Beam-Beam Effects and Luminosity Optimization for e+e- Colliders at High Energies

Dmitry Shatilov

BINP, Novosibirsk, Russia

IHEP-BINP CEPC Accelerator Collaboration Workshop Beijing, 12 January 2016

Outline

Luminosity

Beamstrahlung lifetime

 \Box Optimization of β_{y}^{*}

□ Bunch lengthening and impact of hour-glass

Crab Waist collision scheme

 \Box Flip-flop at high and low energies, optimization of β_x^*

G Summary

Luminosity

For flat beams (both head-on and crossing angle collision):

$$L = \frac{\gamma}{2er_e} \cdot \frac{I_{tot}\xi_y}{\beta_y^*} \cdot R_H \quad \propto \quad \frac{\xi_y}{\beta_y^*}$$

- I_{tot} total beam current (defined by SR power, e.g. 50 MW)
- ξ_{v} vertical betatron tune shift, its limit depends on the collision scheme
- R_H hour-glass factor: $R_H \approx [0.86, 0.71, 0.60]$ for $L_i / \beta_y^* = [1, 2, 3]$
- L_i length of the interaction area:

$$L_i = \frac{\sigma_z}{\sqrt{1+\phi^2}}$$
 $\phi = \frac{\sigma_z}{\sigma_x} tg\left(\frac{\theta}{2}\right)$ – Piwinski angle

 β_{y}^{*} should be minimized, but there are restrictions:

- Beta-function at the final quads raises as $1/\beta_y^*$, that affects dynamic aperture and creates problems with chromaticity corrections.
- L_i should be squeezed to $L_i \sim \beta_y^*$. On the other hand, too short L_i may cause problems with beamstrahlung lifetime.

When performing optimizations, we do not care about the bunch population N_p and the number of bunches N_b . Namely, N_p is adjusted according to beam-beam limit, and it defines N_b (since the total beam current I_{tot} is fixed).

Beamstrahlung

At very high energies, the luminosity is limited by the beamstrahlung lifetime:

$$\tau_{bs} \propto \exp\left(\frac{2\alpha\eta\rho}{3r_e\gamma^2}\right) \cdot \frac{\rho\sqrt{\eta\rho}}{L_i\gamma^2}$$

 α – fine structure constant

 η – energy acceptance

ho – average bending radius of particle's trajectory at the IP

Obviously, the major tool for reducing the negative effect of beamstrahlung is making ρ larger. For flat beams, ρ is inversely proportional to the surface charge density:

$$\frac{1}{\rho} \propto \frac{N_p}{\gamma \sigma_x \sigma_z} \propto \frac{\xi_y}{L_i} \sqrt{\frac{\varepsilon_y}{\beta_y^*}} \propto L \cdot \sqrt{\frac{\varepsilon_y}{\beta_y^*}}$$

The last transformation is based on assumption that $L_i \sim \beta_y^*$. We want to increase the luminosity *L* while keeping the lifetime (and therefore ρ) large enough. It follows that:

 The vertical emittance (i.e. both the betatron coupling and the horizontal emittance) should be minimized.

• β_y^* (together with L_i) should be *maximized*! What does it mean? Increase of β_y^* by a factor *k* may result in luminosity gain by $k^{1/2}$ (with ρ unchanged), but ξ_y will grow by $k^{3/2}$. *We can do this until* ξ_y *remains below the beam-beam limit.*

What is the optimum β_{v} ?

The general rule for optimization: *if there are multiple limiting factors, optimum performance happens when all limits are reached simultaneously*.

In our case it means that β_y^* (together with L_i) should be adjusted in such a way that both τ_{bs} and ξ_y achieve their limits.

It follows that shifting the balance towards "limit by the beamstrahlung lifetime" (e.g. decrease of η , increase of \mathcal{E}_{y} and γ) will require increase of L_{i} (together with β_{y}^{*}), and vise versa.

Example: E = 175 GeV, η = 0.02, \mathcal{E}_v = 2.6 pm => $\beta_v^* \approx$ 2 mm

At "low" energies (80, 45.5 GeV) τ_{bs} allows to squeeze β_y^* below 1 mm; then we reach another limitation: lattice of IR, chromaticity correction and DA require $\beta_y^* \ge 1$ mm.

On the other hand, bunch lengthening due to beamstrahlung becomes significant **at** low energies. We need crossing angle, if we want to keep β_v^* small (about 1 mm).

Impact of Hour-glass: Tune shift

FMA footprints in the plane of betatron tunes, synchrotron amplitude: $A_s = 1$ sigma. Parameters as for TLEP Z from FCC-ACC-SPS-0004, $\xi_x \approx \xi_y \approx 0.03$ (nominal).

Impact of Hour-glass vs. Damping

Contour plots of equilibrium distribution in the space of normalized betatron amplitudes. Density between successive contour lines decreases by a factor of *e*.

Crab Waist Scheme

$\phi = \frac{\sigma_z}{\sigma} tg\left(\frac{\theta}{2}\right) - \text{Piwinski angle}$

P. Raimondi, 2006

1) Large Piwinski angle: $\phi >> 1$

2) $\beta_{\rm y}$ approx. equals to overlapping area: $\beta_{\rm y} \approx \sigma_z / \phi$

3) Crab Waist: minimum of β_{v} along the axis of the opposite beam

Advantages:

- ✓ Impact of hour-glass is small and does not depend on bunch lengthening
- ✓ Suppression of betatron coupling resonances allows to achieve $\xi_v \sim 0.2$

As a result, luminosity can be significantly increased!

FCC-ee @175 GeV, Different Collision Schemes

Collision scheme	Head-on	30 mrad	Crab Waist
N _p	1.8·10 ¹¹	2.1·10 ¹¹	2.2·10 ¹¹
N _b	66	57	54
σ_z / σ_{zbs} [mm]	2.41 / 2.80	2.41 / 2.87	2.41 / 2.89
v_x / v_y	0.56 / 0.61	0.54 / 0.57	0.54 / 0.57
$\Delta v_x / \Delta v_y$	0.126 / 0.141	0.056 / 0.084	0.057 / 0.092
L [cm ⁻² s ⁻¹]	1.35·10 ³⁴	1.06·10 ³⁴	1.23·10 ³⁴
τ _{bs} [min]	30	30	30
Density contour plots $10\sigma_x \times 20\sigma_y$			

Flip-Flop @ 175 GeV (30 mrad, crab waist)

triggered by asymmetry in bunch currents and beamstrahlung bunch lengthening

Asymmetry	10 %		15 %	
Bunch	"strong"	"weak"	"strong"	"weak"
σ_{zbs} [mm]	2.68	3.06	2.62	3.11
L [cm ⁻² s ⁻¹]	1.09·10 ³⁴		1.02·10 ³⁴	
τ_{bs} [min]	~900	5	> 3000	3
Density contour plots 10σ _x × 20σ _y				

To work at the maximum luminosity, the bunch currents asymmetry must be < 10%.

Flip-Flop @ Low Energies

Summary

- Crab Waist collision scheme provides higher luminosity than head-on, especially at "low" energies (80, 45.5 GeV).
- Beamstrahlung is one of the most important factors that affect the collider performance. At "high" energies (175, 120 GeV) this is manifested mainly in limiting the lifetime; at "low" energies (80, 45.5 GeV) – in the bunch lengthening.
- Flip-flop instability, which is enhanced by the bunch lengthening due to beamstrahlung, also may limit the luminosity.
- The general recipe to reduce beamstrahlung: decrease of N_p, therefore increase of N_b and decrease of emittances.
- At "high" energies (175, 120 GeV) β_y^* (together with L_i) should be optimized in order to reach both beam-beam and beamstrahlung limits simultaneously. At "low" energies (80, 45.5 GeV) β_y^* is limited by the lattice of IR and DA.
- To avoid flip-flop instability, β_x^* (which is proportional to ξ_x when $\phi >> 1$) should be reduced.
- The whole optimization process is rather complicated and should be performed with the help of beam-beam simulations in strong-strong (or quasi-strong-strong) model.