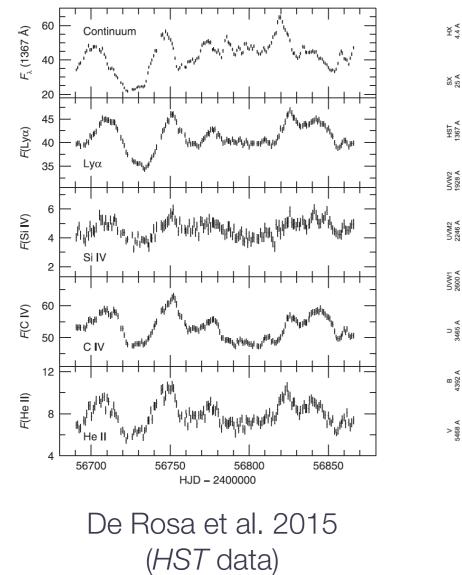
AGN Space Telescope and Optical Reverberation Mapping (STORM):

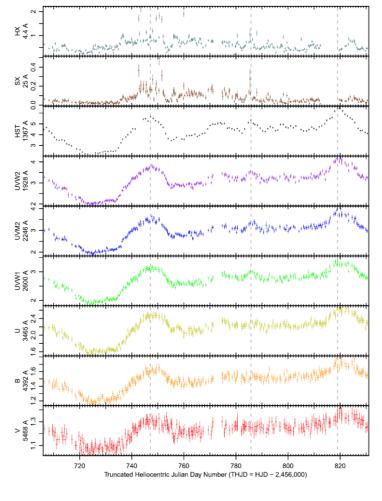
Optical Emission-Line Analysis of NGC 5548

Liuyi Pei University of Illinois at Urbana-Champaign Lijiang, China, October 24th, 2016

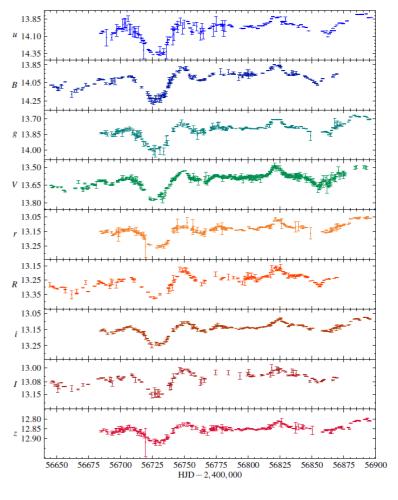
STORM Collaborators

SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT. V. OPTICAL SPECTROSCOPIC CAMPAIGN AND EMISSION-LINE ANALYSIS FOR NGC 5548


L. PEI^{1,2}, M. M. FAUSNAUGH³, A. J. BARTH¹, B. M. PETERSON^{3,4,5}, M. C. BENTZ⁶, G. DE ROSA⁵, K. D. DENNEY^{3,4,7}, M. R. GOAD⁸, C. S. KOCHANEK^{3,4}, K. T. KORISTA⁹, G. A. KRISS^{5,10}, R. W. POGGE^{3,4}, V. N. BENNERT¹¹, M. BROTHERTON¹², K. I. CLUBB¹³, E. DALLA BONTÀ^{14,15}, A. V. FILIPPENKO¹³, J. E. GREENE¹⁶, C. J. GRIER^{3,17,18}, M. VESTERGAARD^{19,20}, W. ZHENG¹³, SCOTT M. ADAMS^{3,21}, THOMAS G. BEATTY^{3,17,22}, A. BIGLEY¹³, JACOB E. BROWN²³, JONATHAN S. BROWN³, G. CANALIZO²⁴, J. M. COMERFORD²⁵, CARL T. COKER³, E. M. CORSINI^{14,15}, S. CROFT¹³
K. V. CROXALL^{3,4}, A. J. DEASON²⁶, MICHAEL ERACLEOUS^{17,18,27,28}, O. D. FOX¹³, E. L. GATES²⁹, C. B. HENDERSON^{3,30,31}, E. HOLMBECK³², T. W.-S. HOLOIEN^{3,4}, J. J. JENSEN¹⁹, C. A. JOHNSON³³, P. L. KELLY^{34,35,36}, S. KIM^{3,4}, A. KING³⁷, M. W. LAU²⁶, MIAO LI³⁸, CASSANDRA LOCHHAAS³, ZHIYUAN MA²³, E. R. MANNE-NICHOLAS⁶, J. C. MAUERHAN¹³, M. A. MALKAN³², R. MCGURK^{26,39}, L. MORELLI^{14,15}, ANA MOSQUERA^{3,40}, DALE MUDD³, F. MULLER SANCHEZ²⁵, M. L. NGUYEN¹², P. OCHNER^{14,15}, B. OU-YANG⁶, A. PANCOAST^{41,42,43}, MATTHEW T. PENNY^{3,44}, A. PIZZELLA^{14,15}, RADOSŁAW POLESKI³, JESSIE RUNNOE⁴⁵, B. SCOTT²⁴, JADERSON S. SCHIMOIA^{3,46}, B. J. SHAPPEE^{47,48}, I. SHIVVERS¹³, N. TEJOS^{50,51}, T. TREU^{32,41,52}, J. VAN SADERS⁴⁷, L. VICAN³², S. VILLANUEVA JR.³, H. YUK¹³, N. L. ZAKAMSKA¹⁰, W. ZHU³, M. D. ANDERSON⁶, P. ARÉVALO⁵³, C. BAZHAW⁶, S. BISOCNI^{3,54}, G. A. BORMAN⁵⁵, M. C. BOTTORF⁵⁶, W. N. BRANDT^{17,18,57}, A. A. BREEVELD⁵⁸, E. M. CACKETT⁵⁹, M. T. CARINI⁶⁰, D. M. CRENSHAW⁶,
A. DE LORENZO-CÁCERES⁶¹, M. DIETRICH^{62,63}, R. EDELSON⁶⁴, N. V. EFIMOVA⁶⁵, J. ELY⁵, P. A. EVANS⁸, G. J. FERLAND⁶⁶ L. PEI^{1,2}, M. M. FAUSNAUGH³, A. J. BARTH¹, B. M. PETERSON^{3,4,5}, M. C. BENTZ⁶, G. DE ROSA⁵, K. D. DENNEY^{3,4,7}, W. N. BRANDT^{11,16,37}, A. A. BREEVELD³⁵, E. M. CACKETT³⁵, M. T. CARINI³⁰, D. M. CRENSHAW⁶,
A. DE LORENZO-CÁCERES⁶¹, M. DIETRICH^{62,63}, R. EDELSON⁶⁴, N. V. EFIMOVA⁶⁵, J. ELY⁵, P. A. EVANS⁸, G. J. FERLAND⁶⁶
K. FLATLAND⁶⁷, N. GEHRELS⁶⁸, S. GEIER^{69,70,71}, J. M. GELBORD^{72,73}, D. GRUPE⁷⁴, A. GUPTA³, P. B. HALL⁷⁵, S. HICKS⁶⁰,
D. HORENSTEIN⁶, KEITH HORNE⁶¹, T. HUTCHISON⁵⁶, M. IM⁷⁶, M. D. JONER⁷⁷, J. JONES⁶, J. KAASTRA^{78,79,80}, S. KASPI^{81,82}
B. C. KELLY⁴¹, J. A. KENNEA¹⁷, M. KIM⁸³, S. C. KIM⁸³, S. A. KLIMANOV⁶⁶, J. C. LEE⁸³, D. C. LEONARD⁶⁷, P. LIRA⁸⁴,
F. MACINNIS⁵⁶, S. MATHUR^{3,4}, I. M. M^cHARDY⁸⁵, C. MONTOURI⁸⁶, R. MUSSO⁵⁶, S. V. NAZAROV⁵⁵, H. NETZER⁸¹,
R. P. NORRIS⁶, J. A. NOUSEK¹⁷, D. N. OKHMAT⁵⁵, I. PAPADAKIS^{87,88}, J. R. PARKS⁶, J.-U. POTT³⁹, S. E. RAFTER^{82,89},
H.-W. RIX³⁹, D. A. SAYLOR⁶, K. SCHNÜLLE³⁹, S. G. SERGEEV⁵⁵, M. SIEGEL⁹⁰, A. SKIELBOE¹⁹, M. SPENCER⁷⁷,
D. STARKEY⁶¹, H.-I. SUNG⁸³, K. G. TEEMS⁶, C. S. TURNER⁶, P. UTTLEY⁹¹, C. VILLFORTH⁹², Y. WEISS⁸², J.-H. WOO⁷⁶,


International collaboration with 150+ co-authors

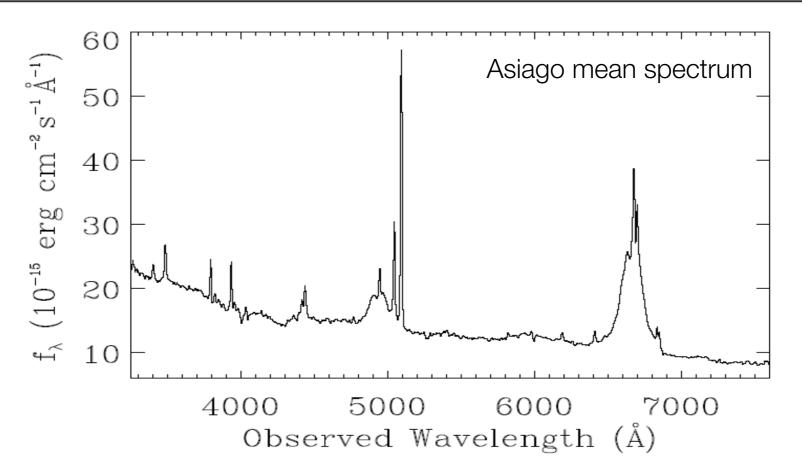
Goals and Project Components


- Carry out a detailed study of the BLR in NGC 5548 over a wide wavelength range
 - Obtain high-quality **velocity-delay maps** for multiple emission lines
 - Improve our understanding of the **BLR-continuum relationship**
- Simultaneous multi-wavelength monitoring
 - UV spectroscopy: *Hubble Space Telescope (HST)*
 - UV/X-ray photometry: Swift
 - Optical photometry: *Swift*, LCOGT, MLO, WMO, etc.
 - Optical spectroscopy: MDM, APO, Asiago, Lick, WIRO

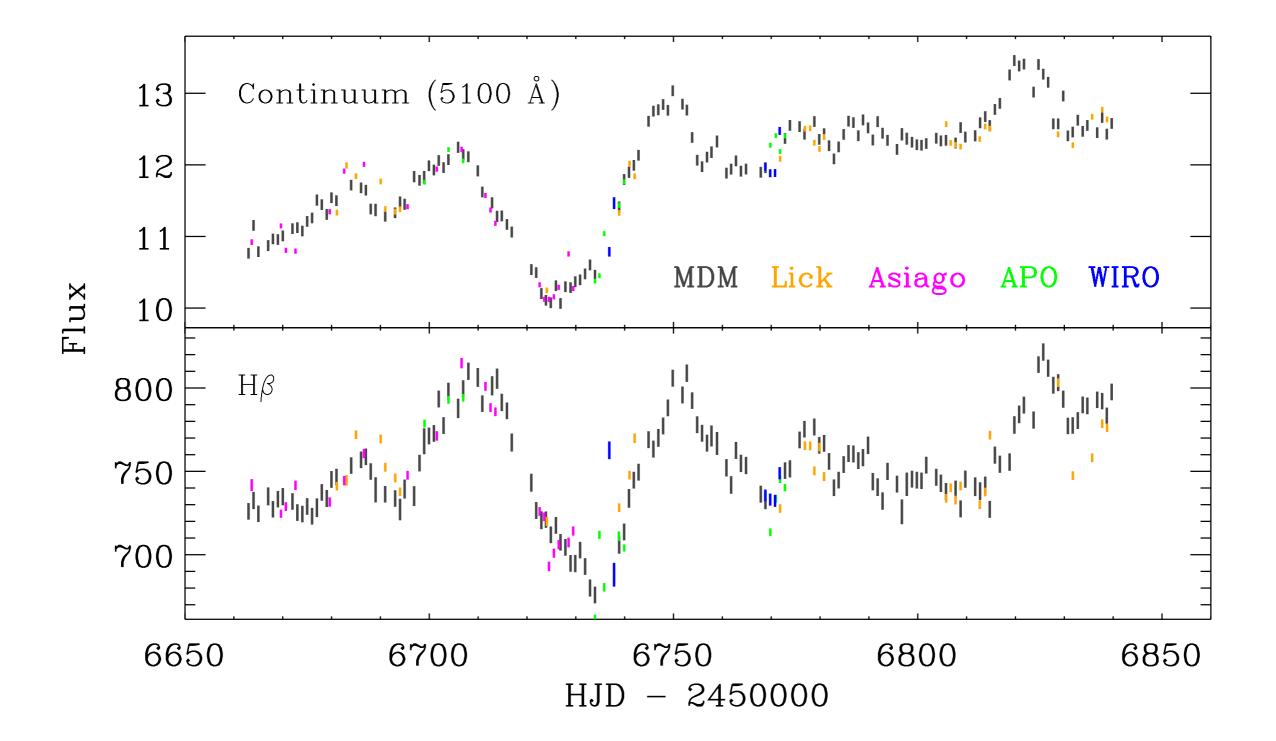
Data Papers

Edelson et al. 2015 (*Swift* data)

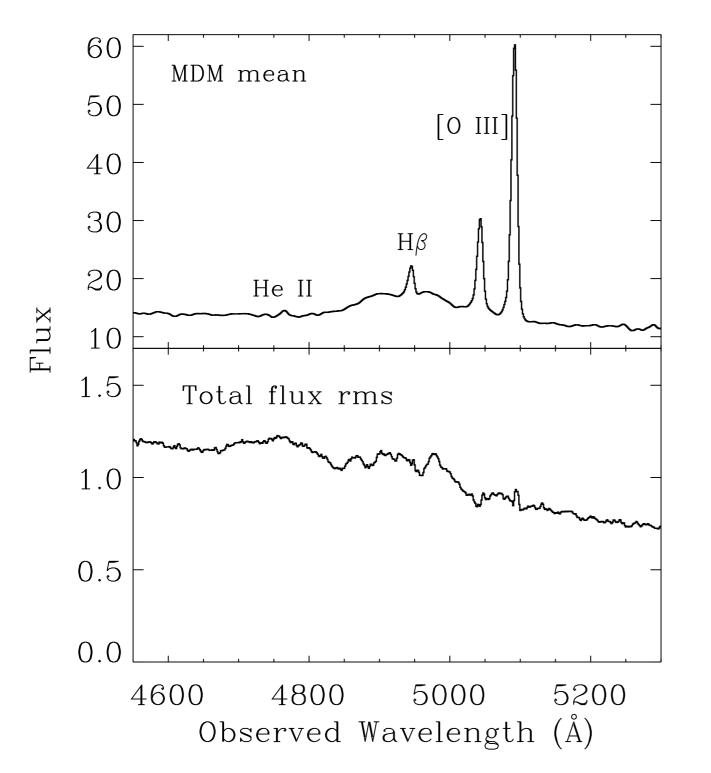
Fausnaugh et al. 2016 (Ground-based photometry)


Optical spectroscopy: Pei et al, submitted

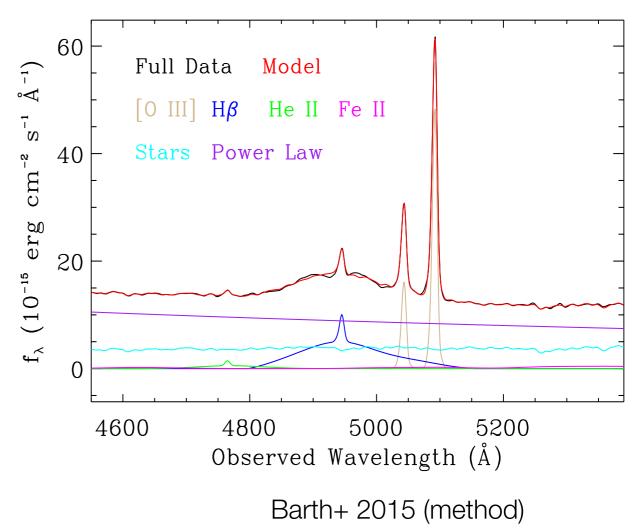
Also Goad et al. 2016, Starkey et al. submitted


Observations and Reductions

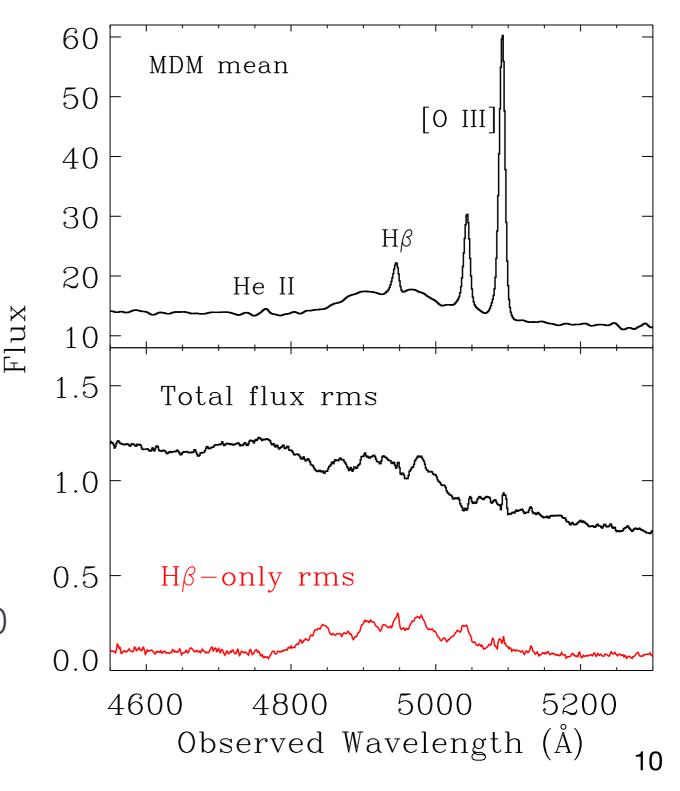
Spectroscopic Dataset


Telescope	Number of Epochs	Median Seeing (")	Wavelength Dispersion (Å pixel ⁻¹)	Pixel Scale (" pixel ⁻¹)	Median SNR	$\begin{bmatrix} O & III \\ F_{var} \\ (\%) \end{bmatrix}$
MDM Lick Asiago APO WIRO	143 35 21 13 6	$1.7 \\ 1.5 \\ 4.0 \\ 1.4 \\ 2.1$	$1.25 \\ 1.02 \\ 1.00 \\ 1.00 \\ 0.74$	$\begin{array}{c} 0.75 \\ 0.43 \\ 1.00 \\ 0.41 \\ 0.52 \end{array}$	$118 \\ 194 \\ 160 \\ 160 \\ 217$	$\begin{array}{c} 0.62 \\ 0.32 \\ 0.27 \\ 0.28 \\ 0.47 \end{array}$

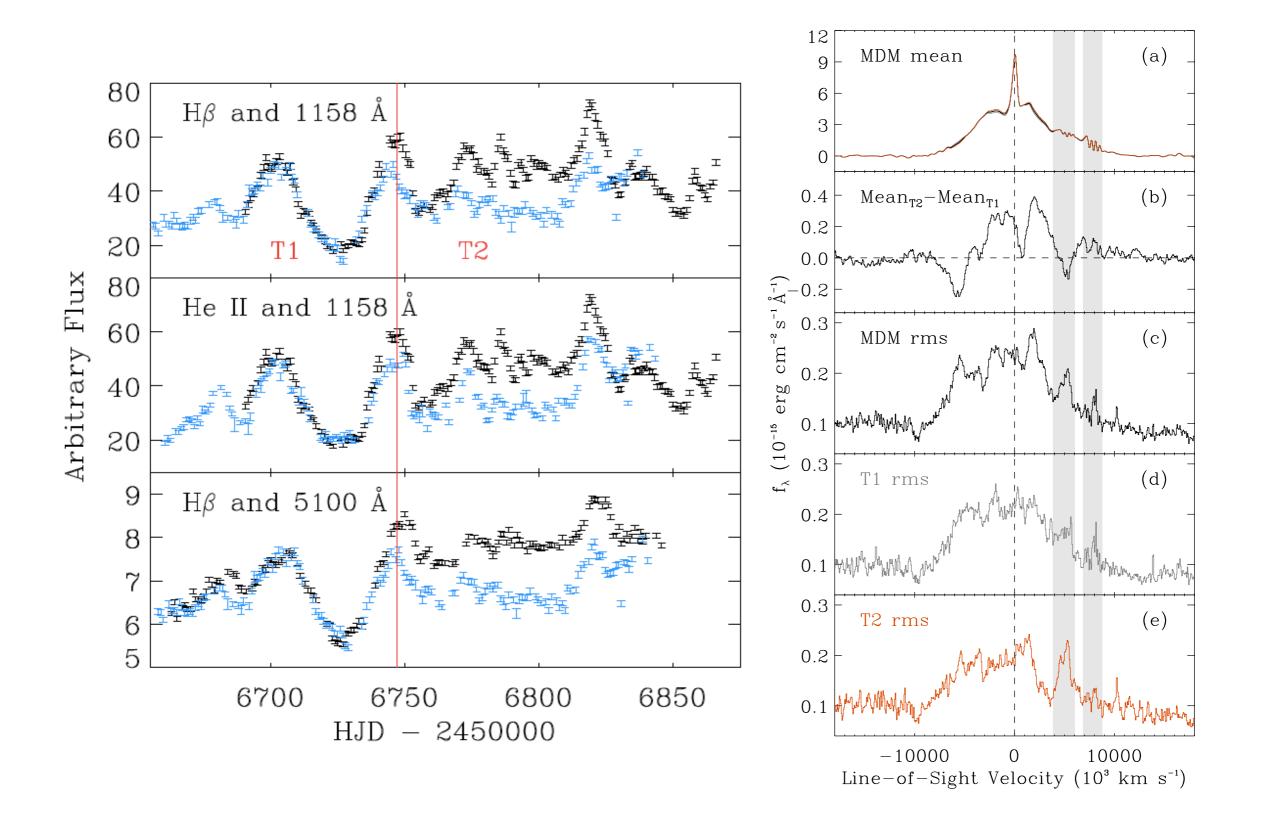
Optical Spectroscopy Light Curves


Mean and RMS

- Both Hβ and He II are highly variable
- The two broad lines are heavily blended together
- He II is very weak in the mean spectrum

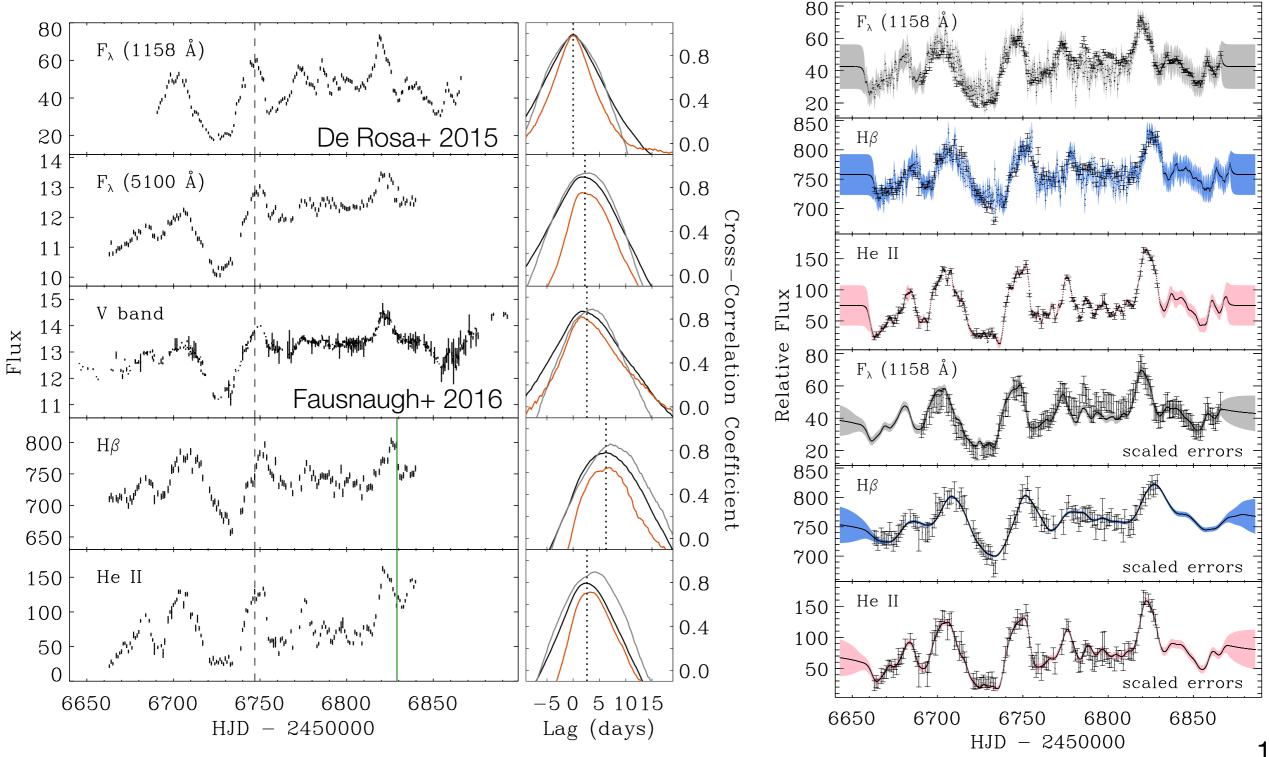

Spectral Decomposition

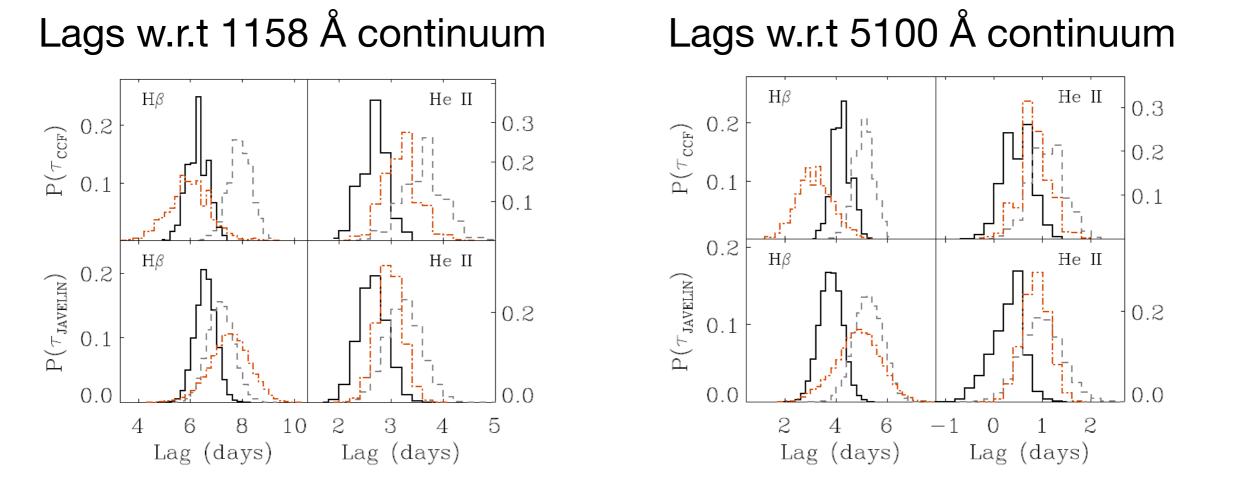
- De-blend broad lines
 - Enable measurement of He II
 flux
- More accurately remove the continuum
- Fitting routine:
 - Sixth order Gauss-Hermite functions for [O III], broad and narrow Hβ
 - He II λ4686 width constrained to within 3 Å of the He II λ1640 width from the nearest HST epoch



Spectral Decomposition

- De-blend broad lines
 - Enable measurement of He II
 flux
- More accurately remove the continuum
- Fitting routine:
 - Sixth order Gauss-Hermite functions for [O III], broad and narrow Hβ
 - He II λ4686 width constrained to within 3 Å of the He II λ1640 width from the nearest HST epoch




Light-Curve Decorrelation

Lag Analysis

ICCF and JAVELIN

OBSERVED-FRAME EMISSION-LINE LAGS

Light Curves	$ au_{ m cen}$	$\tau_{\rm cen,T1}$	$ au_{ m cen,T2}$	$ au_{ ext{JAVELIN}}$	$ au_{ extsf{JAVELIN}, extsf{T1}}$	$ au_{ extsf{JAVELIN}, extsf{T2}}$
H β vs. $F_{\lambda}(1158$ Å) H β vs. $F_{\lambda}(1367$ Å) H β vs. $F_{\lambda}(5100$ Å) H β vs. V band	$\begin{array}{r} 6.34\substack{+0.40\\-0.45}\\5.99\substack{+0.38\\-0.38}\\4.24\substack{+0.37\\-0.37}\\3.86\substack{+0.38\\-0.35}\end{array}$	$7.75_{-0.50}^{+0.50} \\ 7.36_{-0.49}^{+0.50} \\ 5.08_{-0.48}^{+0.41} \\ 3.89_{-0.48}^{+0.58} $	$\begin{array}{r} 6.09\substack{+0.72\\-0.76}\\ 6.09\substack{+0.77\\-0.83}\\ 3.15\substack{+0.78\\-0.81}\\ 4.20\substack{+0.56\\-0.59}\end{array}$	$ \begin{vmatrix} 6.67 \substack{+0.49 \\ -0.50 \\ 6.23 \substack{+0.47 \\ -0.48 \\ 3.91 \substack{+0.58 \\ -0.60 \\ 3.60 \substack{+0.46 \\ -0.47 \end{vmatrix} } $	$7.03_{-0.64}^{+0.65}$ $6.63_{-0.58}^{+0.61}$ $5.24_{-0.70}^{+0.67}$ $4.97_{-0.72}^{+0.67}$	$7.55_{-1.09}^{+0.99}$ $7.23_{-1.08}^{+1.05}$ $4.86_{-1.19}^{+1.15}$ $4.12_{-0.79}^{+0.95}$
He II vs. $F_{\lambda}(1158 \text{ Å})$ He II vs. $F_{\lambda}(1367 \text{ Å})$ He II vs. $F_{\lambda}(5100 \text{ Å})$ He II vs. V band	$\begin{array}{r} -0.35\\ 2.74\substack{+0.24\\-0.25}\\ 2.49\substack{+0.25\\-0.24}\\ 0.80\substack{+0.36\\-0.35}\\ 0.51\substack{+0.35\\-0.26}\end{array}$	$\begin{array}{r} -0.48\\ 3.77 \substack{+0.40\\-0.39}\\ 3.49 \substack{+0.37\\-0.44}\\ 1.23 \substack{+0.28\\-0.37}\\ 0.41 \substack{+0.44\\-0.40}\end{array}$	$\begin{array}{r} -0.39\\ 3.24\substack{+0.37\\-0.36}\\ 3.21\substack{+0.29\\-0.34}\\ 0.86\substack{+0.37\\-0.37}\\ 1.48\substack{+0.35\\-0.27}\end{array}$	$\begin{array}{c} -0.47\\ 2.70^{+0.27}_{-0.27}\\ 2.45^{+0.25}_{-0.26}\\ 0.16^{+0.38}_{-0.38}\\ 0.45^{+0.23}_{-0.23}\end{array}$	$\begin{array}{r} -0.72\\ 3.33\substack{+0.36\\-0.36}\\ 3.09\substack{+0.36\\-0.37}\\ 1.15\substack{+0.52\\-0.49}\\ 0.64\substack{+0.38\\-0.37}\end{array}$	$\begin{array}{r} -0.79\\ 3.04\substack{+0.25\\-0.26\\2.84\substack{+0.25\\-0.25\\0.86\substack{+0.39\\-0.36\\0.93\substack{+0.23\\-0.21}\end{array}}$

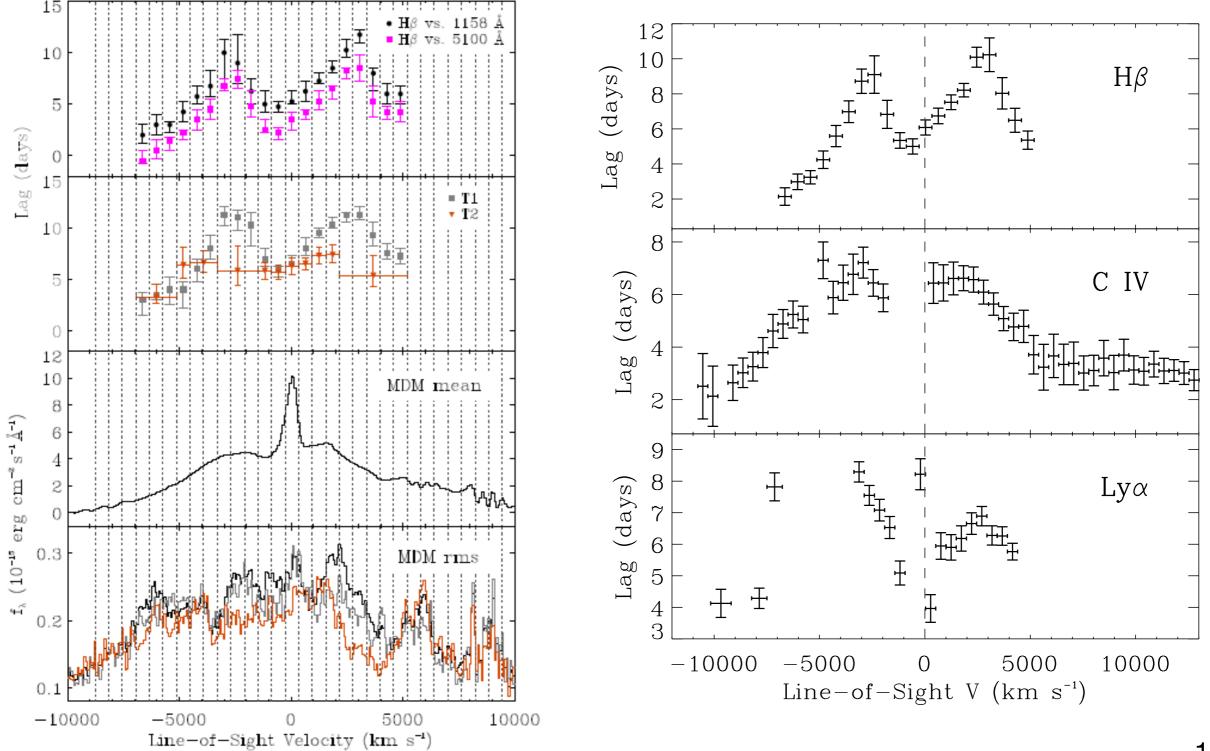
Pei et al. submitted

HB UV & Optical Lags

Light Curves	$ au_{ m cen}$
H β vs. $F_{\lambda}(1158 \text{ Å})$ H β vs. $F_{\lambda}(1367 \text{ Å})$ H β vs. $F_{\lambda}(5100 \text{ Å})$ H β vs. V band	$\begin{array}{r} 6.34\substack{+0.40\\-0.45}\\ 5.99\substack{+0.38\\0.28}\\ 4.24\substack{+0.37\\-0.37}\\ 3.86\substack{+0.38\\-0.35}\end{array}$

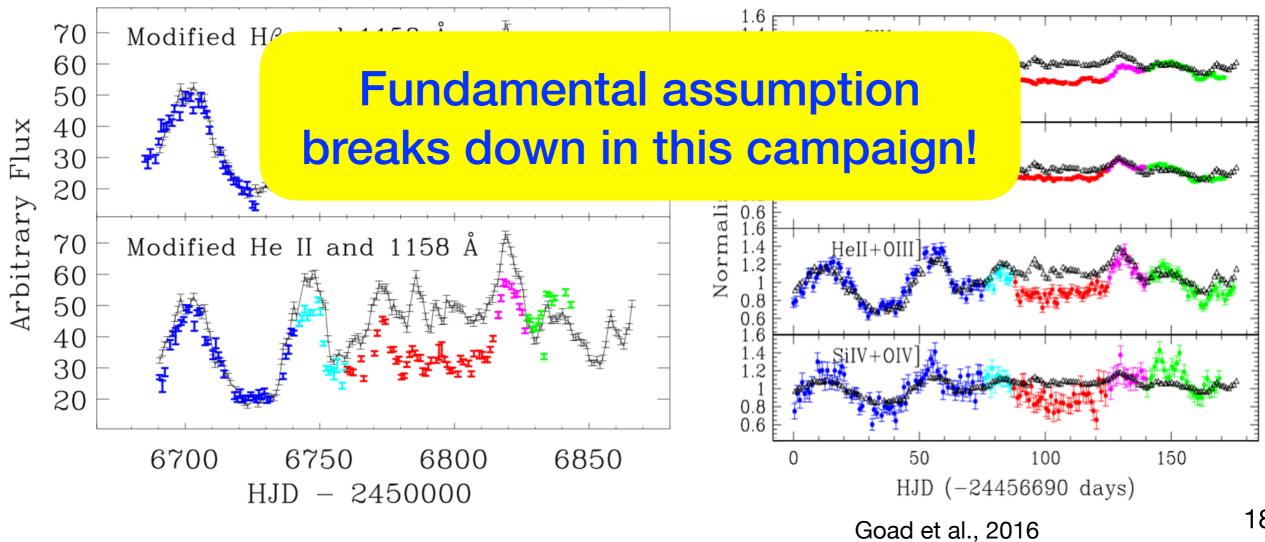
RM usually uses the optical continuum as proxy for the ionizing continuum

$$M_{\rm BH} = f \frac{c\tau \sigma^2}{G}, R_{\rm BLR} = c\tau$$

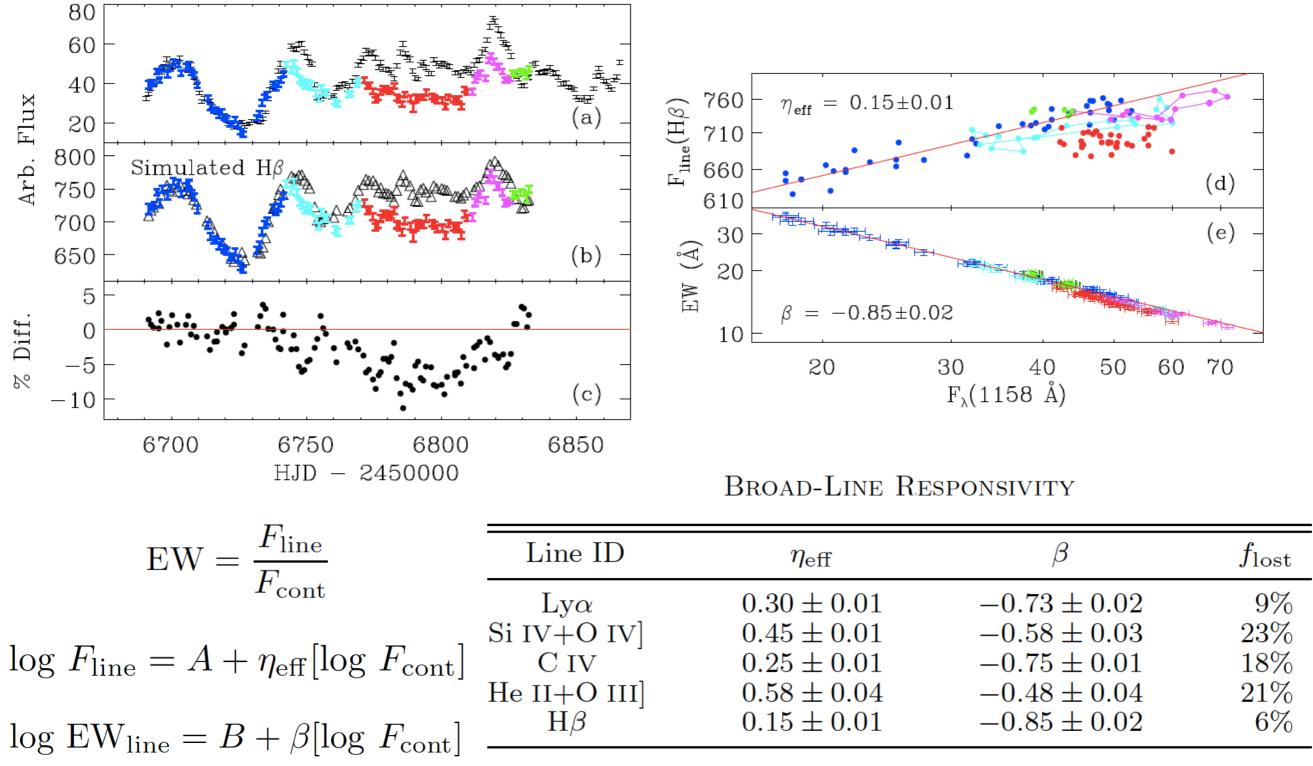

The $H\beta$ —UV lag is 1.5 times longer than the $H\beta$ —optical lag

- Shorter lag $\Rightarrow R_{BLR}$ underestimated by 50%!
- What about the BH mass?

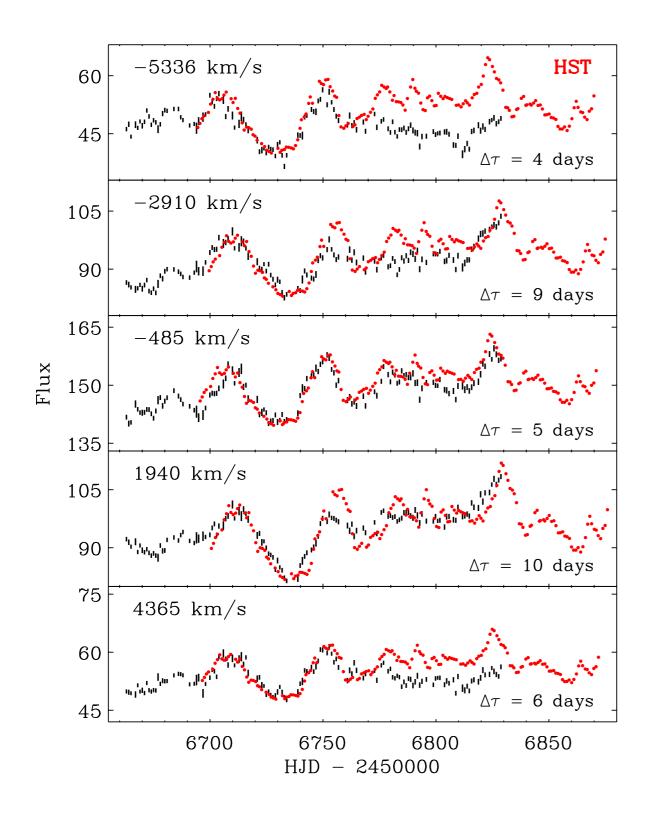
Implications of UV & Optical Lags


- + Is τ_{UV}/τ_{opt} constant for all AGNs?
 - Yes $\rightarrow M_{BH}$ values aren't affected since virial products are calibrated to quiescent galaxy $M_{BH} \sigma_{\star}$ relation, so $\langle f \rangle$ absorbed this constant shift.
 - No \rightarrow the slope or even shape of the $R_{BLR} L_{AGN}$ can change. This would affect all single-epoch BH masses!
- Directly affects velocity-delay maps and dynamical models obtained using only optical data

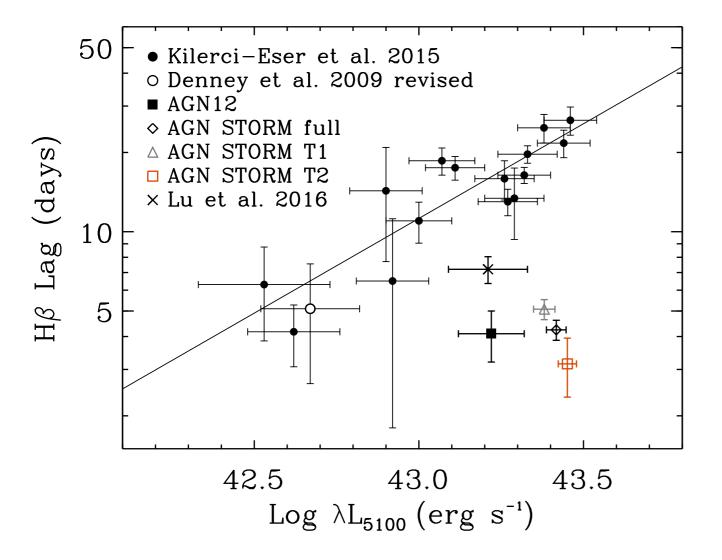
Velocity-Resolved H_β Analysis



Anomalous Emission-Line Variability


 A fundamental assumption of RM is that the line light curve is a smoothed, scaled, and shifted version of the continuum light curve

Anomalous Emission-Line Variability



Anomalous Emission-Line Variability

- The anomaly is velocitydependent
- Some scenarios
 suggested by Goad+
 2016
 - Shielding material
 - Change in SED
- Further investigation required!

Single-Object R_{BLR} – L_{AGN} Relation

- The Hβ lag was unexpectedly short given its luminosity during the campaign
- Similar findings by Lu+ 2016 and recent campaigns
- Explanations:
 - Partially obscured BLR backside (Peterson)
 - Continuum probes only inner part of BLR (Goad & Korista 2014)

Major Results

- We measured optical emission-line lags for NGC 5548 w.r.t. simultaneous UV and optical continua
 - Using optical continuum as proxy for driving continuum systematically results in smaller $R_{\rm BLR}$; BH masses **may** be affected
- We measured velocity-resolved lags for Hβ; double-peaked lag profile similar to C IV and Ly α
- Optical emission line light curves show same anomalous behavior as UV lines, and the Hβ response during the anomaly is time-dependent
- Given the AGN's luminosity, the Hβ lag is a factor of 5 shorter than expected from its previous R_{BLR} – L_{AGN} relation

Lots of puzzles, what's next?

- Velocity-delay maps and dynamical modeling of UV and optical lines (Keith's talk, Pancoast+)
- More detailed velocity-resolved studies of the BLR anomaly (Goad+)
- Future campaigns
 - More simultaneous UV and optical RM monitoring
 - More LONG campaigns to check for BLR anomaly
 - Revisit NGC 5548 to check on its R-L relation