Automated BSM at NLO

Celine Degrande (IPPP, Durham University) MC4BSM 2016

Beijing

Plan

- FeynRules in a nutshell
- BSM@NLO
 - Ingredients
 - How does it work?
- Examples :

. . .

- Charged Higgs production
- SUSY QCD

FeynRules

Output : vertices

and B. Fuks, CPC185 (2014) 2250

FeynRules outputs

FeynRules outputs can be used directly by event generators

UFO : output with the full information used by several generators

CD, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, CPC 183 (2012) 1201 C. Degrande

UFO

- Generator independent output with full model information
- Contains the list of particles, parameters, vertices, decays (1 to 2), coupling orders
- vertices are split into Lorentz structures, colours and couplings and all are included in the model!

 $-ig_s T^a_{ij} \gamma_\mu$

• Used in MG5, Herwig, Gosam, Sherpa

Plan

- FeynRules in a nutshell
- BSM@NLO
 - Ingredients
 - How does it work?
- Examples :

. . .

- Charged Higgs production
- SUSY QCD

Why NLO/Loop BSM?

- Discovery :
 - Loop-induced production/decay
 - NLO : Refine search strategies
- Measurement of properties/couplings : NLO corrections
 - QCD corrections are large at the LHC
- Quantification of the constraints NP should not be limited by the th. error on EFT

shower 'à la' MC@NLO

MadLoop

$$\mathcal{A}^{1-loop} = \sum_{i} \frac{d_{i}}{d_{i}} \operatorname{Box}_{i} + \sum_{i} \frac{c_{i}}{r_{i}} \operatorname{Triangle}_{i} + \sum_{i} \frac{b_{i}}{b_{i}} \operatorname{Bubble}_{i} + \sum_{i} \frac{a_{i}}{r_{i}} \operatorname{Tadpole}_{i} + \frac{R}{r_{i}}$$

- Box, Triangle, Bubble and Tadpole are known scalar integrals
- Loop computation = find the coefficients
 - Tensor reduction (OPP)
- R : rational terms should be partially provided
- UV counterterm vertices have to be provided

To be provided : R₂

$$ar{A}(ar{q}) = rac{1}{\left(2\pi
ight)^4} \int d^d ar{q} rac{ar{N}(ar{q})}{ar{D}_0 ar{D}_1 \dots ar{D}_{m-1}}, \qquad ar{D}_i = (ar{q} + p_i)^2 - m_i^2$$

$$R_{2} \equiv \lim_{\epsilon \to 0} \frac{1}{\left(2\pi\right)^{4}} \int d^{d}\overline{q} \frac{\tilde{N}\left(\tilde{q}, q, \epsilon\right)}{\overline{D}_{0}\overline{D}_{1}\dots\overline{D}_{m-1}}$$

Finite set of vertices that can be computed once for all

Computed in MadLoop :R₁

Due to the \mathcal{E} dimensional parts of the denominators

Like for the 4 dimensional part but with a different set of integrals ~? · ? Г

$$\int d^n \bar{q} \frac{\tilde{q}^2}{\bar{D}_i \bar{D}_j} = -\frac{i\pi^2}{2} \left[m_i^2 + m_j^2 - \frac{(p_i - p_j)^2}{3} \right] + \mathcal{O}(\epsilon) ,$$

$$\int d^n \bar{q} \frac{\tilde{q}^2}{\bar{D}_i \bar{D}_j \bar{D}_k} = -\frac{i\pi^2}{2} + \mathcal{O}(\epsilon) ,$$

$$\int d^n \bar{q} \frac{\tilde{q}^4}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_l} = -\frac{i\pi^2}{6} + \mathcal{O}(\epsilon) .$$

Only R = R_1 + R_2 is gauge invariant Check

UV

 $\bar{A}(\bar{q}) = \frac{1}{(2\pi)^4} \int d^d \bar{q} \frac{N(\bar{q})}{\bar{D}_0 \bar{D}_1 \dots \bar{D}_{m-1}} = K \frac{1}{\epsilon} + \mathcal{O}\left(\epsilon^0\right)$

Finite set of vertices that can be computed once for all

Renormalization

Internal parameters are renormalised by replacing the external parameters in their expressions

Renormalization conditions

On-shell scheme (or complex mass scheme):

Renormalized mass = Physical mass

Two-point function vanishes on-shell (No external bubbles)

 $i\delta_{ij} (\not p - m_i) + i \left[f_{ij}^L (p^2) \not p \gamma_- + f_{ij}^R (p^2) \not p \gamma_+ + f_{ij}^{SL} (p^2) \gamma_- + f_{ij}^{SR} (p^2) \gamma_+ \right]$

$$\tilde{\mathfrak{K}}\left[f_{ij}^{L}\left(p^{2}\right)m_{i}+f_{ij}^{SR}\left(p^{2}\right)\right]\Big|_{p^{2}=m_{i}^{2}}=0$$
$$\tilde{\mathfrak{K}}\left[f_{ij}^{R}\left(p^{2}\right)m_{i}+f_{ij}^{SL}\left(p^{2}\right)\right]\Big|_{p^{2}=m^{2}}=0$$

 $\tilde{\mathcal{X}}\left[2m_{i}\frac{\partial}{\partial p^{2}}\left[\left(f_{ii}^{L}\left(p^{2}\right)+f_{ii}^{R}\left(p^{2}\right)\right)m_{i}+f_{ii}^{SL}\left(p^{2}\right)+f_{ii}^{SR}\left(p^{2}\right)\right]+f_{ii}^{L}\left(p^{2}\right)+f_{ii}^{R}\left(p^{2}\right)\right]\right|_{p^{2}=m_{i}^{2}}=0$

Similar for the vectors and scalars

How does it work? FeynRules Renormalize the Lagrangian Model.mod model.mod model.gen Model.nlo

NLOCT.m Compute the NLO vertices

FeynArts

Write the amplitudes

CD, CPC 197 (2015) 239

Restrictions/Assumptions

- Renormalizable Lagrangian, maximum dimension of the operators is 4
- Feynman Gauge
- $\{\gamma_{\mu}, \gamma_5\} = 0$
- 't Hooft-Veltman scheme
- On-shell scheme for the masses and wave functions
- MS by default for everything else (zero-momentum possible for fermion gauge boson interaction)

R2:Validation

- tested* on the SM (QCD:P. Draggiotis et al. +QED:M.V. Garzelli et al)
- tested* on MSSM (QCD:H.-S. Shao,Y.-J. Zhang) : test the Majorana

*Analytic comparison of the expressions

UV Validation

- SM QCD : tested* (W. Beenakker, S. Dittmaier, M. Kramer, B. Plumper)
- SM EW : tested* (expressions given by H.-S. Shao from A. Denner)

*Analytic comparison of the expressions

Tests in event generators

- aMC@NLO
- The SM QCD has been tested by V. Hirschi (Comparison with the built-in version)
- SM EW (MZ scheme): comparison to published results for ME by H.-S. Shao and V. Hirschi
- Various BSM
 - gauge invariance
 - pole cancelation

C. Degrande

Massive and massless b

== a a > t t~ ['QED'] == == a a > t t~ a ['QED'] == == a a > w+ w- ['QED'] == == a b > t w- ['QED'] == $== d \sim d > w + w - ['QCD'] ==$ $== d \sim d > w + w - ['QED'] ==$ $== d \sim d > z z ['QCD'] ==$ $== d \sim d > z z ['QED'] ==$ == e+ e- > t t~ a ['QED'] == == e+ e- > t t~ g ['QED'] == == g b > t w- ['QED'] ==== g g > h h ['QCD'] ==== g g > t t~ ['QED'] == == g g > t t~ g ['QED'] == == g g > t t~ h ['QCD'] == == g g > t t~ h ['QED'] == == h h > h h ['QED'] ==== h h > h h h ['QED'] == $== t t \sim > w + w - ['QED'] ==$

== u b > t d ['QED'] == == u d~ > t b~ ['QED'] == == u g > t d b~ ['QED'] == == u u~ > a a ['QED'] == == u u~ > e+ e- ['OED'] == == u u~ > g a ['QCD QED'] == == u u~ > u u~ ['QCD QED'] ==== u u~ > u u~ a ['QCD QED'] == == u u~ > u u~ g ['QCD QED'] == $== u u \sim > w + w - ['QED'] ==$ == u u~ > z a ['QED'] == $== u u^{2} > z z ['QED'] ==$ $== u \sim d > w - z ['0CD'] ==$ $== u \sim d > w - z ['QED'] ==$ $== u \sim u > w + w - ['QCD'] ==$ $== u \sim u > w + w - ['QED'] ==$ $== u \sim u > z z ['QCD'] ==$ $== u \sim u > z z ['QED'] ==$ == ve ve~ > e+ e- ['OED'] == == w + w - > h h ['QED'] ==

Future development

- EFT : done but 4F operators (in progress)
 - any gauge
- UFO@NLO in Gosam (N. Greiner)
- DRED (asked by Gosam)
- UFO 2.0

Plan

- FeynRules in a nutshell
- BSM@NLO
 - Ingredients
 - How does it work?
- Examples :

. . .

- Charged Higgs production
- SUSY QCD

- Motivations :
 - needed for the LHC current and future runs
 - First searches in the high mass region
 - First searches in the threshold region
- 4F NLO fully differential matched with parton shower

C. Degrande

• Shape comparison with the 5F

H⁺ production : 4F vs 5F

C. D., M.Ubiali, M.Wiesemann and M.Zaro, JHEP 1510 (2015) 145

H⁺ production : 4F vs 5F

H⁺ production : 4F vs 5F

Only LO in 5F

H⁺ production : m_H~m_t

1607.05291 : C. D., R. Frederix ,V. Hirschi, M.Ubiali, M.Wiesemann and M.Zaro

CD, B. Fuks, V. Hirschi, J. Proudom and H. S. Shao, PLB 755, 82 (2016)

Full QCD sector of the MSSM

1600

More examples

- Squark and sgluon production [CD, B. Fuks, V. Hirschi, J. Proudom and H. S. Shao, PRD 91 (2015) no.9, 094005]
- GM [CD, K. Hartling, H. E. Logan, A. D. Peterson and M. Zaro, PRD 93 (2016) no.3, 035004]
- Heavy neutrino [CD, O. Mattelaer, R. Ruiz and J. Turner, arXiv: 1602.06957]
- Spin-2 (dim-5 operators) [G. Das, CD, V. Hirschi, F. Maltoni and H. S. Shao, arXiv:1605.09359]
- Top dim-6
 - FCNC [CD F. Maltoni, J. Wang and C. Zhang, PRD 91 (2015) 034024]
 - Pair prodution [D. Buarque Franzosi and C.Zhang, PRD 91 (2015) no.
 II, II4010]
 - tth [F. Maltoni, E.Vryonidou and C. Zhang, arXiv: 1607.05330]

Final remarks

- Automatic BSM@NLO
 - Renormalizable (Public)
- Pheno
 - Spin 2
 - Charged Higgs threshold
 - Top EFT

 Jointly by FeynRules and Madgraph_aMC@NLO teams

- $m_{H^{\pm}} = 200 \,\text{GeV}$ and $[m_{H^{\pm}} = 600 \,\text{GeV}]$
- $\tan \beta = 8$ **but** y_b^2, y_t^2 and $y_b y_t$

NNPDF2.3 at NLO/ NNPDF3.0 at LO with 4/5F

- $\alpha_s(M_Z) = 0.118 \text{ (5F)} \qquad \alpha_s(M_Z) = 0.1226 \text{ (4F)}$
- $m_b^{\text{pole}} = 4.75 \,\text{GeV}$ $m_t^{\text{pole}} = 172.5 \,\text{GeV}$ $\bar{m}_b(\bar{m}_b) = 4.3377 \,\text{GeV}$.

$$\mu_{R,F} = H_T/3 \equiv \frac{1}{3} \sum_i \sqrt{m(i)^2 + p_T(i)^2}$$

Anti-k_T $\Delta R = 0.4$ $p_T(j) \ge 25 \,\text{GeV}, \quad |\eta(j)| \le 2.5.$

Renormalization conditions
Jero momentum scheme available for the gauge couplings

$$\Gamma_{FFV}^{\mu}(p_{1},p_{2}) = igT^{a}\delta_{f_{1},f_{2}} \left[\gamma^{\mu} \left(\frac{\delta g}{g} + \frac{1}{2} \delta Z_{VV} + \frac{1}{2} \delta Z_{FF}^{R} + \frac{1}{2} \delta Z_{FF}^{L} + \frac{g'_{V}}{2g} \delta Z_{V'V} \right) + \gamma^{\mu}\gamma_{5} \left(\frac{1}{2} \delta Z_{FF}^{R} - \frac{1}{2} \delta Z_{FF}^{L} + \frac{g'_{A}}{2g} \delta Z_{V'V} \right) + \left(\gamma^{\mu}h^{V}(k^{2}) + \gamma^{\mu}\gamma_{5}h^{A}(k^{2}) + \frac{(p_{1}-p_{2})^{\mu}}{2m}h^{S}(k^{2}) + \frac{k_{\mu}}{2m}h^{P}(k^{2}) \right) \right]$$

$$\frac{\delta g}{g} + \frac{1}{2} \delta Z_{VV} + \frac{1}{2} \delta Z_{FF}^{R} + \frac{1}{2} \delta Z_{FF}^{L} + \frac{g'_{A}}{2g} \delta Z_{V'V} + h^{V}(0) + h^{S}(0) = 0$$

$$\frac{1}{2} \delta Z_{FF}^{R} - \frac{1}{2} \delta Z_{FF}^{R} + \frac{g'_{A}}{2g} \delta Z_{V'V} + h^{A}(0) = 0.$$
By gauge invariance
$$\frac{\delta g}{g} + \frac{1}{2} \delta Z_{VV} + \frac{g'_{V}}{2g} \delta Z_{V'V} + \frac{g'_{A}}{2g} \delta Z_{V'V} = 0$$

$$MS \text{ scheme for everything else (option for all)}$$

6'

How does it work?

FeynRules :

...

Lren = OnShellRenormalization[LSM , OCDOnly ->True]; WriteFeynArtsOutput[Lren , Output -> "SMrenoL", GenericFile -> False]

FeynArts / NLOCT :

WriteCT["SMrenoL/SMrenoL" [Lorentz", Output-> "SMQCDreno", QCDoniy -> True]

FeynRules : ... Get["SMQCDreno.nlo"]; WriteUFO[LSM , UVCounterterms -> UV\$vertlist , R2Vertices -> R2\$vertlist]

5 Flavours

- m_b=0 (but m_b^y>0)
- In the PDF
- In the running of α_s
- Handle collinear logarithms

4 Flavours

- m_b>0
- Not in the PDF
- Not in the running of α_s
- Contribution to b observable at LO

Type-II 2HDM
$$V_{t\bar{b}H^-} = -i\left(y_t P_R \frac{1}{\tan\beta} + y_b P_L \tan\beta\right) \qquad P_{R/L} = (1 \pm \gamma_5)/2$$
$$y_{t/b} \equiv \sqrt{2} \frac{m_{t/b}^y}{v}$$

$$\delta y_{t/b} = \sqrt{2} \frac{\delta m_{t/b}}{v} \qquad \underbrace{\text{On-shell sc.}}_{v} \quad \delta m_{t/b} = -\frac{g_s^2}{12\pi^2} m_{t/b} \left(\frac{3}{\bar{\epsilon}} + 4 - 6\log\frac{m_{t/b}}{\mu_R}\right)$$
$$\underbrace{\text{MS sc.}}_{\delta y_b} = -\frac{\sqrt{2}}{v} \frac{g_s^2 m_b^y}{4\pi^2 \bar{\epsilon}}$$

Input : -FR model -running of the b yukawa mass

Validation : -Comparison with S. Dittmaier, M. Kramer, M. Spira and M. Walser, PRD 83 (2011) 055005 -Recover ttH

Shower dependent in 5F

I Majorana gauge singlet (bino-like)

$$\mathcal{L}_{\text{decay}} = \frac{i}{2} \bar{\chi} \partial \!\!\!/ \chi - \frac{1}{2} m_{\chi} \bar{\chi} \chi + \sqrt{2} g' \Big[-\tilde{q}_L^{\dagger} Y_q (\bar{\chi} P_L q) + (\bar{q} P_L \chi) Y_q \tilde{q}_R + \text{h.c.} \Big]$$

$$\begin{aligned} \tilde{t}_L & \longrightarrow \\ \tilde{t}_R \\ \tilde{t}_R \end{aligned} \rightarrow \begin{pmatrix} \tilde{t}_L \\ \tilde{t}_R \end{pmatrix} + \frac{1}{2} \begin{pmatrix} \delta Z_{\tilde{t}_L} & \delta Z_{\tilde{t}, \text{LR}} \\ \delta Z_{\tilde{t}, \text{RL}} & \delta Z_{\tilde{t}_R} \end{pmatrix} \begin{pmatrix} \tilde{t}_L \\ \tilde{t}_R \end{pmatrix} t \qquad \delta \mathcal{L}_{\text{off}} = -\delta m_{\tilde{t}, \text{LR}}^2 (\tilde{t}_L^{\dagger} \tilde{t}_R + \tilde{t}_R^{\dagger} \tilde{t}_L) \end{aligned}$$

Zero-momentum for the massive d.o.f.

$$\begin{split} \frac{\delta\alpha_s}{\alpha_s} &= \frac{\alpha_s}{2\pi\bar{\epsilon}} \left[\frac{n_f}{3} - \frac{11n_c}{6} \right] + \frac{\alpha_s}{6\pi} \left[\frac{1}{\bar{\epsilon}} - \log\frac{m_t^2}{\mu_R^2} \right] \\ &+ \frac{\alpha_s n_c}{6\pi} \left[\frac{1}{\bar{\epsilon}} - \log\frac{m_{\tilde{g}}^2}{\mu_R^2} \right] + \frac{\alpha_s}{24\pi} \sum_{\tilde{q}} \left[\frac{1}{\bar{\epsilon}} - \log\frac{m_{\tilde{q}}^2}{\mu_R^2} \right] \end{split}$$

Finite CT to remove SUSY artificial breaking

Validation : Comparison with Prospino (degenerate spectrum)

$$m_{\tilde{t}_R} = 17 \text{TeV}, \quad m_{\tilde{t}_L} = 16 \text{TeV}, \quad m_{\tilde{q}_{R/L}} = 15 \text{TeV}$$

No resonant squark

$m_{\tilde{g}} \; [\text{GeV}]$	$\sigma^{\rm LO} \ [{\rm pb}]$	$\sigma^{\rm NLO} \ [{\rm pb}]$
200	$2104^{+30.3\%}_{-21.9\%}{}^{+14.0\%}_{-14.0\%}$	$3183^{+10.8\%}_{-11.6\%}{}^{+1.8\%}_{-1.8\%}$
500	$15.46^{+34.7\%}_{-24.1\%}{}^{+19.5\%}_{-19.5\%}$	$24.90^{+12.5\%}_{-13.4\%}{}^{+3.7\%}_{-3.7\%}$
750	$1.206^{+35.9\%}_{-24.6\%}{}^{+23.5\%}_{-23.5\%}$	$2.009^{+13.5\%}_{-14.1\%}{}^{+5.5\%}_{-5.5\%}$
1000	$1.608 \cdot 10^{-1+36.3\%+26.4\%}_{-24.8\%-26.4\%}$	$2.743 \cdot 10^{-1+14.4\%}_{-14.8\%}{}^{+7.3\%}_{-7.3\%}$
1500	$6.264 \cdot 10^{-3+36.2\%+29.4\%}_{-24.7\%-29.4\%}$	$1.056\cdot 10^{-2+16.1\%}{}^{+11.3\%}_{-15.8\%}{}^{+11.3\%}_{-11.3\%}$
2000	$4.217 \cdot 10^{-4+35.6\%+29.8\%}_{-24.5\%-29.8\%}$	$6.327 \cdot 10^{-4+17.7\%}_{-16.6\%}^{+17.8\%}_{-17.8\%}$