Echo Tomography of Black Hole Accretion Flows with application to NGC 5548

Keith Horne SUPA/StAndrews

Lijiang, China 24 Oct 2016 Echo Mapping Methods Continuum reverberations BLR reverberations Tilted inner disks ?

CCF Lags => BLR sizes

AGN STORM HST PROGRAM

Mean lags relative to 1367 Å continuum

Ly a	6.19 ± 0.27 days
Si IV	5.44 ± 0.70 days
C IV	5.33 ± 0.46 days
He II	2.50 ± 0.33 days

Cross-correlation lags

< τ > ~ R / c => radius R of emission-line region

De Rosa et al, 2015

Keith Horne, SUPA St Andrews

Beyond CCF lags: Echo Tomography

Light travel time delay τ "slices up" the region on iso-delay paraboloids. => micro-arcsec resolution.

2D: Velocity-Delay Maps $\Psi(v, \tau)$

Keith Horne, SUPA St Andrews

MEMEcho fits Lightcurves => Delay Maps : $\Psi(\tau)$

Maximum Entropy Trajectory

Trajectory in parameter space, where $\nabla \chi^2 \propto \nabla S$, parameterised by α .

2014 STORM Campaign NGC 5548

STORM = Space Telescope and Optical Reverberation Mapping PI: Brad Peterson

Published or submitted :

- I: HST-COS observations De Rosa+ 2015 ApJ 806:128
- II: Swift-HST continuum observations.- Edelson+ 2015 ApJ 806:129
- III: Continuum interband lags, FUV through z Fausnaugh+ 2016 ApJ 821:56
- IV : Anomalous behavior of UV emission lines Goad+ 2016 ApJ 824:1
- V: Optical emission line variations submitted, Pei+
- VI: Accretion disk modeling submitted, Starkey+

In progress or planned :

Heuristic models of the UV emission lines – Kriss+

Chandra X-ray observations – Mathur+

Velocity-delay maps - Horne+

Dynamical modeling – Pancoast+

Absorption line variations – Kriss+

Photoionization modeling – TBD

NIR and *Spitzer* observations – TBD

Keith Horne, SUPA St Andrews

STORM Campaign NGC 5548 C IV Variations

Keith Horne, SUPA St Andrews

HST : Mean and RMS Spectra Line and Contuum Lightcurves

PrepSpec Analysis of HST data from *De Rosa et al,2015*.

Continuum Echo Mapping : T(R) profiles of Accretion Disks

- Measure the time delay spectrum $\tau(\lambda)$
- To find the disk temperature profile T(R)
- Test disk models: T ~ (M Mdot)^{1/4} R^{-3/4}
- Measure Mass x Accretion Rate (M Mdot)
- Quasar Distances ?

Keith Horne, SUPA St Andrews

Lightcurves => Delay Spectrum

UV (1150 A)

UV lightcurves (HST, Swift) Optical lightcurves (LCO+LT+... many telescopes) Cross-correlate to find time delay vs wavelength.

Fausnaugh et al. 2016

Keith Horne, SUPA St Andrews

Blackbody Disk Delay Maps

Keith Horne, SUPA St Andrews

Blackbody Disk Delay Maps

 $T(R) = T_1 (R/R_1)^{-\alpha}$

Starkey et al., 2016

Keith Horne, SUPA St Andrews

CREAM : MCMC Lightcurve Fits

Keith Horne, SUPA St Andrews

Standard Disk Model Fails

Disk flux spectrum is redder and fainter than expected (L/Led=0.1) Disk delay spectrum is hotter and steeper than expected

Questions:

Why does the standard disk model fail ? Disk spectrum is too faint and red. T(r) is too hot and steep.

Keith Horne, SUPA St Andrews

Answers: (=New Questions) Dust? (affects flux but not delay) Higher black hole mass? (raises Led) Diffuse continuum from BLR? Partial irradiation (shadows)? Tilted inner disk?

Velocity-Delay Maps : Ψ(v,τ) from Simulated HST data

But : HST line variations are NOT simple continuum echos 🛞

NGC 5548 HST

HJD

- Fast (5-20d) variations correlate, with clear (5-10d) lags.
- Slow (100d) variations may anti-correlate.
- Linerarised echo model fails to fit the line variations 😕.

Line Responses "De-cohere" 60 Days into STORM Campaign

Temporary Obscuration ? Change in the SED ? Blux 6 Flux 40 Arb. 20 c) Fake 55 F_{line}(C IV) 50 45 (d) 40 10 "BLR Holiday" .0 diff. _10 ≈-20 (e) -3050 150 100 0 HJD - 2,456,690 days

Goad et al. 2016 Keith Horne, SUPA St Andrews

HST Lightcurves -> Delay Maps : $\Psi(\tau)$

Linearised Echo Model Fails !

Model lines as continuum echos + slow variations

Keith Horne, SUPA St Andrews

Velocity-Delay Maps : $f(\lambda,t) \rightarrow \Psi(v,\tau)$

HST spectra $f(\lambda, t)$ =>500 lightcurves +MEMEcho fit =>500 delay maps $\Psi(v, \tau)$

Keith Horne, SUPA St Andrews

First MEMEcho fits (2015 Jan) $\Psi(v,\tau)$ distorted by absorption lines \otimes

Spectral Modeling analysis (2016 Jul) (de Rosa, Ely, Kriss) Use to remove absorption lines.

001 storm_models_v01.txt 56690.62994

Keith Horne, SUPA St Andrews

Narrow Absorption Lines

- See the same continuum that we do.
- Response time is recombination time.
- Vary in strength with continuum flux *at their ionization energy*.
- Track changes in the ionising SED

Keith Horne, SUPA St Andrews

Absorption Lines Modeled

Keith Horne, SUPA St Andrews

Absorption Lines Removed ©

HST (UV lines) Velocity-Delay Map

Arp 151: BLR Maps and Toy Models

Keith Horne, SUPA St Andrews

Lijiang – 2016 Oct 24

0

V (km/s)

0

V (km/s)

5000

5000

 10^{4}

 10^{4}

Lamp Post => Tilted Inner Disk ?

- Black hole spin mis-aligned (expected)
 - Bardeen-Petterson effect : Lens-Thirring torques align inner disk with BH spin
- Self-illumination (as in close binary stars)
 - × X-FUV : multiple reprocessing increases and smears reprocessing time.
 - × UV-IR : T(r) steeper than $r^{-3/4}$

Anisotropic irradiation pattern

- $\times T(r) \Longrightarrow T(r, \theta)$
- × $\Psi(V, \tau)$ red/blu asymmetry sans in/out flow
- Object-object diversity
- Precession ?
 - Observable?

Starkey et al. in prep Keith Horne, SUPA St Andrews

Nealon, Price, Nixon 2015 MNRAS 3d SPH simulations

Keith Horne, SUPA St Andrews