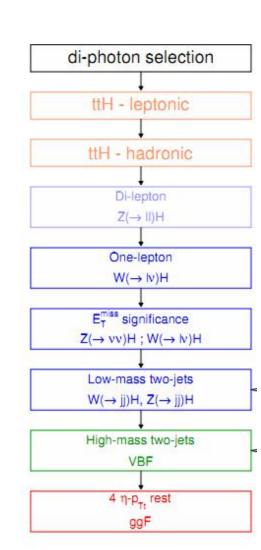
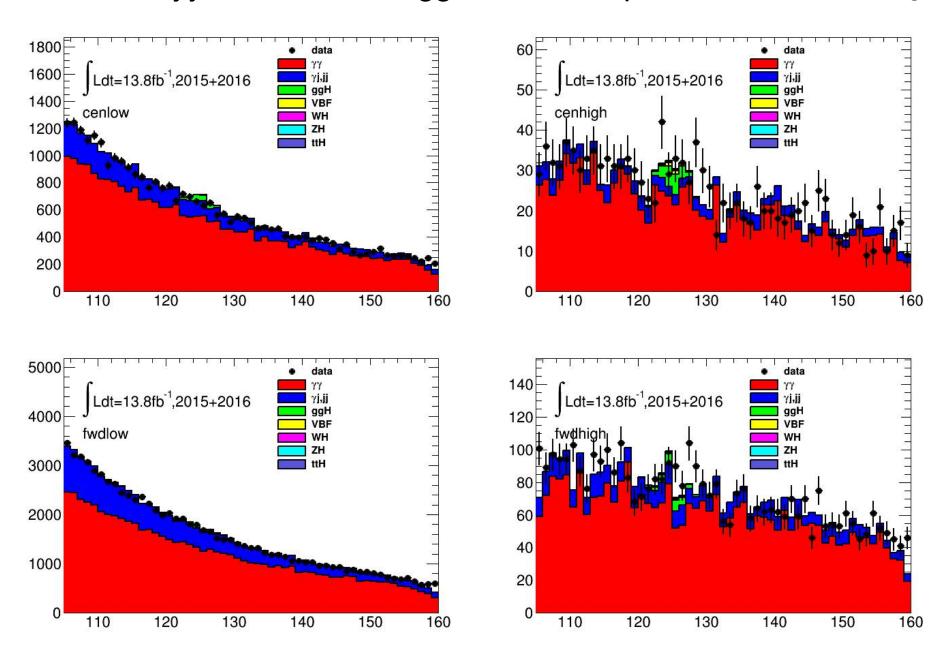
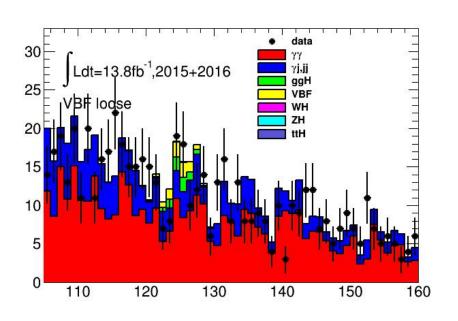
weekly report

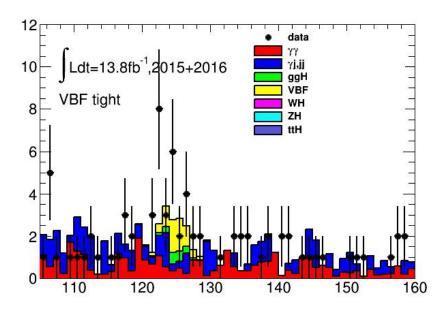

- Analysis towars ICHEP
 - HGam Coupling
 - 3.2(2015) + 10.06(2016 toroid on)
 - High Mass Diphoton
 - 3.2(2015) + 10.9(2016 toroid off)

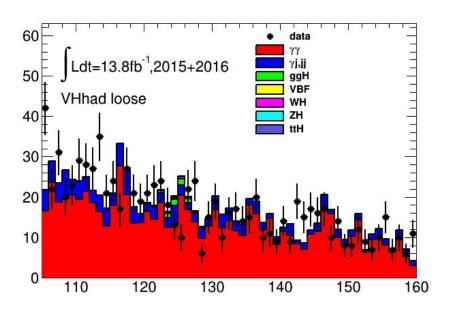
HGam Coupling

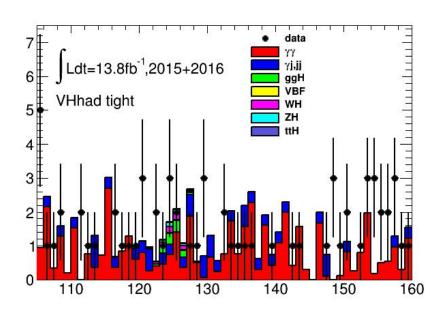
- aim to measure signal strength : $\mu = \sigma_{obs}/\sigma_{SM}$ in each ProdMode
- a combined CONF note with Cross Section Group
- My Contribution
 - VBF optimization
- ATLAS Approval this Wednesday

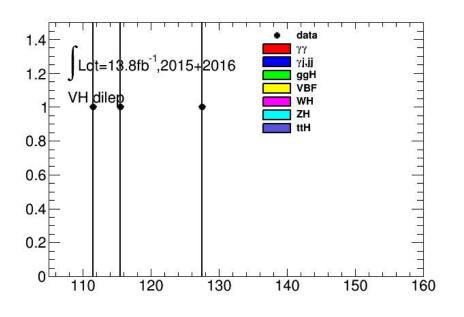

Index	Category	Selection
13	ttH lep	$N_{lep} \ge 1$, $N_{jets} \ge 2$, $N_{tags} \ge 1$ ($ \eta < 2.5$, $p_T > 25$ GeV) $ m_{e\gamma} - 89$ GeV > 10 GeV, $ m_{\ell\ell} - 91$ GeV > 10 GeV, $E_T^{miss} > 20$ GeV or $N_{tags} \ge 2$
12	ttH had	$N_{lep} = 0$, $N_{jets} \ge 5$, $N_{tags} \ge 1$ ($ \eta < 2.5$, $p_T > 30$ GeV)
11	VH dilep	$N_{lep} \ge 2$, 70 GeV $\le m_{\ell\ell} \le 110$ GeV, $N_{tags} = 0$
10	VH lep	$N_{lep} = 1$, $N_{jets} < 5$, $N_{tags} = 0$, E_T^{miss} significance > 4.5
9	VH MET	$p_{T\gamma\gamma} > 90 \text{ GeV}, E_T^{\text{miss}} \text{ significance} > 7$
8	VH had tight	50 GeV < m _{jj} < 150 GeV, BDT > 0.56
7	VH had loose	50 GeV < m _{jj} < 150 GeV, 0.2 < BDT < 0.56
6	VBF tight	$\Delta \eta_{jj} > 2$, $\eta^{Zeppenfeld} < 5$, BDT > 0.88
5	VBF loose	$\Delta \eta_{jj} > 2$, $\eta^{Zeppenfeld} < 5$, 0.61 < BDT < 0.88
4	ggH forward high pTt	remaining events, one photon w/ $ \eta > 0.95$, $p_{Tt} > 70 \text{ GeV}$
3	ggH forward low pTt	remaining events, one photon w/ $ \eta > 0.95$, $p_{Tt} \le 70 \text{ GeV}$
2	ggH central high pTt	remaining events, two photons $w/ \eta \le 0.95$, $p_{Tt} > 70 \text{ GeV}$
1	ggH central low pTr	remaining events, two photons $w/ \eta \le 0.95$, $p_{Tt} \le 70 \text{ GeV}$

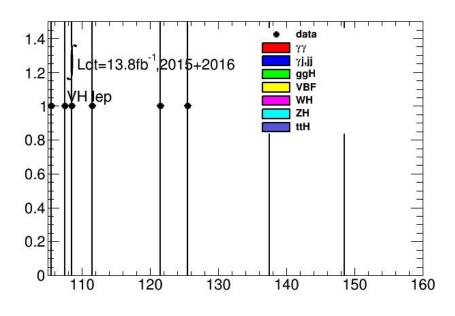

Table 23: Table detailing index and event selection defining each category.

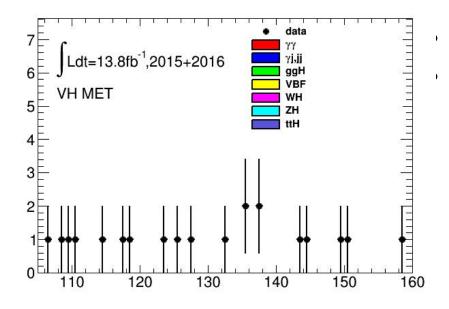



Signal and Bkg modelling

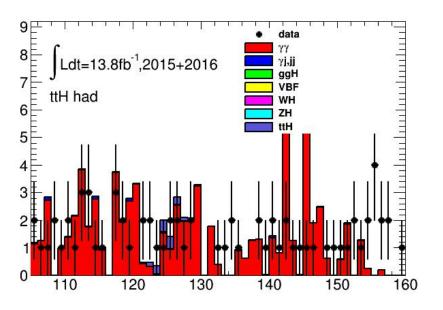

- Signal
 - Double Side Crystal Ball
 - fix mh=125.09GeV
- Bkg
 - bkg decomposition : data driven
 - diphoton MC plus CR(γj,jj)
 - spurious signal used to validate the bkg function
- Statistic interpretation
 - plan to take part in , μ uncertainty, upper limit, significance
 - post-ICHEP
- Many contributions from Chinese group
 - Yanping Huang and Cong Peng (VH had, IHEP)
 - Zirui Wang (VH non-had, SJTU)
 - Huijun Zhang (Pdf uncerntainty, SS, NJU)

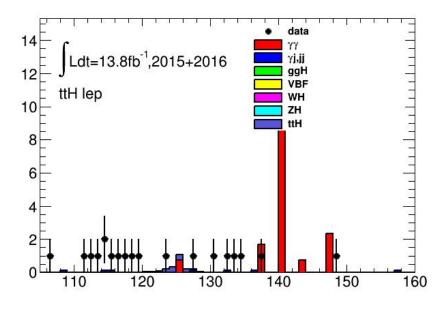






VH non-had





- low statistic in both data and MC bkg decompostion is not well described
 - Vγ and Vγγ are not included

ttH lep and had

MC statistic is low in ttH Cat

$$\mu = 0.85^{+0.24}_{-0.22} = 0.85^{+0.21}_{-0.21} (\text{stat.})^{+0.14}_{-0.09} (\text{syst.})^{+0.06}_{-0.03} (\text{theory})$$

$$\mu_{ggH} = 0.53^{+0.33}_{-0.31} = 0.53^{+0.31}_{-0.31} (\text{stat.})^{+0.12}_{-0.07} (\text{syst.})^{+0.06}_{-0.01} (\text{theory})$$

$$\mu_{VBF} = 2.10^{+0.89}_{-0.79} = 2.10^{+0.84}_{-0.76} (\text{stat.})^{+0.29}_{-0.22} (\text{syst.})^{+0.08}_{-0.04} (\text{theory})$$

$$\mu_{VH} = 1.07^{+1.76}_{-1.21} = 1.07^{+1.69}_{-1.20} (\text{stat.})^{+0.52}_{-0.13} (\text{syst.})^{+0.09}_{-0.01} (\text{theory})$$

 $\mu_{t\bar{t}H} = -0.24^{+1.70}_{-1.30} = -0.24^{+1.65}_{-1.28} \text{ (stat.)} ^{+0.43}_{-0.27} \text{ (syst.)} ^{+0.11}_{-0.14} \text{ (theory)}$

$$\mu = 0.85^{+0.24}_{-0.22} = 0.85^{+0.21}_{-0.21} (stat.) ^{+0.14}_{-0.09} (syst.) ^{+0.06}_{-0.03} (theory)$$

$$m_H = 125.06^{+0.80}_{-0.79} \text{ GeV} = (125.06^{+0.58}_{-0.58} (stat.) ^{+0.54}_{-0.54} (syst.)) \text{ GeV}$$

$$\mu_{ggH} = 0.51^{+0.33}_{-0.32} = 0.51^{+0.32}_{-0.31} (stat.) ^{+0.12}_{-0.07} (syst.) ^{+0.06}_{-0.01} (theory)$$

$$\mu_{VBF} = 2.14^{+0.89}_{-0.79} = 2.14^{+0.84}_{-0.77} (stat.) ^{+0.28}_{-0.19} (syst.) ^{+0.08}_{-0.04} (theory)$$

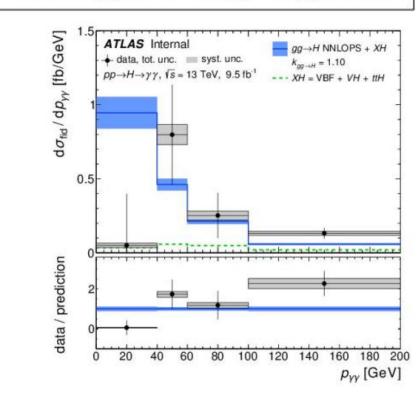
$$\mu_{VH} = 1.11^{+1.89}_{-1.28} = 1.11^{+1.84}_{-1.27} (stat.) ^{+0.48}_{-0.12} (syst.) ^{+0.11}_{-0.02} (theory)$$

$$\mu_{t\bar{t}H} = -0.33^{+1.67}_{-1.24} = -0.31^{+1.64}_{-1.22} (stat.) ^{+0.22}_{-0.25} (syst.) ^{+0.11}_{-0.14} (theory)$$

$$m_H = 124.74^{+0.76}_{-0.75} \text{ GeV} = (124.74^{+0.54}_{-0.52} (stat.) ^{+0.54}_{-0.54} (syst.)) \text{ GeV}$$

Mass fixed

Run1 result


$$\mu_{ggH} = 1.32^{+0.32}_{-0.32}(stat.) \begin{array}{l} +0.23_{-0.15}(syst.) \\ -0.15_{-0.15}(syst.) \end{array}$$

$$\mu_{VBF} = 0.78^{+0.72}_{-0.63}(stat.) \begin{array}{l} +0.30_{-0.29}(syst.) \\ -0.29_{-0.29}(syst.) \end{array}$$

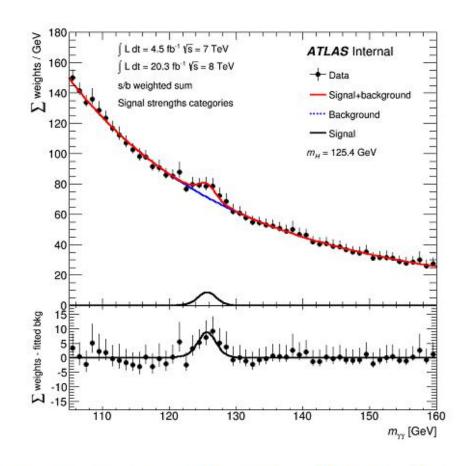
$$\mu_{WH} = 0.97^{+1.64}_{-1.46}(stat.) \begin{array}{l} +0.36_{-0.17}(syst.) \\ -0.17_{-0.17}(syst.) \end{array}$$

$$\mu_{ZH} = 0.13^{+3.62}_{-0.13}(stat.) \begin{array}{l} +0.64_{-0.00}(syst.) \\ -0.00_{-0.36}(syst.) \end{array}$$

$$\mu_{ttH} = 1.55^{+2.62}_{-1.75}(stat.) \begin{array}{l} +0.79_{-0.36}(syst.) \\ -0.36_{-0.36}(syst.) \end{array}$$

Run1 result, 20.3fb-1

- weighted by signal-bkg ratio
- Compatible with Run2?

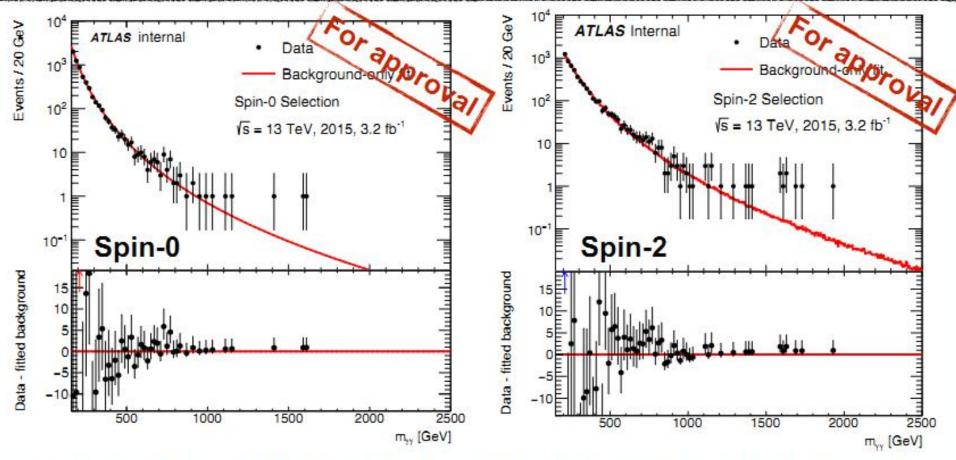

$$\mu_{ggH} = 1.32^{+0.32}_{-0.32}(stat.) \begin{array}{l} +0.23_{-0.15}(syst.) \\ -0.15_{-0.15}(syst.) \end{array}$$

$$\mu_{VBF} = 0.78^{+0.72}_{-0.63}(stat.) \begin{array}{l} +0.30_{-0.29}(syst.) \\ -0.29_{-0.29}(syst.) \end{array}$$

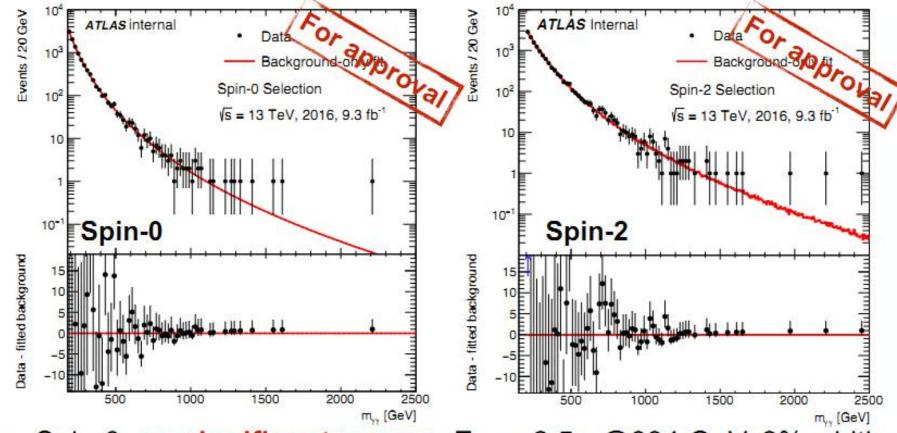
$$\mu_{WH} = 0.97^{+1.64}_{-1.46}(stat.) \begin{array}{l} +0.36_{-0.17}(syst.) \\ -0.17_{-0.17}(syst.) \end{array}$$

$$\mu_{ZH} = 0.13^{+3.62}_{-0.13}(stat.) \begin{array}{l} +0.64_{-0.00}(syst.) \\ -0.00_{-0.00}(syst.) \end{array}$$

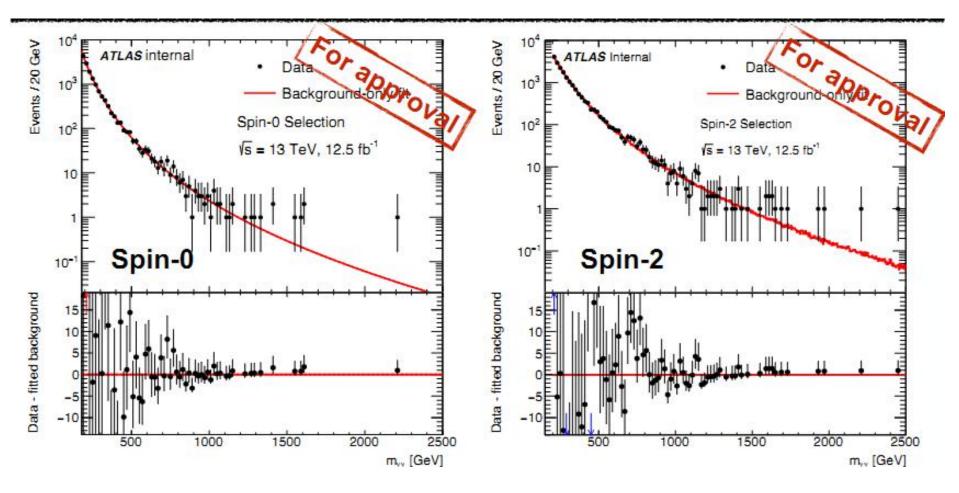
$$\mu_{ttH} = 1.55^{+2.62}_{-1.75}(stat.) \begin{array}{l} +0.79_{-0.36}(syst.) \\ -0.36_{-0.36}(syst.) \end{array}$$

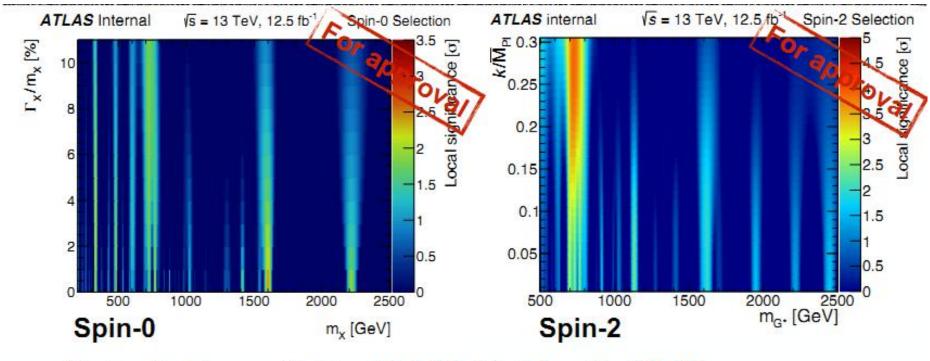

The results of 2011+2012 global signal strength measurement fit to $m_H = 125.4$ GeV is:

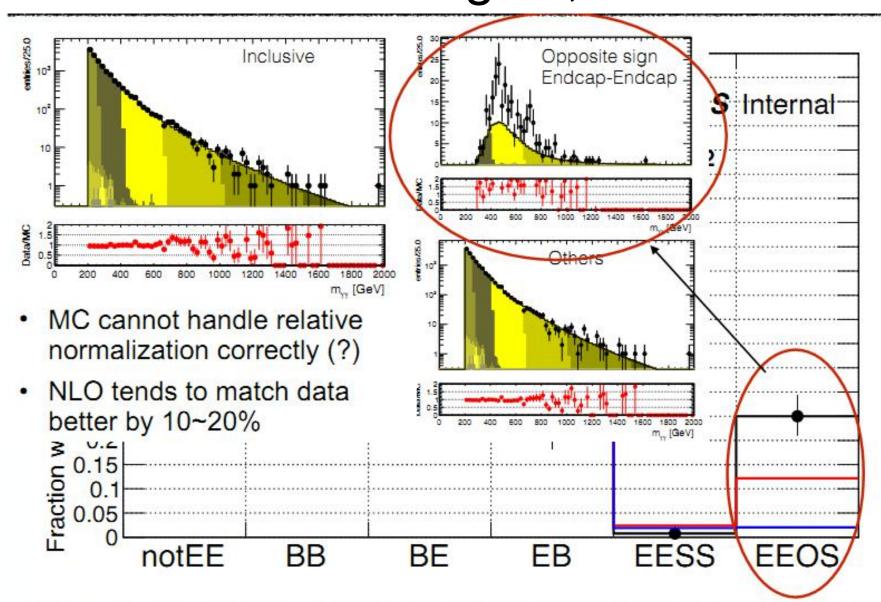
$$\mu = 1.17^{+0.28}_{-0.26} = 1.17^{+0.23}_{-0.23}(stat.)^{+0.10}_{-0.08}(syst.)^{+0.12}_{-0.08}(theory)$$


High Mass diphoton (750GeV)

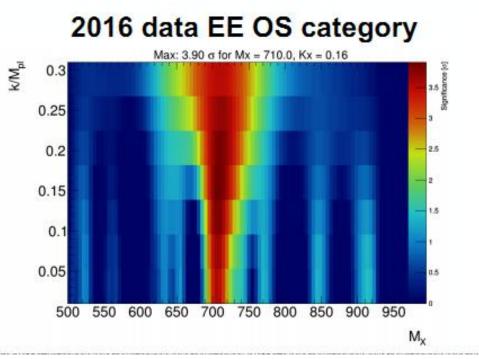
- ATLAS approval last Friday
 - spin0 is approved
- another discussion this Friday
 - focus on spin2, especially EEos and low pT, show later
- tomorrow a talk on bkg estimationi in high mass diphton
 - interpretation in SM model
- Ooutline
 - Isolation and Purity
 - Analysis : Signal and Bkg model
 - Result
- Copy from Hongtao's approval talk!

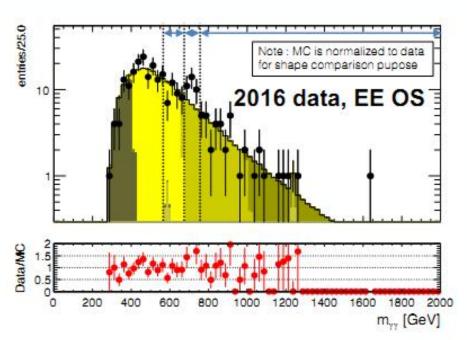

2015 re-analysis, update


- Spin-0: 3.9σ @750 GeV, Γ_X/m_X=6%→3.4σ @734 GeV, Γ_X/m_X=8%
- Spin-2: 3.8σ @750 GeV, k/M_{Pl}=0.23→3.3σ @740 GeV, k/M_{Pl}=0.30
- Changes from Rel. 20.1 to Rel. 20.7 understood (see analysis internal note). No obvious tension between two set of results

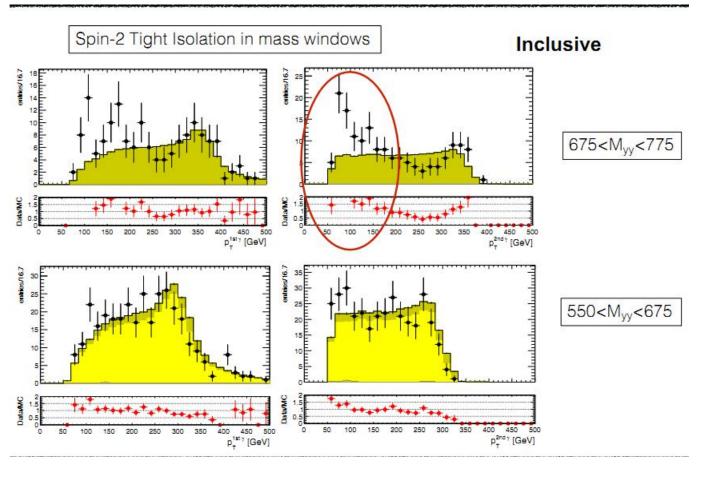

- Spin-0: no significant excess. Z_{max.}=2.5σ @334 GeV, 2% width
 - Between 700 and 800 GeV: Z_{max.}=1.5σ @776 GeV with NWA
- Spin-2: Z_{max.}=3.0σ @700 GeV with k/M_{Pl}=0.04
 - Excess has been increasing with luminosity in 2016

2015+2016 2D p0

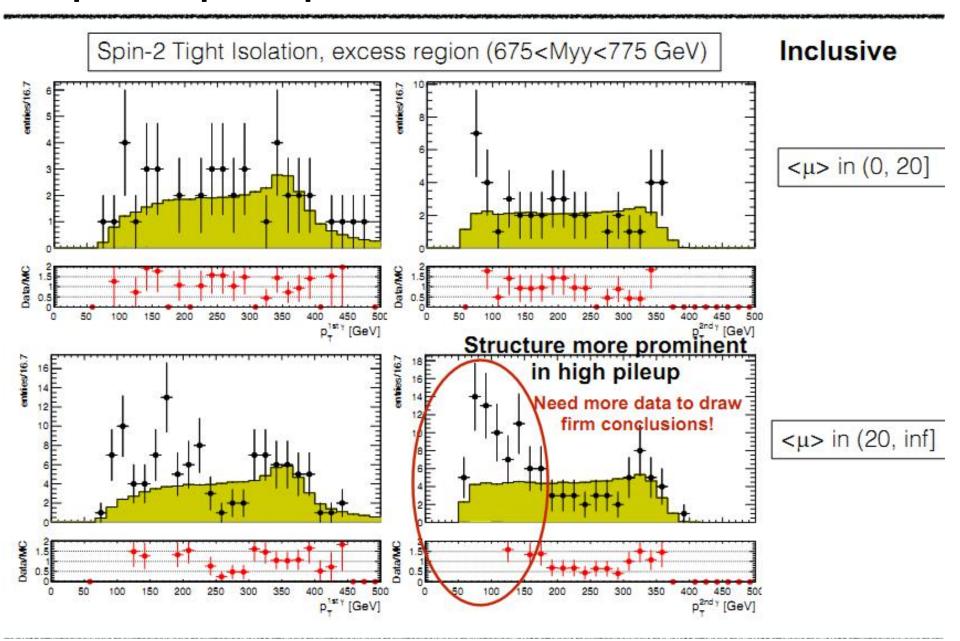

- Spin-0: Z_{max.}=2.5σ @486 GeV with NWA
 - Between 700 and 800 GeV: 2.2σ @772 GeV with NWA
- Spin-2: Z_{max.}=3.9σ @720 GeV with k/M_{Pl}=0.28.
 Global significance 2.2σ
 - Cross checks on the excess will be discussed later



Will normalize MC to data in the category in the following discussion


excess region

- Excess in 2016 data keeps increasing with luminosity so far
- Excess largely from ECal Endcap-Endcap (EE)
- No strong evidence that excess region is affected by fake photon: shower shapes and isolation variables more close to real photon
- Excess seems to be enhanced at high pileup
- Excess region seems having softer (subleading) photon E_T



excess region

- obviously, low pT and EEos is correlated
- people feel this region is dangerous in this low pT EEos region, due to large pile up

pile up dependence---no conlusion 19

Summary

- SM Higgs
 - work on statistic
 - spin/parity?
- X(750)->γγ
 - devote more time?
- WW(jjjj)γγ
 - yy+>=3jets