VBF Theoretical Systematics

Yaquan Fang (IHEP), Jin Wang (USYD), Yu Zhang (IHEP)

2016/2/16

IHEP Weekly Meeting

1

Theoretical systematics in VBF analysis

- Higher-order perturbative correction uncertainty for ggF
 - missing higher-order perturbative corrections to the ggF prediction
- Modelling uncertainties of the $\Delta \eta^*$
 - Powheg+Pythia8 shape of the $\Delta \eta^*$ variable different with MCFM
 - reweight function using truth jet distribution (MCFM/nominal)
- Modelling uncertainties of $\Delta \phi_{ii}$
 - Powheg+Pythia8 shape of $\Delta \phi_{ii}$ different with the prediction from Sherpa
 - reweight function using truth $\Delta \phi_{ii}$ (Sherpa/nominal)
- Underlying event uncertainty
 - comparing the samples with the multi-parton interaction (MPI) and without any MPI
 - reweight function using truth $\Delta \phi_{\gamma\gamma,jj}$ (no-MPI/nominal)

ggF Higher-order perturbative correction uncertainty

- Vary the scale between mH=2 to 2mH to evaluate the uncertainty
 - use Stewart-Tackmann method
 - ${\ensuremath{\circ}}$ differential cross section covariance matrix in 29 bins of $\Delta\phi_{\gamma\gamma,jj}$ generated using MCFM at NLO
 - uncert_i*corr(i,j)*uncert_j gives uncertainty
 - the covariance between the total cross section, the exclusive 2 jet cross section (= the cumulant), and the inclusive 3 jet cross section (= the inverted cumulant) are fully determined
 - the cumulant uncertainties are translated into differential uncertainties in $\Delta \phi_{\gamma\gamma,jj}$
 - $\Delta \phi_{\gamma\gamma,jj}$ is binned up for > 2.94 to avoid the highest uncertainty and negative cross section
 - ${\small \bullet}~$ need to find the $\Delta\phi_{\gamma\gamma,jj}$ region with current BDT cuts
 - find the effective 95% rectangular cuts of the final BDT selection to see in what region of phase space it is homing in

Output of Florian's code

4

int main() { Str config="uncertainty_input/ggF_dphi_theory_ATLASjetsel_mjj400_DeltaEta28.config"; ScaleUncertainty_ggF_2jets ggF_theory(config); ScaleUncertainty_ggF_2.jets ggF_theory28(config); ScaleUncertainty_99F_2jets g9F_theory295(config); ggF_theory.DrawVariable(); Info in <TCanvas::Print>: pdf file DeltaPhi_Hjj.pdf has been created // now calculate the theory uncertainty for an inclusive selection TString fn="macro/PowhegPythia8_ggF_mH125.root"; Created plot of DeltaPhi_{H,jj} and saved as DeltaPhi_Hjj.pdf TFile *inf = TFile::Open(fn): if (inf==NULL||inf->IsZombie()) { cout<<"Cannot open "<<fn<<endl; abort(); } Will loop over 19174 ggF+2jet Pythia events and calculate uncertainty TTree *tree = (TTree*)inf->Get("EvtTree"); if (tree==NULL) { cout<<"Cannot access EvtTree in "<<fn<<endl; abort(); } Done looping! // SIGNED dphi Theory uncertainty without any cuts: 21.036% Float_t dphi_H_jj=0, Mjj=0, DelEta_jj=0; double pi=TMath::Pi(); Theory uncertainty for DeltaPhi(H,jj)>2.6: 28.798% tree->SetBranchAddress("DelPhi_ggjj", &dphi_H_jj); tree->SetBranchAddress("Mjj", &Mjj); Theory uncertainty for DeltaPhi(H,jj)>2.8: 42.237% tree->SetBranchAddress("DelEta_jj", &DelEta_jj); Theory uncertainty for DeltaPhi(H,jj)>2.95: 74.983% int Nevts=tree->GetEntries(); printf("\nWill loop over %d ggF+2jet Pythia events and calculate uncertainty\n",Nevts); Done. vector<double> all, cut_at_28, cut_at_25, cut_at_26, cut_at_295; for (int ievt=0;ievt<Nevts;++ievt) {</pre> tree->GetEntry(ievt); double pi_minus_dphi=pi-fabs(dphi_H_j); all.push_back(pi_minus_dphi); ggF_theory.AddEventBeforeCuts(pi_minus_dphi); ggF_theory28.AddEventBeforeCuts(pi_minus_dphi); ggF_theory295.AddEventBeforeCuts(pi_minus_dphi); if (Mjj<400) continue; if (fabs(DelEta_jj)<2.8) continue; if (fabs(dphi_H_jj)>2.6) ggF_theory.AddEventAfterCuts(pi_minus_dphi); if (fabs(dphi_H_jj)>2.8) ggF_theory28.AddEventAfterCuts(pi_minus_dphi); if (fabs(dphi_H_jj)>2.95) ggF_theory295.AddEventAfterCuts(pi_minus_dphi); printf("Done looping!\n\n");

IHEP Weekly Meeting

Suggestions for early VBF theoretical uncertainties

- Get uncertainties for $\Delta \eta^*$, $\Delta \phi_{ij}$ and underlying event using corresponding 8TeV reweighting functions
 - maybe update with 13TeV MCFM, Sherpa and no-MPI samples when available
- Using Florian's code and $\Delta \phi_{\gamma\gamma,jj}$ region in 13TeV MVA for estimation of higher-order perturbative correction uncertainty for ggF
 - re-evaluate using 13TeV covariance matrix and 13TeV Powheg+Pythia samples in future