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SDSS Has Found ~ 400 
Weak-Line Quasars (WLQs)

L
uo et al. (2015)



Radio-quiet, blue, luminous, type 1 quasars.

Multiwavelength and multi-epoch studies
indicate not BL Lacs, not line obscuration, etc.

Prior to our work, limited X-ray coverage.

2-3 of them appeared to be notably X-ray
weak, though a couple others were not.



An X-ray Weak WLQ: PHL 1811

Leighly et al. (2007)

Gibson et al. (2008)

z = 0.192
B = 13.9

Broad-Band SED of PHL 1811 Outlier from Luminosity-aox Relation

X-ray weak by
a factor ~ 60

Has an X-ray weak spectral energy distribution (SED). 

No apparent X-ray absorption. No UV BALs or mini-BALs. X-ray variability.

At least some of the emission-line properties can be explained by unusual
SED – weak high-ionization lines, strong Fe II, III in NUV. 



PHL 1811’s Big Brother

J1521+5202

Just et al. (2007)

About 25 times 
more optically 
luminous than 
PHL 1811.

Mi = -30.2.

Only 3 counts in 4 ks 
Chandra snapshot.

X-ray weak by a 
factor of ~ 35.

UV/opt spectrum 
like that of PHL 1811. 

Luminosity vs. Redshift for SDSS Quasars

PHL 1811



Chandra Targeting of WLQs
We have now targeted 51 WLQs in Chandra exploratory snapshot observations:

33 general WLQs at z ~ 0.5-2.5 that are optically bright (i < 18.6).

Mostly from the Plotkin et al. (2010) sample with REW < 5 Å 
for all measurable emission features.

18 “analogs” of PHL 1811 at z ~ 1.7-3 that are optically bright (r < 18.9).

Additionally have strong UV Fe II/Fe III  and large C IV blueshifts.

Avoided targeting objects with BALs or mini-BALs, since we wanted simple
“clean” systems - without additional complexity from UV/X-ray absorption.

Also a 40 ks Chandra observation of the extremely luminous J1521+5202 (“big 
brother”) aimed at obtaining basic X-ray spectral data.



C IV Rest EW vs. Blueshift

Luo et al. (2015)

General 
SDSS 

quasars

BLRs at high L/LEdd



Many Are Strikingly X-ray Weak!

Typical
Radio-Quiet

Quasars

Stacking of the X-ray weak WLQs shows factor ~ 17 X-ray weakness (Daox = -0.47).

Stacking of the X-ray weak 1811s shows factor ~ 39 X-ray weakness (Daox = -0.61).

Unusual “soft” SED reaching BLR likely driving the weak lines.

Luo et al. (2015)

General WLQs – 16/33 X-ray weak Analogs of PHL 1811 – 17/18 X-ray weak

Typical
Radio-Quiet

Quasars



Broad-Band Spectral 
Energy Distributions

Luo et al. (2015)

IR-to-UV continuum SEDs appear nominal.



Basic X-ray Spectra:
X-ray Normal Objects

Joint spectral fitting shows steep power-law X-ray spectra, on average, with
G = 2.18 +/- 0.09. Suggests a high Eddington fraction with L/LEdd ≈ 1+.

Results from joint X-ray
spectral fitting of 17 X-ray
normal WLQs (610 counts)



Basic X-ray Spectra: 
X-ray Weak Objects

Hard to get X-ray spectral properties 
for the X-ray weak objects!

One exception is the extraordinarily 
luminous SDSS J1521+5202.

It has a very hard spectrum with 
GEff = 0.6 +/- 0.2.

Suggests heavy X-ray absorption, 
and/or Compton reflection.

Fitting indicates NH ~ 1023 cm-2, and 
perhaps much greater.

37 ks exposure

Chandra Spectrum of SDSS J1521+5202

Stacking of the other X-ray weak objects also indicates a hard average X-ray 
spectrum with GEff = 1.2-1.4. Absorption may be commonly present.



A Simple Model for WLQs
We have suggested a “shielding” model for WLQs.

Can explain, in a simple and unified manner, the weak lines, 
diverse X-ray properties, and other multiwavelength properties.

Relies on anisotropy of ionizing radiation (e.g., Wang et al. 2014). 

Small-scale shielding inside the BLR: 

Prevents ionizing photons from reaching the 
BLR, explaining the weak lines. 

Causes the X-ray weakness/absorption seen in 
about half of WLQs, depending upon orientation.

But what is this small-scale shield?



Thick Inner Disk?

“Slim” Accretion Disks for High L/LEdd
e.g., Abramowicz et al. (1988)

Ohsuga & Mineshige (2007)

Global MHD Simulation for High L/LEdd
e.g., Jiang et al. (2014); Sadowski et al. (2014)

A geometrically thick inner accretion disk might 
serve as the needed small-scale shield. 

Disk might also thicken due to iron opacity (Jiang et al. 2016).



The (~ equatorial) BLR starved of ionizing photons, independent of orientation.

Presence of X-ray weakness/absorption depends upon orientation, explaining
both X-ray weak and X-ray normal WLQs.

Shielding model seems to work well generally, though there could be some 
intrinsically X-ray weak systems hiding among our sample also.



The (~ equatorial) BLR starved of ionizing photons, independent of orientation.

Presence of X-ray weakness/absorption depends upon orientation, explaining
both X-ray weak and X-ray normal WLQs.

Shielding model seems to work well generally, though there could be some 
intrinsically X-ray weak systems hiding among our sample also.



Baskin & Laor (2004)

High L/LEdd consistent with the steep power-law X-ray spectra 
for the X-ray normal/unabsorbed WLQs.

Furthermore, studies of the 
Baldwin effect find L/LEdd

explains C IV better than 
luminosity.

Virial masses uncertain for these objects with unusual BLRs. 
But best available estimates using Hb suggest high L/LEdd. Try 
reverberation mapping? 

WLQ?

Evidence for High L/LEdd



Broader Relevance: Shielding 
and Emission-Line Strengths

Quasars show factor of ~ 100 range 
in emission-line EWs, for reasons 
still poorly understood.

Likely effects include anisotropic
line/continuum emission, 
metallicity, BLR geometry. 

In terms of emission-line
properties, WLQs are extreme but 
are not disjoint from the overall 
population.

General 
SDSS 

quasars

Seems likely that shielding may be present, at a milder level, in more typical quasars.

Shielding may play broader role in setting strengths of quasar high-ionization lines. 



Implications at High Redshift

Wu et al. (2015)
z = 6.3

Has a Mg II based MVir ~ 1.2 x 1010 M¤.

Challenge to grow such a massive SMBH.

If WLQs indeed have high L/LEdd, helps 
with the high luminosity and rapid growth.

Also it is a WLQ, for which virial masses 
are tricky.

Given our comparison of Mg II vs. Hb
masses for WLQs, its mass may be ~ 3+ 
times lower, making the challenge easier.

Ai et al. (2016) Chandra measurements 
consistent with X-ray normal WLQs. 

More generally, since quasar L/LEdd ratios 
grow with redshift, should check if the 
fraction of WLQs grows with redshift.


