⇤ ���

p2=m2
i

= 0,

<̃

2mi

@

@p2
⇥�
fL
ii

�
p2
�
+ fR

ii

�
p2
��

mi + fSL
ii

�
p2
�
+ fSR

ii

�
p2
�⇤

+ fL
ii

�
p2
�
+ fR

ii

�
p2
�� ���

p2=m2
i

= 0.

(11)

The function <̃ takes the real part of the loop function but not of the couplings or of the mixing
parameters. The o↵-diagonal conditions allow to absorb the corrections that mix di↵erent flavors
in the wave function renormalizations. The renormalized fields are therefore mass eigenstates. If
the two fermion flavors are massless, the first two conditions are trivially satisfied and therefore
are replaced by <̃fL

ij (0) = 0 and <̃fR
ij (0) = 0 to fix the renormalization constants. For a

Majorana fermions  , the left and right renormalization constant for the wave function should
be complex conjugate of each other since the left and right handed fermion fields are related by

 R = ei↵ ( L)
c (12)

where ↵ is the Majorana phase. The two first conditions should therefore be equivalent for a
Majorana fermion if only one renormalization constant is used. Similarly, if the renormalized
two-point function for a scalar is

i�ij
�
p2 �m2

i

�
+ ifS

ij

�
p2
�
, (13)

and the renormalization conditions read

<̃
⇥
fS
ij

�
p2
�⇤ ���

p2=m2
i

= 0

<̃
⇥
fS
ij

�
p2
�⇤ ���

p2=m2
j

= 0

<̃


@

@p2
fS
ii

�
p2
�� ���

p2=m2
i

= 0. (14)

Finally, if the renormalized two-point function of a vector is written as

�i�ij⌘µ⌫
�
p2 �m2

i

�
� ifT

ij

�
p2
�✓

⌘µ⌫ � pµp⌫
p2

◆
� ifV L

ij

�
p2
� pµp⌫

p2
, (15)
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@

@p2
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fL
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�
p2
�
+ fR
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�
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��
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�
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�
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�⇤

+ fL
ii

�
p2
�
+ fR

ii

�
p2
�� ���

p2=m2
i

= 0.

(11)

The function <̃ takes the real part of the loop function but not of the couplings or of the mixing
parameters. The o↵-diagonal conditions allow to absorb the corrections that mix di↵erent flavors
in the wave function renormalizations. The renormalized fields are therefore mass eigenstates. If
the two fermion flavors are massless, the first two conditions are trivially satisfied and therefore
are replaced by <̃fL

ij (0) = 0 and <̃fR
ij (0) = 0 to fix the renormalization constants. For a

Majorana fermions  , the left and right renormalization constant for the wave function should
be complex conjugate of each other since the left and right handed fermion fields are related by

 R = ei↵ ( L)
c (12)

where ↵ is the Majorana phase. The two first conditions should therefore be equivalent for a
Majorana fermion if only one renormalization constant is used. Similarly, if the renormalized
two-point function for a scalar is

i�ij
�
p2 �m2

i

�
+ ifS

ij

�
p2
�
, (13)

and the renormalization conditions read

<̃
⇥
fS
ij

�
p2
�⇤ ���
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�i�ij⌘µ⌫
�
p2 �m2

i

�
� ifT

ij

�
p2
�✓

⌘µ⌫ � pµp⌫
p2

◆
� ifV L

ij

�
p2
� pµp⌫

p2
, (15)

6

On-shell scheme (or complex mass scheme):

Similar for the vectors and scalars

Renormalized mass = Physical mass
Two-point function vanishes on-shell (No external 	
bubbles)
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How does it work?

FeynRules 
Renormalize the Lagrangian

!

!

!

NLOCT.m 
Compute the NLO vertices

FeynArts 
Write the amplitudes

model.mod	
model.gen model.nlo

CD, CPC 197 (2015) 239
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Restrictions/Assumptions
• Renormalizable Lagrangian, maximum dimension of 

the operators is 4	

• Feynman Gauge	

•  	

• ‘t Hooft-Veltman scheme	

• On-shell scheme for the masses and wave 
functions	

• MS by default for everything else (zero-momentum 
possible for fermion gauge boson interaction)

{�µ, �5} = 0
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R2 : Validation

• tested* on the SM (QCD:P. Draggiotis et al.
+QED:M.V. Garzelli et al) 	

• tested* on MSSM (QCD:H.-S. Shao, Y.-J. 
Zhang) : test the Majorana

*Analytic comparison of the expressions
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UV Validation

!

• SM QCD : tested* (W. Beenakker, S. Dittmaier, 
M. Kramer, B. Plumper)	

• SM EW : tested* (expressions given by H.-S. 
Shao from A. Denner)	

!

*Analytic comparison of the expressions
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Tests in event generators
• aMC@NLO 	

• The SM QCD has been tested by V. Hirschi 
(Comparison with the built-in version)	

• SM EW (MZ scheme): comparison to published 
results for ME by H.-S. Shao and V. Hirschi	

• Various BSM	

• gauge invariance	

• pole cancelation
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Test EW
== a a > t t~ ['QED'] == 
== a a > t t~ a ['QED'] == 
== a a > w+ w- ['QED'] == 
== a b > t w- ['QED'] == 
== d~ d > w+ w- ['QCD'] == 
== d~ d > w+ w- ['QED'] == 
== d~ d > z z ['QCD'] == 
== d~ d > z z ['QED'] == 
== e+ e- > t t~ a ['QED'] == 
== e+ e- > t t~ g ['QED'] == 
== g b > t w- ['QED'] == 
== g g > h h ['QCD'] == 
== g g > t t~ ['QED'] == 
== g g > t t~ g ['QED'] == 
== g g > t t~ h ['QCD'] == 
== g g > t t~ h ['QED'] == 
== h h > h h ['QED'] == 
== h h > h h h ['QED'] == 
== t t~ > w+ w- ['QED'] ==

== u b > t d ['QED'] ==  
== u d~ > t b~ ['QED'] == 
== u g > t d b~ ['QED'] == 
== u u~ > a a ['QED'] == 
== u u~ > e+ e- ['QED'] == 
== u u~ > g a ['QCD QED'] == 
== u u~ > u u~ ['QCD QED'] == 
== u u~ > u u~ a ['QCD QED'] == 
== u u~ > u u~ g ['QCD QED'] == 
== u u~ > w+ w- ['QED'] == 
== u u~ > z a ['QED'] == 
== u u~ > z z ['QED'] == 
== u~ d > w- z ['QCD'] == 
== u~ d > w- z ['QED'] == 
== u~ u > w+ w- ['QCD'] == 
== u~ u > w+ w- ['QED'] == 
== u~ u > z z ['QCD'] == 
== u~ u > z z ['QED'] == 
== ve ve~ > e+ e- ['QED'] == 
== w+ w- > h h ['QED'] ==

Massive and massless b
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Future development

!

• EFT :  done but 4F operators (in progress)	

• any gauge	

• UFO@NLO in Gosam (N. Greiner)	

• DRED (asked by Gosam)	

• UFO 2.0
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Plan
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Figure 1: Leading-order diagrams for heavy charged Higgs and top associated production, in the
4FS (left and centre) and 5FS (right).

has also published a preliminary note [7] on a direct search for a heavy charged Higgs which decays
in both the H+ ! tb̄ and the H+ ! ⌧+⌫⌧ channels.

In this work, we consider heavy charged Higgs boson production at hadron colliders and leave
the intermediate-mass range to future studies [8]. In particular, we focus only on the production of
a negatively charged scalar since the results are identical for a positively charged scalar. As for any
process involving bottom quarks at the matrix-element level, two viable schemes exist to compute
the production cross section of a heavy charged Higgs boson. These are usually dubbed as four-
and five-flavour schemes. In the four-flavour scheme (4FS) the bottom quark mass is considered as
a hard scale of the process. Therefore, bottom quarks do not contribute to the proton wavefunction
and can only be generated as massive final states at the level of the short-distance cross section,
entailing that b-tagged observables receive contributions starting at leading order (LO). In practice,
the theory which is used in such a calculation is an e↵ective theory with four light quarks, where
the massive bottom quark is decoupled and enters neither the renormalisation group equation for
the running of the strong coupling constant nor the evolution of the parton distribution functions
(PDFs). The LO partonic processes in the case at hand are

gg ! H�b̄t and qq̄ ! H�b̄t . (1)

Next-to-leading order (NLO) calculations for the total cross sections in this scheme have been
presented in Refs. [9, 10].

Conversely, in five-flavour scheme (5FS), the bottom quark mass is considered to be much
smaller than the hard scales involved in the process. The simplest definition of the 5FS—that
suits particularly well perturbative computations—is to strictly set mb = 0 in the short-distance
cross section. Consequently, bottom quarks are treated on the same footing as all other massless
partons. The only di↵erence is the presence of a threshold in the bottom-quark PDF and the initial
condition of the bottom quark evolution being of perturbative nature. The use of b-PDFs comes
along with the approximation that, at leading order, the massless b quark has a small transverse
momentum. In this scheme, the leading logarithms associated to the initial state collinear splitting
are resummed to all orders in perturbation theory by the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution of the bottom densities. The LO partonic process is given by

gb ! H�t . (2)

Next-to-leading order predictions for heavy charged Higgs boson production in the 5FS, possibly
including the matching to parton-shower Monte Carlos, were studied in Refs. [11–17]. Electroweak
corrections [18,19] and soft gluon resummation e↵ects [15,20,21] have also been included in recent
works.

The leading-order diagrams in the 4FS and 5FS are displayed in Fig. 1. The comparison between
the two schemes at the level of total cross section has been performed by several groups, see e.g.
Ref. [10] and references therein. In a more recent study [22] a thorough combination of all sources
of theoretical uncertainties is performed, state-of-the-art PDF sets are used, the new scale-setting

3
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H+ production : 4F vs 5F
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Figure 10: LO (dashed) and NLO (solid) predictions matched with Pythia8 in the 4FS (red for
y2b , violet for y

2

t ) and 5FS (black for y2b , light blue for y
2

t ), for the transverse momentum of the top
quark (left) and of the charged Higgs boson (right). Rescaling factors are introduced in the main
frame for better readability. The first and second insets show the ratio over the NLO prediction in
the 5FS for the y2b and y2t term respectively, and the scale uncertainty band for the NLO curves.
The third inset show the di↵erential K-factor (NLO/LO) for the four predictions. A charged Higgs
boson mass mH� = 200GeV is considered.

at LO (NLO), for mH� = 200GeV.9

Let us further investigate the potential impact of the inclusion of the ybyt term on some di↵er-
ential observables, for such a value of tan�. In particular, we look at the transverse momentum of
the Higgs, the top and the two hardest B hadrons for mH� = 200GeV, displayed in Fig. 9. From
these plots we notice that the e↵ect of the ybyt term is peaked at low scales, by reaching at most
6 � 7% of the full cross section, and is almost the same at LO and NLO. We stress again that
these numbers have been computed for the value of tan� for which the relative ybyt contribution is
maximal: for larger (smaller) values of tan�, this contribution is suppressed by a factor 1/ tan2 �
(tan2 �) with respect to the y2t (y2b ) contribution and further reduced for heavier charged Higgs
bosons. The typical scale uncertainties at NLO (⇠ 10 � 15%) justify our choice to neglect the
ybyt contribution in the current analysis. A viable alternative would be to include the relative
contribution of the ybyt term only at LO, which was shown to be very similar to the NLO one.

3.3 Four- and Five-flavour scheme comparison

We turn now to investigate how predictions obtained in the four- and five-flavours schemes compare.
The two schemes are actually identical up to b-mass power suppressed terms when computed to
all orders in perturbation theory, but the way of ordering the perturbative series is di↵erent. As a
consequence, the results in the two schemes may be di↵erent at any finite order, while the inclusion

9The di↵erence between the LO and NLO values is due to the di↵erent perturbative order in the running of yb.
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Figure 11: Same as Fig. 10, but for the transverse momentum (left) and pseudo-rapidity (right) of
the hardest b jet.

of higher orders necessarily brings the predictions in the two schemes closer to each other. We
start by quantifying how the inclusion of NLO corrections improves their mutual agreement. In
Figs. 10-12 we show, for some relevant observables, the LO and NLO predictions (matched with
Pythia8) in the two schemes. All figures have the same pattern: a main frame with the absolute
predictions in the 5FS (black for y2b and light blue for y2t ) and the 4FS (red for y2b and violet for
y2t ) at LO (dashed) and NLO (solid). In the first and second insets we show the ratio of the curves
in the main frame over the 5FS NLO prediction, for the y2b and y2t contributions respectively. For
the NLO predictions, a band indicating the scale uncertainty10 is attached to the curves. In the
third inset, the four di↵erential NLO/LO K-factors (y2b and y2t for 4FS and 5FS) are displayed.

A general observation is that, as expected, the NLO predictions in the two schemes are much
closer to each other than the LO ones, in particular as far as shapes are concerned. Di↵erences
in the overall normalisation reflect the di↵erences in the total cross section, which were already
discussed in Ref. [22], while in this comparison we are mostly interested in the shapes. In Fig. 10
we observe that for the transverse momentum of the top quark and the Higgs boson the di↵erence
between the two schemes can be compensated by a simple overall rescaling of the total rates
(�4FS

tot

/�5FS

tot

' 0.7) at NLO, while LO predictions in the two schemes have considerably di↵erent
shapes. The same level of agreement should be found also for observables related to the (leptonic)
decay products of the top quark and the Higgs. Let us recall that in our simulation we do not decay
the Higgs boson, but we decay leptonically the top quark. The b quark from the top decay mostly
ends up in the hardest b jet. This explains why the pT spectrum of the hardest b jet (left plot
in Fig. 11) displays a flat ratio between the 4FS and 5FS at NLO, up to ⇠ 120GeV. Above that
value, secondary g ! bb̄ splittings from hard gluons become more relevant, which is also reflected
in the growth of the 5FS uncertainty band and K-factor. A similar behaviour has been observed

10We recall that we vary both renormalisation and factorisation scales by a factor of 2 independently about their
central values.
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Figure 12: Same as Fig. 10, but for the transverse momentum (left) and pseudo-rapidity (right) of
the second-hardest b jet.

in the case of tH production in the SM [29]. The pseudo-rapidity of the hardest b jet (right plot in
Fig. 11) is mostly dominated by the low-pT region, and it therefore also displays a good agreement
between 4FS and 5FS shapes at NLO.

Larger di↵erences between the two schemes appear for the second-hardest b jet, which is ex-
pected to be poorly described in the 5FS. In particular, its kinematics in the 5FS at LO is deter-
mined by the shower, while at NLO it is driven by a tree-level matrix element (therefore being
formally only LO accurate). Predictions for the transverse momentum of the second b jet and
its pseudo-rapidity are shown in the left and right panels of Fig. 12. The 5FS develops large K-
factors and larger uncertainties, since its LO prediction stems only from the shower evolution.
Therefore, the 4FS description has to be preferred for these observables, both because of its better
perturbative behaviour and the proper modelling of the final-state b jets.

The e↵ects of the di↵erent treatment of the bottom quark in the two schemes is even more
visible for the di↵erential observables related to the hardest B hadron (see Fig. 13). At medium
and large pT (B1

) and at central ⌘(B
1

) similar e↵ects as for the hardest b jet are observed. At
variance, the 4FS prediction is suppressed with respect to the 5FS one at low pT (B1

) and at
large ⌘(B

1

). This is most likely due to mass e↵ects: these kinematical regions correspond to one
b quark being collinear to the beam. In the 5FS these configurations are enhanced because of
the collinear singularities, while in the 4FS such a singularities are screened by the b-quark mass.
Therefore, even after the PS, the 5FS is reminiscent of the collinear enhancement. In the case of
the second-hardest B hadron (not shown) these e↵ects are further enhanced.

Let us make a final remark on the inclusion of the NLO corrections. The NLO/LO K-factor
is quite di↵erent in the two schemes: in the 4FS the K�factor appears much more pronounced
for the y2t than for the y2b term, while in the 5FS it is similar for both contributions. Despite
that, a remarkable compensation in shape between the LO di↵erential cross sections and the NLO
corrections takes place, such that the 4FS/5FS ratio at NLO is quite similar for the y2b and y2t
terms.
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4

mH± tanβ = 1 tanβ = 8 tan β = 30
[GeV] σLO σNLO K σLO σNLO K σLO σNLO K

145 47.8+31
−22 ± 2.4 71.6+7

−9 ± 2.4 1.50 2.17+39
−26 ± 2.4 3.26+8

−11 ± 2.4 1.50 13.5+46
−29 ± 2.4 21.0+10

−14 ± 2.5 1.55

150 35.7+31
−22 ± 2.4 53.1+7

−9 ± 2.4 1.49 1.57+39
−26 ± 2.4 2.38+8

−12 ± 2.4 1.52 9.81+46
−29 ± 2.4 15.1+10

−14 ± 2.4 1.54

155 24.1+31
−22 ± 2.4 36.3+7

−10 ± 2.4 1.51 1.04+39
−26 ± 2.4 1.61+8

−12 ± 2.4 1.54 6.34+46
−29 ± 2.4 9.99+10

−14 ± 2.4 1.58

160 14.1+31
−22 ± 2.5 21.6+8

−10 ± 2.5 1.53 0.609+39
−26 ± 2.4 0.943+9

−12 ± 2.5 1.55 3.64+47
−29 ± 2.5 5.85+11

−15 ± 2.5 1.60

165 6.50+32
−23 ± 2.6 10.1+9

−11 ± 2.6 1.56 0.274+40
−26 ± 2.5 0.442+11

−14 ± 2.5 1.61 1.68+48
−30 ± 2.6 2.72+13

−16 ± 2.6 1.62

170 2.95+34
−23 ± 2.9 4.51+10

−12 ± 3.0 1.53 0.095+43
−27 ± 2.9 0.149+13

−15 ± 3.0 1.56 0.763+50
−31 ± 3.0 1.20+14

−17 ± 3.0 1.58

175 2.60+34
−24 ± 3.0 3.98+10

−12 ± 3.0 1.53 0.083+43
−28 ± 3.0 0.131+13

−15 ± 3.0 1.58 0.674+51
−31 ± 3.1 1.07+14

−17 ± 3.1 1.59

180 2.41+34
−24 ± 3.1 3.71+10

−12 ± 3.1 1.54 0.077+44
−28 ± 3.1 0.121+13

−15 ± 3.2 1.59 0.627+51
−31 ± 3.1 0.998+14

−17 ± 3.2 1.59

185 2.27+35
−24 ± 3.1 3.51+10

−12 ± 3.1 1.55 0.073+44
−28 ± 3.1 0.115+13

−15 ± 3.1 1.59 0.591+51
−31 ± 3.2 0.947+15

−17 ± 3.2 1.60

190 2.15+35
−24 ± 3.1 3.32+10

−12 ± 3.2 1.54 0.069+44
−28 ± 3.2 0.109+13

−15 ± 3.2 1.58 0.561+51
−31 ± 3.2 0.896+14

−17 ± 3.3 1.60

195 2.05+35
−24 ± 3.2 3.18+11

−12 ± 3.2 1.56 0.066+44
−28 ± 3.2 0.105+13

−15 ± 3.2 1.60 0.536+52
−32 ± 3.2 0.850+14

−17 ± 3.2 1.59

200 1.95+35
−24 ± 3.2 3.02+10

−12 ± 3.3 1.55 0.063+44
−28 ± 3.2 0.100+13

−15 ± 3.3 1.58 0.510+52
−32 ± 3.3 0.812+14

−17 ± 3.3 1.59

TABLE I. LO and NLO total cross sections (in pb) and K-factors for the pp → H+W−bb̄ process, for tan β = 1, 8, 30 at the 13
TeV LHC. The first quoted uncertainties are from scale variations, the second from PDFs (both in per cent of the total cross
section). The statistical uncertainty from the numerical phase-space integration is of the order of 1% or below.

for light and heavy charged Higgs production. The input
parameters have been chosen consistently across all the
mass range, in particular all cross sections are computed
in the 4FS, the central scale for low-mass range is also set
to µ = 125 GeV, while the scale µ = (mt+mH± +mb)/3
is used for the heavy charged Higgs case. The central
predictions in the main frame develop a prominent struc-
ture with a kink at the threshold mH± ≃ mt −mb. The
effect of the single-resonant contributions (pp → tW−

and pp → t̄H+) is visible when comparing our results in
the intermediate-mass range with the low-mass predic-
tion. Indeed, the single-resonant contributions are miss-
ing in the low-mass prediction and amount to 10%−15%
of the pp → tt̄ cross section depending on the specific
value of tanβ. In contrast, looking at the matching of
the intermediate-mass predictions to the heavy charged
Higgs cross section, we observe a 5% − 10% gap for
tanβ = 8 and tanβ = 30, while there is essentially no
gap for tanβ = 1. Such a gap originates from the non-
resonant part of the pp → H±W∓bb̄ amplitude, which,
because of the chiral structure of the H+tb and Wtb ver-
tices, is enhanced (suppressed) for large (small) values
of tanβ. At 145 and 200 GeV, the size of the scale un-
certainty in the intermediate region and the side-bands
is slightly different. These discontinuities are related to
missing subleading terms in the predictions used in the
low and high-mass regions, i.e. mostly single-resonant
and non-resonant, respectively, although it is difficult to
pin down exactly the origin of the discontinuities because
of the non-trivial seperation of these contributions be-
yond leading order. Finally, we note that the K-factor
in the intermediate region interpolates very well the ones
in the low and high-mass range.

We now discuss how to generalise our results at a sin-
gle tanβ value in order to obtain the charged Higgs bo-

FIG. 3. NLO total cross sections, K-factors and uncertainties
for charged Higgs boson production at the 13 TeV LHC.

H+ production : mH~mt
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Example II: Gluino pair production
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Matching next-to-leading order predictions to parton showers in supersymmetric QCD
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We present a fully automated framework based on the FeynRules andMadGraph5 aMC@NLO

programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Start-
ing directly from a model Lagrangian that features squark and gluino interactions, event generation
is achieved at the next-to-leading order in QCD, matching short-distance events to parton showers
and including the subsequent decay of the produced supersymmetric particles. As an application,
we study the impact of higher-order corrections in gluino pair-production in a simplified benchmark
scenario inspired by current gluino LHC searches.

Introduction – The LHC has been designed with the
aim of exploring the electroweak symmetry breaking
mechanism and to possibly shed light on phenomena be-
yond the Standard Model. During its first run, both
the ATLAS and CMS collaborations have extensively
investigated many different channels in order to get
hints for new physics. However, no striking signal has
been found so that limits have been set on popular
models, such as the Minimal Supersymmetric Standard
Model (MSSM) [1, 2], or on simplified models for new
physics [3, 4]. All these searches will nevertheless be pur-
sued during the next LHC runs, benefiting from larger
statistics and higher center-of-mass energy. In this work,
we focus on MSSM-inspired simplified new physics sce-
narios in which gluino pairs can be copiously produced at
the LHC. As in many related experimental searches [5–8],
we consider the case where both produced gluinos decay
into a pair of jets and an invisible neutralino, and then
revisit the phenomenology of such models.
Experimental gluino analyses are currently based on

Monte Carlo simulations of the signals where leading-
order (LO) matrix elements of different partonic mul-
tiplicities are matched to parton showers and merged.
The predictions are then normalized to resummed to-
tal rates combined with the next-to-leading order (NLO)
result [9–13]. More sophisticated differential theoretical
predictions are however always helpful for setting more
accurate exclusion limits, possibly refining the search
strategies, and measuring the model free parameters in
case of a discovery [14]. In this context, it has been re-
cently demonstrated that theMadGraph5 aMC@NLO

framework [15] can provide a general platform for com-
puting (differential) observables within many beyond
the Standard Model theories [16]. This approach re-
lies in particular on the use of the FeynRules [17] and
NLOCT [18] packages for (automatically) generating a
UFO library [19] containing the vertices and the needed
counterterms for NLO computations.
Within this framework, we match for the first time

NLO QCD matrix-element-based predictions to parton

showers for gluino pair-production. Virtual contributions
are evaluated following the Ossola-Papadopoulos-Pittau
(OPP) formalism as implemented in MadLoop [20–22]
and combined with real emission contributions by means
of the FKS subtraction method as embedded in Mad-

FKS [23, 24]; these two modules being fully incorporated
in MadGraph5 aMC@NLO. The matching to parton
showers is then achieved by employing the MC@NLO
method [25]. After accounting for (LO) gluino decays,
we study the impact of both the NLO contributions and
the parton showers in the context of LHC physics.

Theoretical framework – Our study of gluino pair-
production and decay is based on an MSSM-inspired sim-
plified model. We complement the Standard Model with
three generations of non-mixing left-handed and right-
handed squark fields q̃L,R of mass mq̃L,R

and with a Ma-
jorana fermionic gluino field g̃ of massmg̃. The dynamics
of the new fields is described by the following Lagrangian,

LSQCD = Dµq̃
†
LD

µq̃L +Dµq̃
†
RD

µq̃R +
i

2
¯̃g /Dg̃

−m2
q̃L
q̃†Lq̃L −m2

q̃R
q̃†Rq̃R −

1

2
mg̃

¯̃gg̃

+
√
2gs
[

− q̃†LT
(

¯̃gPLq
)

+
(

q̄PLg̃
)

T q̃R + h.c.
]

−
g2s
2

[

q̃†RT q̃R − q̃†LT q̃L
][

q̃†RT q̃R − q̃†LT q̃L
]

,

that contains all interactions allowed by QCD gauge in-
variance and supersymmetry, as well as squark and gluino
kinetic and mass terms. In our notation, T stands for the
fundamental representation matrices of SU(3), PL (PR)
for the left-handed (right-handed) chirality projector and
gs is the strong coupling constant. Flavor and color in-
dices are left understood for brevity.

In addition, we enable the (possibly three-body) de-
cays of the colored superpartners by including (s)quark
couplings to a gauge-singlet Majorana fermion χ of mass

12 scalar triplets	
no mixing

1 Majorana octet

Full QCD sector of the MSSM

CD, B. Fuks, V. Hirschi, J. Proudom and H. S. Shao,  PLB 755, 82 (2016)
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Example II: Gluino pair production
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FIG. 1. First five leading jet and gluino-pair transverse-momentum spectra for the production of a pair of gluinos decaying
each into two colored partons and a neutralino. We consider two mass configurations and show results at the NLO (red) and
LO (blue) accuracy in QCD, at the fixed-order (dashed, fLO and fNLO) and after matching to the Pythia 8 parton shower
description (solid). Theoretical uncertainties related to the fixed order calculations are shown as blue (LO) and gray (NLO)
bands. The lower insets of the figure present ratios of NLO results to LO ones, both at fixed order (dashed) and after matching
to parton showers (solid).
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FIG. 1. First five leading jet and gluino-pair transverse-momentum spectra for the production of a pair of gluinos decaying
each into two colored partons and a neutralino. We consider two mass configurations and show results at the NLO (red) and
LO (blue) accuracy in QCD, at the fixed-order (dashed, fLO and fNLO) and after matching to the Pythia 8 parton shower
description (solid). Theoretical uncertainties related to the fixed order calculations are shown as blue (LO) and gray (NLO)
bands. The lower insets of the figure present ratios of NLO results to LO ones, both at fixed order (dashed) and after matching
to parton showers (solid).
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More examples
• Squark and sgluon production [ CD, B. Fuks, V. Hirschi, J. Proudom and H. 

S. Shao, PRD 91 (2015) no.9,  094005]	

• GM [CD, K. Hartling, H. E. Logan, A. D. Peterson and M. Zaro, PRD 93 
(2016) no.3,  035004]	

• Heavy neutrino [CD, O. Mattelaer, R. Ruiz and J. Turner, arXiv:1602.06957]	

• Spin-2 (dim-5 operators) [G. Das, CD, V. Hirschi, F. Maltoni and H. S. Shao, 
arXiv:1605.09359]	

• Top dim-6 	

• FCNC [CD F. Maltoni, J. Wang and C. Zhang, PRD 91 (2015) 034024]	

• Pair prodution [D. Buarque Franzosi and C.Zhang,  PRD 91 (2015) no.
11,  114010]	

• tth  [F. Maltoni, E. Vryonidou and C. Zhang, arXiv:1607.05330]	

• …
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Final remarks
• Automatic BSM@NLO 	

• Renormalizable (Public)	

• Pheno	

• Spin 2	

• Charged Higgs threshold	

• Top EFT	

• …	

• Jointly by FeynRules and Madgraph_aMC@NLO 
teams	
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Example 1: Charged Higgs production

3 Results

In this section, we present four-flavour scheme predictions of charged Higgs boson production
at NLO matched to parton showers. This calculation has never been performed before in the
literature. Several di↵erential distributions that are reconstructed from the final state particles in
tH�b̄ production are studied. We investigate the role of the shower scale in this process, discuss
the impact of the ybyt interference term and compare our reference predictions at (N)LO+PS to
the f(N)LO results. For matched predictions, both Herwig++ and Pythia8 are employed. We
conclude this chapter with a comprehensive comparison of 4FS and 5FS distributions, in which the
e↵ects of higher order corrections, the impact of the choice of the shower scale and the dependence
of each scheme on the di↵erent Monte Carlos are analysed.

3.1 Settings

We present results for charged Higgs boson production at the LHC Run II (
p
S
had

= 13TeV) by
considering two scenarios: a lighter (mH± = 200GeV) and a heavier (mH± = 600GeV) charged
Higgs boson. For simplicity, we set tan� = 8 throughout this paper. At this value, y2b and y2t terms
are of similar size and the relative contribution of the ybyt term to the total cross section is close
to its maximum. Results for any other value of tan� can be obtained by a trivial overall rescaling
of the individual contributions according to their Yukawa couplings (yb by tan�, yt by 1/ tan�).
Therefore, we preserve the generality of our results by studying the y2b , y

2

t and ybyt contributions
separately.

We show results obtained with the NNPDF2.3 set [57] at NLO and the NNPDF3.0 [58] set at
LO. To obtain consistent predictions, parton distribution functions (PDFs) computed in the proper
flavour number scheme are used: we interface our NLO (LO) calculation with the NNPDF2.3
(NNPDF3.0) with nf = 4 and nf = 5 active flavours for the 4FS and 5FS respectively. The
mismatch between the PDF sets used in the LO and NLO computations is due to the absence of
a public set of non-QED LO PDFs in the NNPDF2.3 family. This does not a↵ect the accuracy
of our results, given that the LO PDF sets exhibit a theoretical uncertainty which is larger than
the di↵erence between the two NNPDF families. The strong coupling constant is consistent with
↵s(MZ) = 0.118 for the 5FS NLO parton densities and ↵s(MZ) = 0.1226 for the 4FS NLO ones.2

The heavy quark pole masses are set to

mpole

b = 4.75GeV (relevant only to the 4FS), mpole

t = 172.5GeV. (8)

At one loop, the value of the bottom pole mass translates into a MS mass

m̄b(m̄b) = 4.3377GeV. (9)

Finally, our central renormalisation and factorisation scales µR, µF are set to

µR,F = HT /3 ⌘ 1

3

X

i

p
m(i)2 + pT (i)2, (10)

where the index i runs over all final state particles (the top quark, the charged Higgs boson and
possibly the extra b quark and/or light parton) of the hard process. For vanishing transverse
momenta of the external particles, our scale choice corresponds to the factorisation scale set in
the 4FS calculation of Refs. [10, 22]. In the following, scale uncertainties are obtained by varying
µF and µR independently by a factor of two around their central values, given in Eq. (10). We
have checked that, particularly for our reference 4FS NLO+PS prediction, the dependence of

2This is the value of ↵s(MZ) associated with the NNPDF23 nlo as 0118 nf4 set: the 4FS sets are constructed by
evolving backwards the 5FS PDFs and the strong coupling constant from the Z mass to the threshold associated
to the bottom PDF. They are then evolved upwards from the bottom threshold to higher scales by setting nf = 4.
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3.1 Settings

We present results for charged Higgs boson production at the LHC Run II (
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= 13TeV) by
considering two scenarios: a lighter (mH± = 200GeV) and a heavier (mH± = 600GeV) charged
Higgs boson. For simplicity, we set tan� = 8 throughout this paper. At this value, y2b and y2t terms
are of similar size and the relative contribution of the ybyt term to the total cross section is close
to its maximum. Results for any other value of tan� can be obtained by a trivial overall rescaling
of the individual contributions according to their Yukawa couplings (yb by tan�, yt by 1/ tan�).
Therefore, we preserve the generality of our results by studying the y2b , y
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t and ybyt contributions
separately.

We show results obtained with the NNPDF2.3 set [57] at NLO and the NNPDF3.0 [58] set at
LO. To obtain consistent predictions, parton distribution functions (PDFs) computed in the proper
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(NNPDF3.0) with nf = 4 and nf = 5 active flavours for the 4FS and 5FS respectively. The
mismatch between the PDF sets used in the LO and NLO computations is due to the absence of
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of our results, given that the LO PDF sets exhibit a theoretical uncertainty which is larger than
the di↵erence between the two NNPDF families. The strong coupling constant is consistent with
↵s(MZ) = 0.118 for the 5FS NLO parton densities and ↵s(MZ) = 0.1226 for the 4FS NLO ones.2

The heavy quark pole masses are set to

mpole

b = 4.75GeV (relevant only to the 4FS), mpole

t = 172.5GeV. (8)

At one loop, the value of the bottom pole mass translates into a MS mass

m̄b(m̄b) = 4.3377GeV. (9)

Finally, our central renormalisation and factorisation scales µR, µF are set to
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3

X

i

p
m(i)2 + pT (i)2, (10)

where the index i runs over all final state particles (the top quark, the charged Higgs boson and
possibly the extra b quark and/or light parton) of the hard process. For vanishing transverse
momenta of the external particles, our scale choice corresponds to the factorisation scale set in
the 4FS calculation of Refs. [10, 22]. In the following, scale uncertainties are obtained by varying
µF and µR independently by a factor of two around their central values, given in Eq. (10). We
have checked that, particularly for our reference 4FS NLO+PS prediction, the dependence of
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and

the distributions on the shower scale µ
sh

, when varied by a factor in the range [1/
p
2,
p
2], is

rather mild and significantly smaller than uncertainties associated with the renormalisation and
factorisation scales; we therefore refrain from including uncertainties associated with µ

sh

in what
follows. Furthermore, we will not discuss any PDF systematics.3

Jets are reconstructed via the anti-kT algorithm [59], as implemented in FastJet [60,61], with
a distance parameter �R = 0.4 and subject to the conditions

pT (j) � 25GeV, |⌘(j)|  2.5. (11)

For fixed-order computations jets are clustered from partonic final states, while in simulations
matched to parton showers jets are made up of hadrons; b jets are defined to contain at least one
b quark (at fixed order) or B hadron (in matched simulations).

In our simulations we keep the charged Higgs boson stable, while we decay the top quark
leptonically (although the leptons from the decay will not a↵ect any observable we consider) in
order to keep as much control as possible on the origin of QCD radiation. The task to decay the
top quark is performed by the parton shower for (N)LO+PS runs, while at fixed order we simulate
the decay t ! bW in an isotropic way (in the t rest frame) at the analysis level.4 No simulation of
the underlying event is performed by the parton shower.

Let us conclude this section by addressing one further point, which is crucial when processes
with final-state b quarks are matched to parton showers: the choice of the shower starting scale µ

sh

.
Such processes are known to prefer much lower values of the renormalisation and factorisation scales
than the one naively identified as the hard scale of the process (ŝ). In fact, the shower starting scale
and the factorisation scale emerge both from the same concept, namely the separation of soft and
hard physics. Furthermore, it has been argued in Ref. [28] for the associated production of a neutral
Higgs boson with bottom quarks that the shower starting scale (limiting the hardest emission that
the shower can generate) should be set at similar values, i. e. well below ŝ. Following the arguments
made in Ref. [28], we check their validity in the case of charged Higgs boson production. We shall
stress at this point that the following discussion applies both to our reference scenarios with
mH� = 200GeV and mH� = 600GeV, although we refrain from showing explicit results for the
latter.

MadGraph5 aMC@NLO assigns a dynamical shower scale chosen from a distribution in the
range5

0.1

F
ŝ  µ

sh

 1

F
ŝ, (12)

where F is a parameter that drives the bounds of the distribution, and whose default value is
F = 1. With such a default setting the e↵ective value of µ

sh

, namely the maximum of the µ
sh

distribution (which for simplicity we will refer to as just µ
sh

in the following), is indeed much
larger than µF,R. Furthermore, considering the transverse momentum distribution of the Born-
level “system” (pT (sys)),6 which is maximally sensitive to the interplay between the fixed-order
prediction and the shower, the NLO+PS distribution (in particular in the 4FS) does not match
the fixed-order NLO (fNLO) one at large pT for F = 1. This can be deduced from Fig. 2, when
comparing the crosses (NLO+PS for F = 1) to the solid curves overlayed with points (fNLO). On
the contrary, we observe a clearly improved high-pT matching of the NLO+PS results to the fixed-

3Note that scale variations due to µF and µR as well as PDF uncertainties are computed at no extra CPU cost
using the reweighting procedure of Ref. [56].

4 Such an approach neglects spin-correlation in the decay of the top quark. However, within the Mad-
Graph5 aMC@NLO framework, spin correlation can be included in (N)LO+PS runs by decaying the top quark
with MadSpin [62].

5See Ref. [32] for further details.
6Note that the Born-level system is unambiguously defined only in a fixed-order calculation, being in our case

the charged Higgs accompanied by the final state top and bottom quark. At NLO+PS we define it to include the
hardest B hadron (instead of the bottom quark), which does not originate from the top decay; in this case, MC-truth
is used.
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6Note that the Born-level system is unambiguously defined only in a fixed-order calculation, being in our case

the charged Higgs accompanied by the final state top and bottom quark. At NLO+PS we define it to include the
hardest B hadron (instead of the bottom quark), which does not originate from the top decay; in this case, MC-truth
is used.
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Renormalization conditions
Zero momentum scheme available for the gauge couplings

the corresponding renormalization conditions are
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The complex mass scheme allows the renormalized masses and the wave functions to be complex
and is obtained by removing the <̃ [19].

Finally, all the external parameters but the masses are renormalized in the MS scheme by
default. Namely, only the pole in
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✏
⌘ 1

✏
� � + log (4⇡) (17)

where � is the Euler-Mascheroni, constant is included in the counterterms. This scheme will
be used for example for the Yukawa couplings to the scalar doublet without vev in the generic
2DHM. It is no longer true in a type I or II 2HDM where all the Yukawa depends on the
masses in a similar way as in the SM. It will be used also for the gauge couplings or the four
scalars couplings as long as they do not depend on the masses or other external parameters.
Alternatively, the zero-momentum scheme is commonly used for the renormalization of the gauge
coupling constant. The renormalized coupling is fixed by requiring that the vertex between the
fermions and the gauge boson is equal to the tree-level one when the momentum of the boson
vanishes. Writing the renormalized vectorial gauge interactions of a fermion as
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where p1, p2 and k are the incoming momenta of the two fermions and the vector, the h functions
contain the loop contribution from the triangle diagrams, g the gauge coupling constant and T a

the generators of the gauge group and should be replaced by the charge for an abelian group.
The first two terms are due to the renormalization of the tree-level vertex. The last pieces
of the first two lines are due to the mixing with another vector V 0 (g0V and g0A are its vector
and axial couplings to the fermions). The renormalization conditions at zero momentum, i.e.
k = �p1 � p2 = 0 then read
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Gauge invariance implies that the second is always satisfied as well as
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Consequently, the renormalization of the gauge coupling is fixed by
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How does it work?
FeynRules : 	
...	
Lren  =  OnShellRenormalization[  LSM  ,   QCDOnly ->True];	
WriteFeynArtsOutput[  Lren  ,  Output -> "SMrenoL", 
GenericFile -> False] 

FeynArts / NLOCT : 	
!
WriteCT[  "SMrenoL/SMrenoL" ,      "Lorentz",  Output-> 
“SMQCDreno",   QCDonly -> True] 

FeynRules : 	
...	
Get["SMQCDreno.nlo"];	
WriteUFO[ LSM ,  UVCounterterms -> UV$vertlist ,  
 R2Vertices -> R2$vertlist]
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Figure 1: Leading-order diagrams for heavy charged Higgs and top associated production, in the
4FS (left and centre) and 5FS (right).

has also published a preliminary note [7] on a direct search for a heavy charged Higgs which decays
in both the H+ ! tb̄ and the H+ ! ⌧+⌫⌧ channels.

In this work, we consider heavy charged Higgs boson production at hadron colliders and leave
the intermediate-mass range to future studies [8]. In particular, we focus only on the production of
a negatively charged scalar since the results are identical for a positively charged scalar. As for any
process involving bottom quarks at the matrix-element level, two viable schemes exist to compute
the production cross section of a heavy charged Higgs boson. These are usually dubbed as four-
and five-flavour schemes. In the four-flavour scheme (4FS) the bottom quark mass is considered as
a hard scale of the process. Therefore, bottom quarks do not contribute to the proton wavefunction
and can only be generated as massive final states at the level of the short-distance cross section,
entailing that b-tagged observables receive contributions starting at leading order (LO). In practice,
the theory which is used in such a calculation is an e↵ective theory with four light quarks, where
the massive bottom quark is decoupled and enters neither the renormalisation group equation for
the running of the strong coupling constant nor the evolution of the parton distribution functions
(PDFs). The LO partonic processes in the case at hand are

gg ! H�b̄t and qq̄ ! H�b̄t . (1)

Next-to-leading order (NLO) calculations for the total cross sections in this scheme have been
presented in Refs. [9, 10].

Conversely, in five-flavour scheme (5FS), the bottom quark mass is considered to be much
smaller than the hard scales involved in the process. The simplest definition of the 5FS—that
suits particularly well perturbative computations—is to strictly set mb = 0 in the short-distance
cross section. Consequently, bottom quarks are treated on the same footing as all other massless
partons. The only di↵erence is the presence of a threshold in the bottom-quark PDF and the initial
condition of the bottom quark evolution being of perturbative nature. The use of b-PDFs comes
along with the approximation that, at leading order, the massless b quark has a small transverse
momentum. In this scheme, the leading logarithms associated to the initial state collinear splitting
are resummed to all orders in perturbation theory by the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution of the bottom densities. The LO partonic process is given by

gb ! H�t . (2)

Next-to-leading order predictions for heavy charged Higgs boson production in the 5FS, possibly
including the matching to parton-shower Monte Carlos, were studied in Refs. [11–17]. Electroweak
corrections [18,19] and soft gluon resummation e↵ects [15,20,21] have also been included in recent
works.

The leading-order diagrams in the 4FS and 5FS are displayed in Fig. 1. The comparison between
the two schemes at the level of total cross section has been performed by several groups, see e.g.
Ref. [10] and references therein. In a more recent study [22] a thorough combination of all sources
of theoretical uncertainties is performed, state-of-the-art PDF sets are used, the new scale-setting
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Example 1: Charged Higgs production
5 Flavours	

• mb=0 (but mby>0)	

• In the PDF	

• In the running of αs	

• Handle collinear 
logarithms	

• αs

4 Flavours	

• mb>0	

• Not in the PDF	

• Not in the running of αs	

• Contribution to b 
observable at LO	

• αs2
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Example 1: Charged Higgs production

Validation : -Comparison with S. Dittmaier, M. Kramer, M. Spira 	
	 	 	 	 and M. Walser,  PRD 83 (2011) 055005	 	
	 	 	    -Recover ttH

Input : -FR model	
          -running of the b yukawa mass

2.2 Implementation

We have used the implementation of the generic 2HDM in FeynRules detailed in Ref. [34]. This
model has been converted into a type-II 2HDM by adding � as an external parameter and by
restricting the Yukawa couplings accordingly. If top and bottom quarks are assumed to be the
only massive fermions, the only non-zero entries of the Yukawa coupling matrices to the doublet
without vacuum expectation value in the Higgs basis for the type-II 2HDM are given by

Gu
3,3 = �

p
2
my

t

v
cot� and Gd

3,3 =
p
2
my

b

v
tan�, (3)

where my
t/b are the Yukawa masses of the top and bottom quark. The parameter tan� = v

2

/v
1

is the ratio of the vacuum expectation values v
1

and v
2

of the two Higgs doublets, such that
v2 ⌘ v2

1

+ v2
2

= (
p
2GF )�1 is the SM Higgs vacuum expectation value, where GF is the Fermi

constant. With those restrictions, the H�tb̄ vertex is given by

Vt¯bH� = �i

✓
ytPR

1

tan�
+ ybPL tan�

◆
, (4)

where PR/L = (1 ± �
5

)/2 are the chirality projectors and yt/b ⌘
p
2
my

t/b

v are the corresponding
SM Yukawa couplings. We strictly separate the Yukawa masses that are used in the computation
of the couplings between the fermions and the scalars from the kinematic masses that are used
everywhere else and set to the on-shell mass.1 This distinction allows us to keep a non-vanishing
bottom Yukawa in the five-flavour scheme as the leading term in the small mb expansion [13, 14].
Furthermore, it allows us to choose di↵erent renormalisation schemes for the bottom quark mass
in the matrix element and in the Yukawa coupling.

The model R
2

and UV vertices required for NLO computations in MadGraph5 aMC@NLO
have been computed using NLOCT [34]. The masses and the wave functions are renormalised
in the on-shell scheme to avoid the computation of loops on external legs. The strong coupling
constant is renormalised in the MS scheme with the contribution of massive quarks subtracted
from the gluon self-energy at zero-momentum transfer. Therefore, only the massless modes a↵ect
the running of ↵s. The renormalisation of the masses in principle fixes the renormalisation of the
top and bottom Yukawa since

�yt/b =
p
2
�mt/b

v
, (5)

with

�mt/b = � g2s
12⇡2

mt/b

✓
3

✏̄
+ 4� 6 log

mt/b

µR

◆
(6)

in the on-shell scheme. This is the default renormalisation used in NLOCT and it would ensure
that nothing but the strong coupling constant depends on the renormalisation scale. The top mass
and Yukawa are always renormalised in this way throughout this paper. Therefore its Yukawa mass
is set equal to the pole mass. On the contrary, the bottom quark Yukawa has been renormalised
in the MS scheme, i. e.

�yb = �
p
2

v

g2sm
y
b

4⇡2✏̄
. (7)

This scheme choice has the advantage of resumming potentially large logarithms log(µR/mb) (with
µR ⇠ mH±) to all orders. The bottom Yukawa mass is set to the value of the running MS mass at
the renormalisation scale. Besides the modifications at the level of the UFO model, also the code
written by MadGraph5 aMC@NLO had to be changed in order to account for the additional
scale dependence introduced by the b-quark Yukawa, in particular for what concerns the on-the-fly
evaluation of scale uncertainties obtained via reweighting [56]. This has been done in an analogous
way as for bottom-associated Higgs production [28], by splitting the cross section in parts that
factorise di↵erent powers of yb, i. e. y2b , yb yt and y2t .

1They appear explicitly separated also in the YUKAWA and MASS blocks of the SLHA cards [55].

6

2.2 Implementation

We have used the implementation of the generic 2HDM in FeynRules detailed in Ref. [34]. This
model has been converted into a type-II 2HDM by adding � as an external parameter and by
restricting the Yukawa couplings accordingly. If top and bottom quarks are assumed to be the
only massive fermions, the only non-zero entries of the Yukawa coupling matrices to the doublet
without vacuum expectation value in the Higgs basis for the type-II 2HDM are given by

Gu
3,3 = �

p
2
my

t

v
cot� and Gd

3,3 =
p
2
my

b

v
tan�, (3)

where my
t/b are the Yukawa masses of the top and bottom quark. The parameter tan� = v

2

/v
1

is the ratio of the vacuum expectation values v
1

and v
2

of the two Higgs doublets, such that
v2 ⌘ v2

1

+ v2
2

= (
p
2GF )�1 is the SM Higgs vacuum expectation value, where GF is the Fermi

constant. With those restrictions, the H�tb̄ vertex is given by

Vt¯bH� = �i

✓
ytPR

1

tan�
+ ybPL tan�

◆
, (4)

where PR/L = (1 ± �
5

)/2 are the chirality projectors and yt/b ⌘
p
2
my

t/b

v are the corresponding
SM Yukawa couplings. We strictly separate the Yukawa masses that are used in the computation
of the couplings between the fermions and the scalars from the kinematic masses that are used
everywhere else and set to the on-shell mass.1 This distinction allows us to keep a non-vanishing
bottom Yukawa in the five-flavour scheme as the leading term in the small mb expansion [13, 14].
Furthermore, it allows us to choose di↵erent renormalisation schemes for the bottom quark mass
in the matrix element and in the Yukawa coupling.

The model R
2

and UV vertices required for NLO computations in MadGraph5 aMC@NLO
have been computed using NLOCT [34]. The masses and the wave functions are renormalised
in the on-shell scheme to avoid the computation of loops on external legs. The strong coupling
constant is renormalised in the MS scheme with the contribution of massive quarks subtracted
from the gluon self-energy at zero-momentum transfer. Therefore, only the massless modes a↵ect
the running of ↵s. The renormalisation of the masses in principle fixes the renormalisation of the
top and bottom Yukawa since

�yt/b =
p
2
�mt/b

v
, (5)

with

�mt/b = � g2s
12⇡2

mt/b

✓
3

✏̄
+ 4� 6 log

mt/b

µR

◆
(6)

in the on-shell scheme. This is the default renormalisation used in NLOCT and it would ensure
that nothing but the strong coupling constant depends on the renormalisation scale. The top mass
and Yukawa are always renormalised in this way throughout this paper. Therefore its Yukawa mass
is set equal to the pole mass. On the contrary, the bottom quark Yukawa has been renormalised
in the MS scheme, i. e.

�yb = �
p
2

v

g2sm
y
b

4⇡2✏̄
. (7)

This scheme choice has the advantage of resumming potentially large logarithms log(µR/mb) (with
µR ⇠ mH±) to all orders. The bottom Yukawa mass is set to the value of the running MS mass at
the renormalisation scale. Besides the modifications at the level of the UFO model, also the code
written by MadGraph5 aMC@NLO had to be changed in order to account for the additional
scale dependence introduced by the b-quark Yukawa, in particular for what concerns the on-the-fly
evaluation of scale uncertainties obtained via reweighting [56]. This has been done in an analogous
way as for bottom-associated Higgs production [28], by splitting the cross section in parts that
factorise di↵erent powers of yb, i. e. y2b , yb yt and y2t .

1They appear explicitly separated also in the YUKAWA and MASS blocks of the SLHA cards [55].

6

2.2 Implementation

We have used the implementation of the generic 2HDM in FeynRules detailed in Ref. [34]. This
model has been converted into a type-II 2HDM by adding � as an external parameter and by
restricting the Yukawa couplings accordingly. If top and bottom quarks are assumed to be the
only massive fermions, the only non-zero entries of the Yukawa coupling matrices to the doublet
without vacuum expectation value in the Higgs basis for the type-II 2HDM are given by

Gu
3,3 = �

p
2
my

t

v
cot� and Gd

3,3 =
p
2
my

b

v
tan�, (3)

where my
t/b are the Yukawa masses of the top and bottom quark. The parameter tan� = v

2

/v
1

is the ratio of the vacuum expectation values v
1

and v
2

of the two Higgs doublets, such that
v2 ⌘ v2

1

+ v2
2

= (
p
2GF )�1 is the SM Higgs vacuum expectation value, where GF is the Fermi

constant. With those restrictions, the H�tb̄ vertex is given by

Vt¯bH� = �i

✓
ytPR

1

tan�
+ ybPL tan�

◆
, (4)

where PR/L = (1 ± �
5

)/2 are the chirality projectors and yt/b ⌘
p
2
my

t/b

v are the corresponding
SM Yukawa couplings. We strictly separate the Yukawa masses that are used in the computation
of the couplings between the fermions and the scalars from the kinematic masses that are used
everywhere else and set to the on-shell mass.1 This distinction allows us to keep a non-vanishing
bottom Yukawa in the five-flavour scheme as the leading term in the small mb expansion [13, 14].
Furthermore, it allows us to choose di↵erent renormalisation schemes for the bottom quark mass
in the matrix element and in the Yukawa coupling.

The model R
2

and UV vertices required for NLO computations in MadGraph5 aMC@NLO
have been computed using NLOCT [34]. The masses and the wave functions are renormalised
in the on-shell scheme to avoid the computation of loops on external legs. The strong coupling
constant is renormalised in the MS scheme with the contribution of massive quarks subtracted
from the gluon self-energy at zero-momentum transfer. Therefore, only the massless modes a↵ect
the running of ↵s. The renormalisation of the masses in principle fixes the renormalisation of the
top and bottom Yukawa since

�yt/b =
p
2
�mt/b

v
, (5)

with

�mt/b = � g2s
12⇡2

mt/b

✓
3

✏̄
+ 4� 6 log

mt/b

µR

◆
(6)

in the on-shell scheme. This is the default renormalisation used in NLOCT and it would ensure
that nothing but the strong coupling constant depends on the renormalisation scale. The top mass
and Yukawa are always renormalised in this way throughout this paper. Therefore its Yukawa mass
is set equal to the pole mass. On the contrary, the bottom quark Yukawa has been renormalised
in the MS scheme, i. e.

�yb = �
p
2

v

g2sm
y
b

4⇡2✏̄
. (7)

This scheme choice has the advantage of resumming potentially large logarithms log(µR/mb) (with
µR ⇠ mH±) to all orders. The bottom Yukawa mass is set to the value of the running MS mass at
the renormalisation scale. Besides the modifications at the level of the UFO model, also the code
written by MadGraph5 aMC@NLO had to be changed in order to account for the additional
scale dependence introduced by the b-quark Yukawa, in particular for what concerns the on-the-fly
evaluation of scale uncertainties obtained via reweighting [56]. This has been done in an analogous
way as for bottom-associated Higgs production [28], by splitting the cross section in parts that
factorise di↵erent powers of yb, i. e. y2b , yb yt and y2t .

1They appear explicitly separated also in the YUKAWA and MASS blocks of the SLHA cards [55].

6

2.2 Implementation

We have used the implementation of the generic 2HDM in FeynRules detailed in Ref. [34]. This
model has been converted into a type-II 2HDM by adding � as an external parameter and by
restricting the Yukawa couplings accordingly. If top and bottom quarks are assumed to be the
only massive fermions, the only non-zero entries of the Yukawa coupling matrices to the doublet
without vacuum expectation value in the Higgs basis for the type-II 2HDM are given by

Gu
3,3 = �

p
2
my

t

v
cot� and Gd

3,3 =
p
2
my

b

v
tan�, (3)

where my
t/b are the Yukawa masses of the top and bottom quark. The parameter tan� = v

2

/v
1

is the ratio of the vacuum expectation values v
1

and v
2

of the two Higgs doublets, such that
v2 ⌘ v2

1

+ v2
2

= (
p
2GF )�1 is the SM Higgs vacuum expectation value, where GF is the Fermi

constant. With those restrictions, the H�tb̄ vertex is given by

Vt¯bH� = �i

✓
ytPR

1

tan�
+ ybPL tan�

◆
, (4)

where PR/L = (1 ± �
5

)/2 are the chirality projectors and yt/b ⌘
p
2
my

t/b

v are the corresponding
SM Yukawa couplings. We strictly separate the Yukawa masses that are used in the computation
of the couplings between the fermions and the scalars from the kinematic masses that are used
everywhere else and set to the on-shell mass.1 This distinction allows us to keep a non-vanishing
bottom Yukawa in the five-flavour scheme as the leading term in the small mb expansion [13, 14].
Furthermore, it allows us to choose di↵erent renormalisation schemes for the bottom quark mass
in the matrix element and in the Yukawa coupling.

The model R
2

and UV vertices required for NLO computations in MadGraph5 aMC@NLO
have been computed using NLOCT [34]. The masses and the wave functions are renormalised
in the on-shell scheme to avoid the computation of loops on external legs. The strong coupling
constant is renormalised in the MS scheme with the contribution of massive quarks subtracted
from the gluon self-energy at zero-momentum transfer. Therefore, only the massless modes a↵ect
the running of ↵s. The renormalisation of the masses in principle fixes the renormalisation of the
top and bottom Yukawa since

�yt/b =
p
2
�mt/b

v
, (5)

with

�mt/b = � g2s
12⇡2

mt/b

✓
3

✏̄
+ 4� 6 log

mt/b

µR

◆
(6)

in the on-shell scheme. This is the default renormalisation used in NLOCT and it would ensure
that nothing but the strong coupling constant depends on the renormalisation scale. The top mass
and Yukawa are always renormalised in this way throughout this paper. Therefore its Yukawa mass
is set equal to the pole mass. On the contrary, the bottom quark Yukawa has been renormalised
in the MS scheme, i. e.

�yb = �
p
2

v

g2sm
y
b

4⇡2✏̄
. (7)

This scheme choice has the advantage of resumming potentially large logarithms log(µR/mb) (with
µR ⇠ mH±) to all orders. The bottom Yukawa mass is set to the value of the running MS mass at
the renormalisation scale. Besides the modifications at the level of the UFO model, also the code
written by MadGraph5 aMC@NLO had to be changed in order to account for the additional
scale dependence introduced by the b-quark Yukawa, in particular for what concerns the on-the-fly
evaluation of scale uncertainties obtained via reweighting [56]. This has been done in an analogous
way as for bottom-associated Higgs production [28], by splitting the cross section in parts that
factorise di↵erent powers of yb, i. e. y2b , yb yt and y2t .

1They appear explicitly separated also in the YUKAWA and MASS blocks of the SLHA cards [55].

6

2.2 Implementation

We have used the implementation of the generic 2HDM in FeynRules detailed in Ref. [34]. This
model has been converted into a type-II 2HDM by adding � as an external parameter and by
restricting the Yukawa couplings accordingly. If top and bottom quarks are assumed to be the
only massive fermions, the only non-zero entries of the Yukawa coupling matrices to the doublet
without vacuum expectation value in the Higgs basis for the type-II 2HDM are given by

Gu
3,3 = �

p
2
my

t

v
cot� and Gd

3,3 =
p
2
my

b

v
tan�, (3)

where my
t/b are the Yukawa masses of the top and bottom quark. The parameter tan� = v

2

/v
1

is the ratio of the vacuum expectation values v
1

and v
2

of the two Higgs doublets, such that
v2 ⌘ v2

1

+ v2
2

= (
p
2GF )�1 is the SM Higgs vacuum expectation value, where GF is the Fermi

constant. With those restrictions, the H�tb̄ vertex is given by

Vt¯bH� = �i

✓
ytPR

1

tan�
+ ybPL tan�

◆
, (4)

where PR/L = (1 ± �
5

)/2 are the chirality projectors and yt/b ⌘
p
2
my

t/b

v are the corresponding
SM Yukawa couplings. We strictly separate the Yukawa masses that are used in the computation
of the couplings between the fermions and the scalars from the kinematic masses that are used
everywhere else and set to the on-shell mass.1 This distinction allows us to keep a non-vanishing
bottom Yukawa in the five-flavour scheme as the leading term in the small mb expansion [13, 14].
Furthermore, it allows us to choose di↵erent renormalisation schemes for the bottom quark mass
in the matrix element and in the Yukawa coupling.

The model R
2

and UV vertices required for NLO computations in MadGraph5 aMC@NLO
have been computed using NLOCT [34]. The masses and the wave functions are renormalised
in the on-shell scheme to avoid the computation of loops on external legs. The strong coupling
constant is renormalised in the MS scheme with the contribution of massive quarks subtracted
from the gluon self-energy at zero-momentum transfer. Therefore, only the massless modes a↵ect
the running of ↵s. The renormalisation of the masses in principle fixes the renormalisation of the
top and bottom Yukawa since

�yt/b =
p
2
�mt/b

v
, (5)

with

�mt/b = � g2s
12⇡2

mt/b

✓
3

✏̄
+ 4� 6 log

mt/b

µR

◆
(6)

in the on-shell scheme. This is the default renormalisation used in NLOCT and it would ensure
that nothing but the strong coupling constant depends on the renormalisation scale. The top mass
and Yukawa are always renormalised in this way throughout this paper. Therefore its Yukawa mass
is set equal to the pole mass. On the contrary, the bottom quark Yukawa has been renormalised
in the MS scheme, i. e.

�yb = �
p
2

v

g2sm
y
b

4⇡2✏̄
. (7)

This scheme choice has the advantage of resumming potentially large logarithms log(µR/mb) (with
µR ⇠ mH±) to all orders. The bottom Yukawa mass is set to the value of the running MS mass at
the renormalisation scale. Besides the modifications at the level of the UFO model, also the code
written by MadGraph5 aMC@NLO had to be changed in order to account for the additional
scale dependence introduced by the b-quark Yukawa, in particular for what concerns the on-the-fly
evaluation of scale uncertainties obtained via reweighting [56]. This has been done in an analogous
way as for bottom-associated Higgs production [28], by splitting the cross section in parts that
factorise di↵erent powers of yb, i. e. y2b , yb yt and y2t .

1They appear explicitly separated also in the YUKAWA and MASS blocks of the SLHA cards [55].

6

2.2 Implementation

We have used the implementation of the generic 2HDM in FeynRules detailed in Ref. [34]. This
model has been converted into a type-II 2HDM by adding � as an external parameter and by
restricting the Yukawa couplings accordingly. If top and bottom quarks are assumed to be the
only massive fermions, the only non-zero entries of the Yukawa coupling matrices to the doublet
without vacuum expectation value in the Higgs basis for the type-II 2HDM are given by

Gu
3,3 = �

p
2
my

t

v
cot� and Gd

3,3 =
p
2
my

b

v
tan�, (3)

where my
t/b are the Yukawa masses of the top and bottom quark. The parameter tan� = v

2

/v
1

is the ratio of the vacuum expectation values v
1

and v
2

of the two Higgs doublets, such that
v2 ⌘ v2

1

+ v2
2

= (
p
2GF )�1 is the SM Higgs vacuum expectation value, where GF is the Fermi

constant. With those restrictions, the H�tb̄ vertex is given by

Vt¯bH� = �i

✓
ytPR

1

tan�
+ ybPL tan�

◆
, (4)

where PR/L = (1 ± �
5

)/2 are the chirality projectors and yt/b ⌘
p
2
my

t/b

v are the corresponding
SM Yukawa couplings. We strictly separate the Yukawa masses that are used in the computation
of the couplings between the fermions and the scalars from the kinematic masses that are used
everywhere else and set to the on-shell mass.1 This distinction allows us to keep a non-vanishing
bottom Yukawa in the five-flavour scheme as the leading term in the small mb expansion [13, 14].
Furthermore, it allows us to choose di↵erent renormalisation schemes for the bottom quark mass
in the matrix element and in the Yukawa coupling.

The model R
2

and UV vertices required for NLO computations in MadGraph5 aMC@NLO
have been computed using NLOCT [34]. The masses and the wave functions are renormalised
in the on-shell scheme to avoid the computation of loops on external legs. The strong coupling
constant is renormalised in the MS scheme with the contribution of massive quarks subtracted
from the gluon self-energy at zero-momentum transfer. Therefore, only the massless modes a↵ect
the running of ↵s. The renormalisation of the masses in principle fixes the renormalisation of the
top and bottom Yukawa since

�yt/b =
p
2
�mt/b

v
, (5)

with

�mt/b = � g2s
12⇡2

mt/b

✓
3

✏̄
+ 4� 6 log

mt/b

µR

◆
(6)

in the on-shell scheme. This is the default renormalisation used in NLOCT and it would ensure
that nothing but the strong coupling constant depends on the renormalisation scale. The top mass
and Yukawa are always renormalised in this way throughout this paper. Therefore its Yukawa mass
is set equal to the pole mass. On the contrary, the bottom quark Yukawa has been renormalised
in the MS scheme, i. e.

�yb = �
p
2

v

g2sm
y
b

4⇡2✏̄
. (7)

This scheme choice has the advantage of resumming potentially large logarithms log(µR/mb) (with
µR ⇠ mH±) to all orders. The bottom Yukawa mass is set to the value of the running MS mass at
the renormalisation scale. Besides the modifications at the level of the UFO model, also the code
written by MadGraph5 aMC@NLO had to be changed in order to account for the additional
scale dependence introduced by the b-quark Yukawa, in particular for what concerns the on-the-fly
evaluation of scale uncertainties obtained via reweighting [56]. This has been done in an analogous
way as for bottom-associated Higgs production [28], by splitting the cross section in parts that
factorise di↵erent powers of yb, i. e. y2b , yb yt and y2t .

1They appear explicitly separated also in the YUKAWA and MASS blocks of the SLHA cards [55].

6

On-shell sc.

MS sc.

Type-II 2HDM



C. Degrande

Example 1: Charged Higgs production
� 

p
e

r
 b

in

H
-
bt production at the 13 TeV LHC

4FS, NLO (+Pythia8)

yb
2
, PY8 F=4

yt
2
 (x0.1), PY8 F=4

yb
2
, PY8 F=1

yt
2
 (x0.1), PY8 F=1

yb
2
, fNLO

yt
2
 (x0.1), fNLO

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

mH
-=200 GeV, tan�=8

Ma
dG
ra

ph
5_
aM
C@

NL
O

 0.1

 1

 10

yb
2
: Ratio over fNLO

log10[pT(sys)/GeV]

 0.1

 1

 10

 1  2  3

yt
2
: Ratio over fNLO

� 
p

e
r 

b
in

H-bt production at the 13 TeV LHC

4FS, NLO (+Herwig++)

yb
2, HW++ F=4

yt
2 (x0.1), HW++ F=4

yb
2, HW++ F=1

yt
2 (x0.1), HW++ F=1

yb
2, fNLO

yt
2 (x0.1), fNLO

10-7

10-6

10-5

10-4

10-3

10-2

10-1

mH-=200 GeV, tan�=8

Ma
dG
ra

ph
5_
aM
C@

NL
O

 0.1

 1

 10
yb

2: Ratio over fNLO

log10[pT(sys)/GeV]

 0.1

 1

 10

 1  2  3

yt
2: Ratio over fNLO

Figure 2: Transverse momentum of the H�b̄t system for mH� = 200GeV in the 4FS at fNLO
(green dotted-solid for the y2b term, orange dotted-solid for the y2t term), and at NLO+PS with F=
1 (green dots for the y2b term, orange dots for the y2t term) and F= 4 (green solid for the y2b term,
orange solid for the y2t term). We show predictions matched with Pythia8 (left) and Herwig++
(right). The insets show the ratio of the curves in the main frame over the fNLO prediction, for
both the y2b and the y2t terms.

order ones by choosing a reduced shower scale corresponding to F = 4 (solid curves).7 Indeed,
such a choice brings µ

sh

much closer to the value of the renormalisation and factorisation scales.
We have also checked that the agreement among Pythia8 and Herwig++ improves (although
often only marginally) when di↵erential observables in the 4FS are computed with F = 4.

In conclusion, although for this process we do not reproduce all results of Ref. [28] with the
same significance, we still find su�cient evidence that F = 4 is favourable in many respects and
make it our default choice. In Sect. 3.3, we shall further study the impact of this choice when
comparing the 4FS and 5FS results: by setting F = 4 an improved agreement between the two
schemes at the level of shapes is observed.

3.2 Four-flavour scheme results

We now turn to our phenomenological results for charged Higgs boson production. Let us first
consider state-of-the-art 4FS predictions, which, as will be shown, constitute the most reliable
di↵erential results for observables exclusive in the degrees of freedom of final-state bottom quarks.
We split this section into two parts: in Sect. 3.2.1 we limit our study to the dominant y2b and y2t
contributions, while the yb yt contribution is considered in Sect. 3.2.2.
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the distributions on the shower scale µ
sh

, when varied by a factor in the range [1/
p
2,
p
2], is

rather mild and significantly smaller than uncertainties associated with the renormalisation and
factorisation scales; we therefore refrain from including uncertainties associated with µ

sh

in what
follows. Furthermore, we will not discuss any PDF systematics.3

Jets are reconstructed via the anti-kT algorithm [59], as implemented in FastJet [60,61], with
a distance parameter �R = 0.4 and subject to the conditions

pT (j) � 25GeV, |⌘(j)|  2.5. (11)

For fixed-order computations jets are clustered from partonic final states, while in simulations
matched to parton showers jets are made up of hadrons; b jets are defined to contain at least one
b quark (at fixed order) or B hadron (in matched simulations).

In our simulations we keep the charged Higgs boson stable, while we decay the top quark
leptonically (although the leptons from the decay will not a↵ect any observable we consider) in
order to keep as much control as possible on the origin of QCD radiation. The task to decay the
top quark is performed by the parton shower for (N)LO+PS runs, while at fixed order we simulate
the decay t ! bW in an isotropic way (in the t rest frame) at the analysis level.4 No simulation of
the underlying event is performed by the parton shower.

Let us conclude this section by addressing one further point, which is crucial when processes
with final-state b quarks are matched to parton showers: the choice of the shower starting scale µ

sh

.
Such processes are known to prefer much lower values of the renormalisation and factorisation scales
than the one naively identified as the hard scale of the process (ŝ). In fact, the shower starting scale
and the factorisation scale emerge both from the same concept, namely the separation of soft and
hard physics. Furthermore, it has been argued in Ref. [28] for the associated production of a neutral
Higgs boson with bottom quarks that the shower starting scale (limiting the hardest emission that
the shower can generate) should be set at similar values, i. e. well below ŝ. Following the arguments
made in Ref. [28], we check their validity in the case of charged Higgs boson production. We shall
stress at this point that the following discussion applies both to our reference scenarios with
mH� = 200GeV and mH� = 600GeV, although we refrain from showing explicit results for the
latter.

MadGraph5 aMC@NLO assigns a dynamical shower scale chosen from a distribution in the
range5

0.1

F
ŝ  µ

sh

 1

F
ŝ, (12)

where F is a parameter that drives the bounds of the distribution, and whose default value is
F = 1. With such a default setting the e↵ective value of µ

sh

, namely the maximum of the µ
sh

distribution (which for simplicity we will refer to as just µ
sh

in the following), is indeed much
larger than µF,R. Furthermore, considering the transverse momentum distribution of the Born-
level “system” (pT (sys)),6 which is maximally sensitive to the interplay between the fixed-order
prediction and the shower, the NLO+PS distribution (in particular in the 4FS) does not match
the fixed-order NLO (fNLO) one at large pT for F = 1. This can be deduced from Fig. 2, when
comparing the crosses (NLO+PS for F = 1) to the solid curves overlayed with points (fNLO). On
the contrary, we observe a clearly improved high-pT matching of the NLO+PS results to the fixed-

3Note that scale variations due to µF and µR as well as PDF uncertainties are computed at no extra CPU cost
using the reweighting procedure of Ref. [56].

4 Such an approach neglects spin-correlation in the decay of the top quark. However, within the Mad-
Graph5 aMC@NLO framework, spin correlation can be included in (N)LO+PS runs by decaying the top quark
with MadSpin [62].

5See Ref. [32] for further details.
6Note that the Born-level system is unambiguously defined only in a fixed-order calculation, being in our case

the charged Higgs accompanied by the final state top and bottom quark. At NLO+PS we define it to include the
hardest B hadron (instead of the bottom quark), which does not originate from the top decay; in this case, MC-truth
is used.
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3 Results

In this section, we present four-flavour scheme predictions of charged Higgs boson production
at NLO matched to parton showers. This calculation has never been performed before in the
literature. Several di↵erential distributions that are reconstructed from the final state particles in
tH�b̄ production are studied. We investigate the role of the shower scale in this process, discuss
the impact of the ybyt interference term and compare our reference predictions at (N)LO+PS to
the f(N)LO results. For matched predictions, both Herwig++ and Pythia8 are employed. We
conclude this chapter with a comprehensive comparison of 4FS and 5FS distributions, in which the
e↵ects of higher order corrections, the impact of the choice of the shower scale and the dependence
of each scheme on the di↵erent Monte Carlos are analysed.

3.1 Settings

We present results for charged Higgs boson production at the LHC Run II (
p
S
had

= 13TeV) by
considering two scenarios: a lighter (mH± = 200GeV) and a heavier (mH± = 600GeV) charged
Higgs boson. For simplicity, we set tan� = 8 throughout this paper. At this value, y2b and y2t terms
are of similar size and the relative contribution of the ybyt term to the total cross section is close
to its maximum. Results for any other value of tan� can be obtained by a trivial overall rescaling
of the individual contributions according to their Yukawa couplings (yb by tan�, yt by 1/ tan�).
Therefore, we preserve the generality of our results by studying the y2b , y

2

t and ybyt contributions
separately.

We show results obtained with the NNPDF2.3 set [57] at NLO and the NNPDF3.0 [58] set at
LO. To obtain consistent predictions, parton distribution functions (PDFs) computed in the proper
flavour number scheme are used: we interface our NLO (LO) calculation with the NNPDF2.3
(NNPDF3.0) with nf = 4 and nf = 5 active flavours for the 4FS and 5FS respectively. The
mismatch between the PDF sets used in the LO and NLO computations is due to the absence of
a public set of non-QED LO PDFs in the NNPDF2.3 family. This does not a↵ect the accuracy
of our results, given that the LO PDF sets exhibit a theoretical uncertainty which is larger than
the di↵erence between the two NNPDF families. The strong coupling constant is consistent with
↵s(MZ) = 0.118 for the 5FS NLO parton densities and ↵s(MZ) = 0.1226 for the 4FS NLO ones.2

The heavy quark pole masses are set to

mpole

b = 4.75GeV (relevant only to the 4FS), mpole

t = 172.5GeV. (8)

At one loop, the value of the bottom pole mass translates into a MS mass

m̄b(m̄b) = 4.3377GeV. (9)

Finally, our central renormalisation and factorisation scales µR, µF are set to

µR,F = HT /3 ⌘ 1

3

X

i

p
m(i)2 + pT (i)2, (10)

where the index i runs over all final state particles (the top quark, the charged Higgs boson and
possibly the extra b quark and/or light parton) of the hard process. For vanishing transverse
momenta of the external particles, our scale choice corresponds to the factorisation scale set in
the 4FS calculation of Refs. [10, 22]. In the following, scale uncertainties are obtained by varying
µF and µR independently by a factor of two around their central values, given in Eq. (10). We
have checked that, particularly for our reference 4FS NLO+PS prediction, the dependence of

2This is the value of ↵s(MZ) associated with the NNPDF23 nlo as 0118 nf4 set: the 4FS sets are constructed by
evolving backwards the 5FS PDFs and the strong coupling constant from the Z mass to the threshold associated
to the bottom PDF. They are then evolved upwards from the bottom threshold to higher scales by setting nf = 4.
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Example 1: Charged Higgs production
�(mH� = 200GeV) [fb]

NLO LO
y2b y2t y2b y2t

Inclusive 50.40+17.8%
�18.6% 42.43+12.4%

�13.1% 42.12+52.2%
�31.9% 28.68+36.3%

�24.7%

� 1jb

F.O. 45.47+17.5%
�18.4% 38.31+12.2%

�13.0% 38.26+51.9%
�31.8% 26.09+36.1%

�24.6%

Pythia8 43.44+17.4%
�18.4% 36.67+12.0%

�13.0% 36.81+52.0%
�31.8% 25.09+36.1%

�24.7%

Herwig++ 42.64 36.04 36.08 24.61

� 2jb

F.O. 11.55+10.9%
�15.4% 9.76+6.5%

�10.0% 11.22+50.4%
�31.2% 7.79+35.0%

�24.1%

Pythia8 12.55+15.3%
�17.4% 10.67+10.4%

�12.1% 11.73+51.2%
�31.5% 8.12+35.6%

�24.4%

Herwig++ 11.03 9.33 10.09 7.00

�(mH� = 600GeV) [fb]
NLO LO

y2b y2t y2b y2t

Inclusive 2.400+20.3%
�20.1% 2.117+13.1%

�14.2% 1.794+54.9%
�33.0% 1.339+40.1%

�26.5%

� 1jb

F.O. 2.187+19.9%
�19.9% 1.925+12.6%

�14.0% 1.649+54.7%
�32.9% 1.232+39.9%

�26.5%

Pythia8 2.115+19.9%
�19.9% 1.865+12.5%

�14.0% 1.601+54.8%
�32.9% 1.197+40.0%

�26.5%

Herwig++ 2.077 1.836 1.570 1.175

� 2jb

F.O. 0.630+12.6%
�17.0% 0.548+5.9%

�10.8% 0.548+53.8%
�32.6% 0.413+39.2%

�26.2%

Pythia8 0.697+16.7%
�18.6% 0.611+9.6%

�12.6% 0.588+54.3%
�32.8% 0.443+39.6%

�26.3%

Herwig++ 0.602 0.532 0.498 0.376

Table 1: 4FS predictions for total rates (in fb) for tan� = 8.

3.2.1 y2b and y2t contributions at NLO+PS

We begin our analysis by studying total rates for the production of charged Higgs bosons with
a mass of 200GeV and 600GeV in Table 1. We consider three possibilities: the fully inclusive
case, the case in which we require at least one b jet, and the one in which two or more b jets are
tagged. All results are given at both LO and NLO accuracy. The cross sections in which one or
two b jets are required depend on the approximation and Monte Carlo under consideration. We
thus report separately results obtained at fixed order, with Pythia8 and with Herwig++. Any
quoted uncertainty is due to scale variation, evaluated as detailed in Sect. 3.1; they are indicated
only at fixed order and for results matched with Pythia8, since they show little dependence on
the specific Monte Carlo. Results for y2b and y2t terms are presented separately. Let us summarize
the conclusions to be drawn from Table 1 as follows:

• The scale uncertainty of NLO predictions is substantially smaller than that of the LO ones;
at NLO the scale uncertainty is larger for the y2b than for the y2t contribution (⇠ 15-20% and
⇠ 10-15%, respectively), due to the di↵erent renormalisation schemes used for the bottom
and top Yukawa couplings.

• Because of our default choice of tan� = 8, y2b and y2t predictions are of similar size at NLO
(only ⇠ 15% di↵erent); the di↵erence is larger at LO (⇠ 30%). As a consequence, the K-
factors are generally di↵erent between the y2b and y2t terms; for mH� = 200GeV, the inclusive
y2b K-factor is close to 1.2, while for the y2t term the NLO corrections have a larger impact,

7Our focus here is on the 4FS prediction. However, similar conclusions, if less stringent, can be drawn from the
corresponding plots in the 5FS.
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3 Results

In this section, we present four-flavour scheme predictions of charged Higgs boson production
at NLO matched to parton showers. This calculation has never been performed before in the
literature. Several di↵erential distributions that are reconstructed from the final state particles in
tH�b̄ production are studied. We investigate the role of the shower scale in this process, discuss
the impact of the ybyt interference term and compare our reference predictions at (N)LO+PS to
the f(N)LO results. For matched predictions, both Herwig++ and Pythia8 are employed. We
conclude this chapter with a comprehensive comparison of 4FS and 5FS distributions, in which the
e↵ects of higher order corrections, the impact of the choice of the shower scale and the dependence
of each scheme on the di↵erent Monte Carlos are analysed.

3.1 Settings

We present results for charged Higgs boson production at the LHC Run II (
p
S
had

= 13TeV) by
considering two scenarios: a lighter (mH± = 200GeV) and a heavier (mH± = 600GeV) charged
Higgs boson. For simplicity, we set tan� = 8 throughout this paper. At this value, y2b and y2t terms
are of similar size and the relative contribution of the ybyt term to the total cross section is close
to its maximum. Results for any other value of tan� can be obtained by a trivial overall rescaling
of the individual contributions according to their Yukawa couplings (yb by tan�, yt by 1/ tan�).
Therefore, we preserve the generality of our results by studying the y2b , y

2

t and ybyt contributions
separately.

We show results obtained with the NNPDF2.3 set [57] at NLO and the NNPDF3.0 [58] set at
LO. To obtain consistent predictions, parton distribution functions (PDFs) computed in the proper
flavour number scheme are used: we interface our NLO (LO) calculation with the NNPDF2.3
(NNPDF3.0) with nf = 4 and nf = 5 active flavours for the 4FS and 5FS respectively. The
mismatch between the PDF sets used in the LO and NLO computations is due to the absence of
a public set of non-QED LO PDFs in the NNPDF2.3 family. This does not a↵ect the accuracy
of our results, given that the LO PDF sets exhibit a theoretical uncertainty which is larger than
the di↵erence between the two NNPDF families. The strong coupling constant is consistent with
↵s(MZ) = 0.118 for the 5FS NLO parton densities and ↵s(MZ) = 0.1226 for the 4FS NLO ones.2

The heavy quark pole masses are set to

mpole

b = 4.75GeV (relevant only to the 4FS), mpole

t = 172.5GeV. (8)

At one loop, the value of the bottom pole mass translates into a MS mass

m̄b(m̄b) = 4.3377GeV. (9)

Finally, our central renormalisation and factorisation scales µR, µF are set to

µR,F = HT /3 ⌘ 1

3

X

i

p
m(i)2 + pT (i)2, (10)

where the index i runs over all final state particles (the top quark, the charged Higgs boson and
possibly the extra b quark and/or light parton) of the hard process. For vanishing transverse
momenta of the external particles, our scale choice corresponds to the factorisation scale set in
the 4FS calculation of Refs. [10, 22]. In the following, scale uncertainties are obtained by varying
µF and µR independently by a factor of two around their central values, given in Eq. (10). We
have checked that, particularly for our reference 4FS NLO+PS prediction, the dependence of

2This is the value of ↵s(MZ) associated with the NNPDF23 nlo as 0118 nf4 set: the 4FS sets are constructed by
evolving backwards the 5FS PDFs and the strong coupling constant from the Z mass to the threshold associated
to the bottom PDF. They are then evolved upwards from the bottom threshold to higher scales by setting nf = 4.

7
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Figure 4: Same as the upper panel of Fig. 3, but for the transverse momentum of hardest (left
panel) and second-hardest (right panel) b jet.

comparable features: in all cases, the tail of the spectra is driven by the order relevant to the
simulation and NLO corrections slightly soften the spectra. In other words, the fixed-order results
agree rather well with the corresponding Pythia8 ones in the tail. On the other hand, close to
threshold (pT = 25GeV), where resummation e↵ects are enhanced, non-showered and showered
results exhibit sizeable di↵erences, in particular for the hardest b jet.

Turning now to somewhat related observables in Fig. 5—the transverse momentum distributions
of the hardest and second-hardest B hadron—, one may expect rather similar features to the b-jet
transverse momentum spectra. On the contrary, their pattern is actually very di↵erent; the salient
feature being that showered results are vastly softer than the fixed-order ones and a substantial
shape distortion due to the matching with parton showers is observed. In fact, even the peak
of the pT (B1

) distribution is moved by ⇠ 25GeV towards the left by the shower. However, one
should bear in mind that we compare bottom quarks at parton level for the f(N)LO predictions
with B hadrons at (N)LO+PS. The observed di↵erences unavoidably lead to the conclusion that
fragmentation e↵ects become significant for such exclusive observables. Otherwise, the pattern of
the Pythia8 results is very much reminiscent of b-jet spectra, displaying a slightly harder LO+PS
shape than at NLO+PS. Generally speaking, the relative behaviour of the y2b and y2t curves is
pretty much alike, including the peculiar increase of the f(N)LO cross section towards vanishing
pT (B2

). Again, we refrain from showing explicit results for amH� = 600GeV charged Higgs boson,
since the pattern of the various curves turns out to be very similar to the mH� = 200GeV case;
the only di↵erence to be pointed out is a slightly reduced gap between showered and fixed-order
results for mH� = 600GeV.

We investigated a vast number of di↵erential observables, the majority of which follows the
same pattern as illustrated in Figs. 3 and 4: the NLO corrections are rather flat and lie within
the LO uncertainty bands, shower e↵ects are moderate and become more substantial the more
exclusive the observable is with respect to the bottom-quark degrees of freedom. Based on our
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Figure 8: Relative contribution of the ybyt term at LO (dashed) and NLO (solid) in the 4FS, with
respect to the total (N)LO cross section, as a function of tan�. The two cases mH� = 200GeV
(green) and mH� = 600GeV (blue) are shown.

The results of Fig. 7 analysed so far are for mH� = 200GeV. Since these observables are
particularly relevant for experimental analyses based on jet and b-jet categories, let us discuss
explicitly the results for a charged Higgs mass of mH� = 600GeV, which are displayed in the lower
plots of Fig. 7. While for jet multiplicities the general features are not so di↵erent, some specific
features are. Apart from a larger Higgs mass changing the LO normalisation, the distribution
of events at LO appears shifted towards low multiplicities as compared to LO+PS, without any
overlap of the corresponding uncertainties in the first two bins. However, given our findings for
the lower Higgs mass case, this is expected: the shower shifts events from lower towards higher
jet multiplicities; this is enhanced for mH� = 600GeV due to a generally increased hardness of
the process. Indeed, the two-jet bin has the largest rate, and the three- and four-jet bins are
less suppressed than in the lighter Higgs case. NLO corrections slightly improve the agreement
of showered and fixed-order results, albeit fNLO and NLO+PS still fall outside the respective
uncertainties in the zero- and one-jet bins.

In the case of b jets, on the other hand, the features of the relative curves reflect those discussed
for the lighter Higgs and no further comments are needed.

3.2.2 The ybyt contribution

As we mentioned before, in the 5FS the NLO cross section receives contributions either proportional
to y2b or to y2t . No ybyt term appears, given that it would come from the interference of left-handed
with right-handed massless bottom quarks. If in turn b quarks are massive, as in the 4FS, the ybyt
term does not vanish any longer, and it is proportional to m2

b/Q
2, where Q is some hard scale of

the process. So far, we have limited our 4FS analysis to the y2b and y2t contributions, assuming the
ybyt one to be suppressed. In this section, we show that this is indeed the case.

To this purpose, we consider the total cross section for charged Higgs production in the 4FS at
LO and NLO, and plot the relative contribution ��ybyt/�all

as a function of tan� in Fig. 8, with
�
all

being the sum of all terms. The results are shown for mH� = 200, 600GeV. The minus sign
takes into account the fact that the ybyt term is negative. We stress that the ybyt contribution is
independent of tan�. As can be inferred from the plots, the relative size of the ybyt term is below
5% for mH� = 200GeV, and 0.5% for mH� = 600GeV. The relative contribution to the cross
section proportional to ybyt is maximal when the y2b and y2t terms are equal, i. e. when

y2b tan�
2 = y2t /tan�

2 ) tan� = 7.27(7.67), (13)
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Figure 19: Same as Fig. 18, but for the ⌘ � � distance of the two hardest B hadrons with no cuts
(left) and requiring at least two b jets (right).

Figure 20: Same as Fig. 18, but for the jet (left) and b-jet (right) multiplicity.
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Example II: Gluino pair production
2

mχ that is identified with a bino,

Ldecay =
i

2
χ̄/∂χ−

1

2
mχχ̄χ

+
√
2g′
[

− q̃†LYq

(

χ̄PLq
)

+
(

q̄PLχ
)

Yq q̃R + h.c.
]

.

In this Lagrangian, Yq denotes the hypercharge quantum
number of the (s)quarks and g′ the hypercharge coupling.
At the NLO in QCD, gluino pair-production receives

contributions from real emission diagrams as well as from
the interferences of tree-level diagrams with virtual one-
loop diagrams that exhibit ultraviolet divergences. These
must be absorbed through a suitable renormalization of
the parameters and of the fields appearing in LSQCD. To
this aim, we replace all (non-)fermionic bare fields Ψ (Φ)
and bare parameters y by the corresponding renormalized
quantities,

Φ →
[

1 +
1

2
δZΦ

]

Φ , Ψ →
[

1 +
1

2
δZL

ΨPL +
1

2
δZR

ΨPR

]

Ψ ,

y → y + δy ,

where the renormalization constants δZ and δy are trun-
cated at the first order in the strong coupling αs.
The wave-function renormalization constants of the

massless quarks (δZL,R
q ), of the top quark (δZL,R

t ), of the
gluon (δZg) and the top mass renormalization constant
(δmt) are given, when adopting the on-shell renormaliza-
tion scheme, by

δZg = −
g2s

24π2

[

−
1

3
+B0(0,m

2
t ,m

2
t ) + 2m2

tB
′
0(0,m

2
t ,m

2
t )

−
nc

3
+ ncB0(0,m

2
g̃,m

2
g̃) + 2ncm

2
g̃B

′
0(0,m

2
g̃,m

2
g̃)

+
∑

q̃

[1

6
+

1

4
B0(0,m

2
q̃,m

2
q̃)−m2

q̃B
′
0(0,m

2
q̃,m

2
q̃)
]

]

,

δZL,R
q =

g2sCF

8π2
B1(0;m

2
g̃,m

2
q̃L,R

) ,

δZL,R
t =

g2sCF

16π2

[

1 + 2B1(m
2
t ;m

2
g̃,m

2
t̃L,R

)

+ 2B1(m
2
t ;m

2
t , 0) + 8m2

tB
′
0(m

2
t ;m

2
t , 0)

+ 4m2
tB

′
1(m

2
t ;m

2
t , 0) + 2m2

t

∑

i=L,R

B′
1(m

2
t ;m

2
g̃,m

2
t̃i
)

]

,

δmt = −
g2sCFmt

16π2

[

−1+4B0(m
2
t ;m

2
t , 0)+2B1(m

2
t ;m

2
t , 0)

+
∑

i=L,R

B1(m
2
t ;m

2
g̃,m

2
t̃i
)

]

,

where the B0,1 (and A0, for further references) functions
and their derivatives stand for the standard two-point
(one-point) Passarino-Veltman loop-integrals [26]. More-
over, nc = 3 and CF = (n2

c − 1)/(2nc) denote respec-
tively the number of colors and the quadratic Casimir
invariant associated with the fundamental representation

of SU(3). The gluino wave-function and mass renormal-
ization constants δZL,R

g̃ and δmg̃ are given by

δZg̃ =
g2s

16π2

[

nc + 2ncB1(m
2
g̃;m

2
g̃, 0)

+ 8ncm
2
g̃B

′
0(m

2
g̃;m

2
g̃, 0) + 4ncm

2
g̃B

′
1(m

2
g̃;m

2
g̃, 0)

+
∑

q̃=q̃L,q̃R

{

B1(m
2
g̃;m

2
q,m

2
q̃) + 2m2

g̃B
′
1(m

2
g̃;m

2
q,m

2
q̃)
}

]

,

δmg̃ =
g2smg̃

16π2

[

nc − 4ncB0(m
2
g̃;m

2
g̃, 0)− 2ncB1(m

2
g̃;m

2
g̃, 0)

−
∑

q̃=q̃L,q̃R

B1(m
2
g̃;m

2
q,m

2
q̃)

]

,

while the squark wave-function (δZq̃) and mass (δm2
q̃)

renormalization constants read,

δZq̃ =
g2sCF

8π2

[

−B0(m
2
q̃;m

2
g̃,m

2
q) +B0(m

2
q̃ ;m

2
q̃, 0)

+(m2
g̃−m2

q̃+m2
q)B

′
0(m

2
q̃ ;m

2
g̃,m

2
q)+2m2

q̃B
′
0(m

2
q̃;m

2
q̃, 0)
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δm2
q̃ =
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8π2
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q)−A0(m

2
q)

]

,

with (−)L ≡ 1 and (−)R ≡ −1, and with mq ̸= 0 for top
squarks only. As a result of the structure of the gluino-
squark-quark interactions, squark mixing effects propor-
tional to the corresponding quark masses are generated
at the one-loop level and must be accounted for in the
renormalization procedure. In our simplified setup, we
consider nf = 5 flavors of massless quarks so that these
effects are only relevant for the sector of the top squarks.
In this case, matrix renormalization is in order,

(

t̃L
t̃R

)

→

(

t̃L
t̃R

)

+
1

2

(

δZt̃L
δZt̃,LR

δZt̃,RL δZt̃R

)(

t̃L
t̃R

)

,

and we impose that the stop sector is renormalized so
that left-handed and right-handed stops are still defined
as non-mixed states at the one-loop level. In the MSSM,
this is made possible by stop couplings to the Higgs sector
that generate an off-diagonal mass counterterm,

δLoff = −δm2
t̃,LR

(t̃†Lt̃R + t̃†Rt̃L) .

These Higgs couplings being absent in our simplified
model, we therefore introduce δLoff explicitly. The off-
diagonal stop wave-function (δZt̃,LR = δZt̃,RL) and mass
(δm2

t̃,LR
) renormalization constants are then found to be

δZt̃,LR =
g2sCFmg̃mt

4π2(m2
t̃R

−m2
t̃L
)

∑

i=L,R

(−)iB0(m
2
t̃i
;m2

t ,m
2
g̃) ,

δm2
t̃,LR

=
g2sCFmg̃mt

8π2

∑

i=L,R

B0(m
2
t̃i
;m2

t ,m
2
g̃) ,

1 Majorana gauge singlet (bino-like)

g̃
q̃
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q̄PLχ
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Yq q̃R + h.c.
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.

In this Lagrangian, Yq denotes the hypercharge quantum
number of the (s)quarks and g′ the hypercharge coupling.
At the NLO in QCD, gluino pair-production receives

contributions from real emission diagrams as well as from
the interferences of tree-level diagrams with virtual one-
loop diagrams that exhibit ultraviolet divergences. These
must be absorbed through a suitable renormalization of
the parameters and of the fields appearing in LSQCD. To
this aim, we replace all (non-)fermionic bare fields Ψ (Φ)
and bare parameters y by the corresponding renormalized
quantities,

Φ →
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Φ , Ψ →
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2
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Ψ ,

y → y + δy ,

where the renormalization constants δZ and δy are trun-
cated at the first order in the strong coupling αs.
The wave-function renormalization constants of the

massless quarks (δZL,R
q ), of the top quark (δZL,R

t ), of the
gluon (δZg) and the top mass renormalization constant
(δmt) are given, when adopting the on-shell renormaliza-
tion scheme, by

δZg = −
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24π2
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where the B0,1 (and A0, for further references) functions
and their derivatives stand for the standard two-point
(one-point) Passarino-Veltman loop-integrals [26]. More-
over, nc = 3 and CF = (n2

c − 1)/(2nc) denote respec-
tively the number of colors and the quadratic Casimir
invariant associated with the fundamental representation

of SU(3). The gluino wave-function and mass renormal-
ization constants δZL,R

g̃ and δmg̃ are given by
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while the squark wave-function (δZq̃) and mass (δm2
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renormalization constants read,
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with (−)L ≡ 1 and (−)R ≡ −1, and with mq ̸= 0 for top
squarks only. As a result of the structure of the gluino-
squark-quark interactions, squark mixing effects propor-
tional to the corresponding quark masses are generated
at the one-loop level and must be accounted for in the
renormalization procedure. In our simplified setup, we
consider nf = 5 flavors of massless quarks so that these
effects are only relevant for the sector of the top squarks.
In this case, matrix renormalization is in order,
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and we impose that the stop sector is renormalized so
that left-handed and right-handed stops are still defined
as non-mixed states at the one-loop level. In the MSSM,
this is made possible by stop couplings to the Higgs sector
that generate an off-diagonal mass counterterm,
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These Higgs couplings being absent in our simplified
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In this Lagrangian, Yq denotes the hypercharge quantum
number of the (s)quarks and g′ the hypercharge coupling.
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with (−)L ≡ 1 and (−)R ≡ −1, and with mq ̸= 0 for top
squarks only. As a result of the structure of the gluino-
squark-quark interactions, squark mixing effects propor-
tional to the corresponding quark masses are generated
at the one-loop level and must be accounted for in the
renormalization procedure. In our simplified setup, we
consider nf = 5 flavors of massless quarks so that these
effects are only relevant for the sector of the top squarks.
In this case, matrix renormalization is in order,
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and we impose that the stop sector is renormalized so
that left-handed and right-handed stops are still defined
as non-mixed states at the one-loop level. In the MSSM,
this is made possible by stop couplings to the Higgs sector
that generate an off-diagonal mass counterterm,

δLoff = −δm2
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(t̃†Lt̃R + t̃†Rt̃L) .

These Higgs couplings being absent in our simplified
model, we therefore introduce δLoff explicitly. The off-
diagonal stop wave-function (δZt̃,LR = δZt̃,RL) and mass
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mg̃ [GeV] σ
LO [pb] σ

NLO [pb]

200 2104+30.3%
−21.9%

+14.0%
−14.0%

3183+10.8%
−11.6%

+1.8%
−1.8%

500 15.46+34.7%
−24.1%

+19.5%
−19.5%

24.90+12.5%
−13.4%

+3.7%
−3.7%

750 1.206+35.9%
−24.6%

+23.5%
−23.5%

2.009+13.5%
−14.1%

+5.5%
−5.5%

1000 1.608 · 10−1+36.3%
−24.8%

+26.4%
−26.4%

2.743 · 10−1+14.4%
−14.8%

+7.3%
−7.3%

1500 6.264 · 10−3+36.2%
−24.7%

+29.4%
−29.4%

1.056 · 10−2+16.1%
−15.8%

+11.3%
−11.3%

2000 4.217 · 10−4+35.6%
−24.5%

+29.8%
−29.8%

6.327 · 10−4+17.7%
−16.6%

+17.8%
−17.8%

TABLE I. LO and NLO QCD inclusive cross sections for gluino pair-production at the LHC, running at a center-of-mass energy
of

√

s = 13 TeV. The results are shown together with the associated scale and PDF relative uncertainties.

where δZt̃,LR has been symmetrized. In this way, it in-
corporates the renormalization of the stop mixing angle
(taken vanishing in our model) which does not need to
be explicitly introduced [27].
In order to ensure that the running of αs solely origi-

nates from gluons and nf active flavors of light quarks, we
renormalize the strong coupling by subtracting at zero-
momentum transfer, in the gluon self-energy, all massive
particle contributions. This gives

δαs

αs
=

αs

2πϵ̄

[
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3
−
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]
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]

+
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24π

∑

q̃

[

1
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− log

m2
q̃

µ2
R

]

.

The ultraviolet-divergent parts of δαs/αs are written in
terms of the quantity 1

ϵ̄
= 1

ϵ
− γE + log 4π where γE is

the Euler-Mascheroni constant and ϵ is connected to the
number of space-time dimensions D = 4− 2ϵ.
Finally, the artificial breaking of supersymmetry by the

mismatch of the two gluino and the (D − 2) transverse
gluon degrees of freedom must be compensated by finite
counterterms. Imposing that the definition of the strong
coupling gs is identical to the Standard Model one, only
quark-squark-gluino vertices and four-scalar interactions
have to be shifted [28],

LSCT =
√
2gs

αs

3π

[

− q̃†LTa

(

¯̃gaPLq
)

+
(

q̄PLg̃
a
)

Taq̃R + h.c.
]

+
g2s
2
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[

q̃†R{Ta, Tb}q̃R + q̃†L{Ta, Tb}q̃L
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×
[

q̃†R{T
a, T b}q̃R + q̃†L{T

a, T b}q̃L
]

−
g2s
2
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4π

[

q̃†RTaq̃R − q̃†LTaq̃L
][

q̃†RT
aq̃R − q̃†LT

aq̃L
]

,

where we have introduced adjoint color indices for clarity.
In our phenomenological study, loop-calculations are

performed numerically in four dimensions by means of
the MadLoop package and therefore require the extrac-
tion of rational parts that are related to the ϵ-pieces of
the loop-integral denominators (R1, which are automati-
cally reconstructed within the OPP reduction procedure)
and numerators (R2). For any renormalizable theory, the
number of R2 terms is finite and they can be seen as

counterterms derived from the bare Lagrangian [29]. In
the context of the LSQCD Lagrangian, all necessary R2

counterterms can be found in Ref. [30].
The setup described above has been implemented

in the FeynRules package and we have made use of
the NLOCT program to automatically calculate all
the ultraviolet and R2 counterterms of the model. The
specificity of the renormalization of the stop sector
has been implemented via a new option of NLOCT,
SupersymmetryScheme->"OS", that allows to treat all
scalar fields that mix at the loop-level as described
above. We have validated the output against our
analytical calculations, and these results represent the
first validation of NLOCT in the context of compu-
tations involving massive Majorana colored particles.
We have finally generated a UFO version of the model
that can be loaded into MadGraph5 aMC@NLO

and which we have made publicly available on
http://feynrules.irmp.ucl.ac.be/wiki/NLOModels.
We have further validated the model, together with the
numerical treatment of the loop-diagrams by MadLoop,
by comparing MadGraph5 aMC@NLO predictions to
those of the code Prospino [31], using a fully degenerate
mass spectrum due to the limitations of the latter.

LHC phenomenology – In Table I, we com-
pute gluino pair-production total cross sections for
proton-proton collisions at a center-of-mass energy of√
s =13 TeV and for different gluino masses. Squarks

are decoupled (mt̃L
= 16 TeV, mt̃R

= 17 TeV and
mq̃L = mq̃R = 15 TeV) so that any resonant squark con-
tribution appearing in the real-emission topologies is
off-shell and therefore suppressed. The latter produc-
tion modes can be seen as the associated production
of a gluino and a squark that subsequently decays into
a gluino and a quark. Including these contributions
as parts of the NLO QCD corrections for gluino pair-
production would hence result in a double-counting when
considering together all superpartner production pro-
cesses inclusively. Moreover, these resonant channels re-
quire a special treatment in the fully-automated Mad-

Graph5 aMC@NLO framework, that is left to future
work [32]. Our choice for the squark spectrum corre-
sponds to the one made by ATLAS and CMS collabora-
tions in their respective gluino searches [5–8].
Our results are evaluated both at the LO and NLO

Zero-momentum for the massive d.o.f.
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TABLE I. LO and NLO QCD inclusive cross sections for gluino pair-production at the LHC, running at a center-of-mass energy
of

√

s = 13 TeV. The results are shown together with the associated scale and PDF relative uncertainties.

where δZt̃,LR has been symmetrized. In this way, it in-
corporates the renormalization of the stop mixing angle
(taken vanishing in our model) which does not need to
be explicitly introduced [27].
In order to ensure that the running of αs solely origi-
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terms of the quantity 1
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in the FeynRules package and we have made use of
the NLOCT program to automatically calculate all
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of a gluino and a squark that subsequently decays into
a gluino and a quark. Including these contributions
as parts of the NLO QCD corrections for gluino pair-
production would hence result in a double-counting when
considering together all superpartner production pro-
cesses inclusively. Moreover, these resonant channels re-
quire a special treatment in the fully-automated Mad-

Graph5 aMC@NLO framework, that is left to future
work [32]. Our choice for the squark spectrum corre-
sponds to the one made by ATLAS and CMS collabora-
tions in their respective gluino searches [5–8].
Our results are evaluated both at the LO and NLO

Validation : Comparison with Prospino (degenerate 
spectrum)

mt̃R = 17TeV, mt̃L = 16TeV, mq̃R/L
= 15TeV

No resonant squark


